support npu

This commit is contained in:
djw 2025-07-21 12:26:14 +00:00
parent dd0e41b3b8
commit 7d51a13c9b
34 changed files with 14004 additions and 5626 deletions

View file

@ -16,6 +16,7 @@ from ktransformers.util.custom_loader import GGUFLoader, ModelLoaderFactory
from ktransformers.util.utils import set_module, load_weights
import itertools
import copy
from ktransformers.util import utils
def inject(module, local_optimization_dict, model_config:AutoConfig ,gguf_loader:GGUFLoader, prefix=''):
for name, child in module._modules.items():
@ -114,7 +115,7 @@ def translate_model_config(model_config: PretrainedConfig):
return model_config
def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, model_config: PretrainedConfig, default_device: str = "cuda:0"):
def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, model_config: PretrainedConfig, default_device: str = "cuda:0", q4_gguf_path=""):
with open(rule_file, 'r', encoding='utf-8') as f:
rule_list = yaml.load(f.read(), Loader=yaml.FullLoader)
@ -123,15 +124,29 @@ def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, mo
model_config = translate_model_config(model_config)
weights_loader = ModelLoaderFactory.create_loader(gguf_path)
with torch.device("meta"):
inject(module, optimize_config, model_config, weights_loader)
# pre load lm_head because its big inter result
load_weights(module.lm_head, weights_loader, "lm_head.", device=default_device)
load_weights(module, weights_loader, device=default_device)
module.gguf_loader = weights_loader
if q4_gguf_path:
q4_gguf_loader = GGUFLoader(q4_gguf_path)
utils.Q4_GGUF_LODER = q4_gguf_loader
gguf_loader = GGUFLoader(gguf_path, getattr(model_config, "quantize", None))
with torch.device("meta"):
inject(module, optimize_config, model_config, gguf_loader)
# pre load lm_head because its big inter result
load_weights(module.lm_head, gguf_loader, "lm_head.")
load_weights(module, gguf_loader)
module.gguf_loader = gguf_loader
else:
weights_loader = ModelLoaderFactory.create_loader(gguf_path)
with torch.device("meta"):
inject(module, optimize_config, model_config, weights_loader)
# pre load lm_head because its big inter result
load_weights(module.lm_head, weights_loader, "lm_head.", device=default_device)
load_weights(module, weights_loader, device=default_device)
module.gguf_loader = weights_loader
del_meta(module)
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif torch.xpu.is_available():
torch.xpu.empty_cache()
else:
torch.cuda.empty_cache()

View file

@ -0,0 +1,76 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "npu"
prefill_device: "npu"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "npu"
prefill_device: "npu"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "npu"
prefill_device: "npu"
generate_op: "KLinearTorch"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "npu"
prefill_device: "npu"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "npu:0"
prefill_device: "npu:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "npu"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "npu"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "npu"
prefill_device: "npu"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"