mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 20:49:55 +00:00
Merge pull request #220 from TensorBlock/main
Add optimization config for Deepseek V3/R1 with 4 GPUs
This commit is contained in:
commit
8324e7fd9b
1 changed files with 326 additions and 0 deletions
|
@ -0,0 +1,326 @@
|
|||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
||||
|
||||
# === Rotary Embedding Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\."
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === Linear Layers Replacement (excluding self_attn.kv_b_proj) ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.(?!self_attn\\.kv_b_proj).*$"
|
||||
class: torch.nn.Linear
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
# === MLP (MoE) Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === MLP Gate Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.gate$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === MLP Experts Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
recursive: False
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
recursive: False
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:2"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:2"
|
||||
recursive: False
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda:3"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:3"
|
||||
recursive: False
|
||||
|
||||
# === Self-Attention Replacement ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# GPU 3: layers 45–60
|
||||
- match:
|
||||
name: "^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
||||
# === Overall Model Replacement with Transfer Map ===
|
||||
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 means close layer‐wise prefill
|
||||
transfer_map:
|
||||
15: "cuda:1" # Layers 15+ on GPU 1
|
||||
30: "cuda:2" # Layers 30+ on GPU 2
|
||||
45: "cuda:3" # Layers 45+ on GPU 3
|
||||
|
||||
# === Default Catch-All for Other Modules ===
|
||||
|
||||
# GPU 0: layers 0–14
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9]|1[0-4])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
||||
# GPU 1: layers 15–29
|
||||
- match:
|
||||
name: "^model\\.layers\\.(1[5-9]|2[0-9])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
||||
# GPU 2: layers 30–44
|
||||
- match:
|
||||
name: "^model\\.layers\\.(3[0-9]|4[0-4])\\."
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
||||
# For final modules (model.norm and lm_head), ensure they are on GPU 3 (as in your original config)
|
||||
- match:
|
||||
name: "(^model\\.layers\\.(4[5-9]|5[0-9]|60)\\.)|(^model\\.norm)|(^lm_head)"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
Loading…
Add table
Reference in a new issue