mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-10 23:34:35 +00:00
support npu
This commit is contained in:
parent
dd0e41b3b8
commit
7d51a13c9b
34 changed files with 14004 additions and 5626 deletions
|
@ -16,6 +16,7 @@ from ktransformers.util.custom_loader import GGUFLoader, ModelLoaderFactory
|
|||
from ktransformers.util.utils import set_module, load_weights
|
||||
import itertools
|
||||
import copy
|
||||
from ktransformers.util import utils
|
||||
|
||||
def inject(module, local_optimization_dict, model_config:AutoConfig ,gguf_loader:GGUFLoader, prefix=''):
|
||||
for name, child in module._modules.items():
|
||||
|
@ -114,7 +115,7 @@ def translate_model_config(model_config: PretrainedConfig):
|
|||
return model_config
|
||||
|
||||
|
||||
def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, model_config: PretrainedConfig, default_device: str = "cuda:0"):
|
||||
def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, model_config: PretrainedConfig, default_device: str = "cuda:0", q4_gguf_path=""):
|
||||
with open(rule_file, 'r', encoding='utf-8') as f:
|
||||
rule_list = yaml.load(f.read(), Loader=yaml.FullLoader)
|
||||
|
||||
|
@ -123,15 +124,29 @@ def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, mo
|
|||
|
||||
model_config = translate_model_config(model_config)
|
||||
|
||||
weights_loader = ModelLoaderFactory.create_loader(gguf_path)
|
||||
with torch.device("meta"):
|
||||
inject(module, optimize_config, model_config, weights_loader)
|
||||
# pre load lm_head because its big inter result
|
||||
load_weights(module.lm_head, weights_loader, "lm_head.", device=default_device)
|
||||
load_weights(module, weights_loader, device=default_device)
|
||||
module.gguf_loader = weights_loader
|
||||
if q4_gguf_path:
|
||||
q4_gguf_loader = GGUFLoader(q4_gguf_path)
|
||||
utils.Q4_GGUF_LODER = q4_gguf_loader
|
||||
gguf_loader = GGUFLoader(gguf_path, getattr(model_config, "quantize", None))
|
||||
with torch.device("meta"):
|
||||
inject(module, optimize_config, model_config, gguf_loader)
|
||||
# pre load lm_head because its big inter result
|
||||
load_weights(module.lm_head, gguf_loader, "lm_head.")
|
||||
load_weights(module, gguf_loader)
|
||||
module.gguf_loader = gguf_loader
|
||||
|
||||
else:
|
||||
weights_loader = ModelLoaderFactory.create_loader(gguf_path)
|
||||
with torch.device("meta"):
|
||||
inject(module, optimize_config, model_config, weights_loader)
|
||||
# pre load lm_head because its big inter result
|
||||
load_weights(module.lm_head, weights_loader, "lm_head.", device=default_device)
|
||||
load_weights(module, weights_loader, device=default_device)
|
||||
module.gguf_loader = weights_loader
|
||||
del_meta(module)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
elif torch.xpu.is_available():
|
||||
torch.xpu.empty_cache()
|
||||
else:
|
||||
torch.cuda.empty_cache()
|
|
@ -0,0 +1,76 @@
|
|||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
|
||||
replace:
|
||||
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
|
||||
kwargs:
|
||||
generate_device: "npu"
|
||||
prefill_device: "npu"
|
||||
|
||||
- match:
|
||||
name: "^lm_head$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "npu"
|
||||
prefill_device: "npu"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "npu"
|
||||
prefill_device: "npu"
|
||||
generate_op: "KLinearTorch"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "npu"
|
||||
prefill_device: "npu"
|
||||
- match:
|
||||
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||
replace:
|
||||
class: ktransformers.operators.gate.KMoEGate
|
||||
kwargs:
|
||||
generate_device: "npu:0"
|
||||
prefill_device: "npu:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "npu"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "npu"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "npu"
|
||||
prefill_device: "npu"
|
||||
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
name: "^model.embed_tokens"
|
||||
replace:
|
||||
class: "default"
|
||||
kwargs:
|
||||
generate_device: "cpu"
|
||||
prefill_device: "cpu"
|
Loading…
Add table
Add a link
Reference in a new issue