diff --git a/README.md b/README.md
index 8d92cb7..c7411b5 100644
--- a/README.md
+++ b/README.md
@@ -43,8 +43,8 @@ https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 12GB VRAM and 382GB DRAM.
- Prefill Speed:
- - KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → xxx (optimized AMX-based MoE kernel, v3 only) → XXX (selectively using 6 experts, v3 only)
- - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **XXX× speedup**.
+ - KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, v3 only) → 286.55 (selectively using 6 experts, v3 only)
+ - Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**.
- Decode Speed(tokens/s):
- KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, v3 only)
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.
diff --git a/doc/en/DeepseekR1_V3_tutorial.md b/doc/en/DeepseekR1_V3_tutorial.md
index 1b1e6c7..1bc1adf 100644
--- a/doc/en/DeepseekR1_V3_tutorial.md
+++ b/doc/en/DeepseekR1_V3_tutorial.md
@@ -24,6 +24,27 @@ gpu: 4090D 24G VRAM
**The highest speedup reaches up to x3.03 in decoding and x9.44 in prefill.**
+### V0.3-Preview
+#### settings
+- model: DeepseekV3-BF16 (online quant into int8 for CPU and int4 for GPU)
+- CPU: cpu_model_name:Intel(R) Xeon(R) Gold 6454S, 32 cores per socket, 2 socket, 2numa nodes
+- GPU: (1~4)x 4090D 24GVRAM (requires more VRAM for longer prompt)
+
+#### memory consumptions:
+- 644GB DRAM, at least 12GB VRAM
+
+#### Benchmark Results
+| Prompt length | 1K | 2K | 4K | 8K |
+|---------------|-----|-----|-----|-----|
+| KTrans (8 experts) Prefill token/s | 185.96 | 255.26 | 252.58 | 195.62 |
+| KTrans (6 experts) Prefill token/s | 203.70 | 286.55 | 271.08 | 207.20 |
+
+**The prefill of KTrans V0.3 is up to x3.45 times faster than KTrans V0.2. The decoding speed is the same as KTrans V0.2 (6 experts version) so it is omitted.**
+
+The main acceleration comes from
+- Intel AMX instruction set and our specially designed cache friendly memory layout
+- Expert selection strategy that selects fewer experts based on offline profile results of out of domain data
+
## how to run
### v0.2 showcase
#### single socket version(32 cores)