Merge branch 'fix_precision_MLA' of https://github.com/kvcache-ai/ktransformers into server-prefix-cache

This commit is contained in:
ceerrep 2025-02-18 11:44:28 +08:00
commit 73d072f609
3 changed files with 14 additions and 4 deletions

View file

@ -2,6 +2,8 @@
set -e
# clear build dirs
rm -rf build
rm -rf *.egg-info
rm -rf ktransformers/ktransformers_ext/build
rm -rf ktransformers/ktransformers_ext/cuda/build
rm -rf ktransformers/ktransformers_ext/cuda/dist

View file

@ -105,6 +105,9 @@ class KTransformersInterface(TransformersInterface):
logits = logits[0, -1, :]
return self.logits_to_token(logits)
if self.args.use_cuda_graph:
warm_uped = True
if self.use_static_cache:
mask = torch.ones((1, self.seq_length)).to(torch_device)
logits = self.model(
@ -118,7 +121,6 @@ class KTransformersInterface(TransformersInterface):
else:
logits = self.model(self.current_ids, return_dict=False)[0]
logits = logits[0, -1, :]
warm_uped = True
return self.logits_to_token(logits)

View file

@ -18,7 +18,7 @@ import sys, os
from ..base import ThreadContext, BackendInterfaceBase
from ktransformers.server.config.log import logger
from ..args import ConfigArgs, default_args
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled, MLAWrapperSingleton
# This TextStreamer is a modified version from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/streamers.py
class TextStreamer:
@ -330,8 +330,14 @@ class TransformersInterface(BackendInterfaceBase):
@torch.no_grad
def generate(self):
self.profiler.set_counter("decode", 0)
for _ in range(1, self.args.max_new_tokens):
for i in range(1, self.args.max_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
if i > 1 and flashinfer_enabled:
MLAWrapperSingleton.plan_all(None,None,None,self.active_cache_position.to(torch.int32)+1,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.cache.page_size,
sm_scale=(self.model.config.qk_rope_head_dim + self.model.config.qk_nope_head_dim) ** (-0.5), q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
next_token = self.decode_one_tokens()
self.profiler.inc("decode")
if next_token == self.tokenizer.eos_token_id: