Fix cannot offload whole layer in cpu

This commit is contained in:
TangJingqi 2024-08-29 19:10:14 +08:00
parent 35d7aed207
commit 6735beb5b6
4 changed files with 14 additions and 11 deletions

View file

@ -67,6 +67,7 @@ def local_chat(
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if mode == 'long_context':
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
torch.set_default_dtype(torch.float16)
else:
torch.set_default_dtype(config.torch_dtype)
@ -143,8 +144,9 @@ def local_chat(
input_tensor = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
if mode == 'long_context':
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
torch.set_default_dtype(
torch.bfloat16
) # TODO: Remove this, replace dtype using config

View file

@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang, chenht2022
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-08-27 03:50:23
LastEditTime : 2024-08-29 09:41:10
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -202,7 +202,7 @@ class KExpertsCPU(KExpertsBase):
def forward(self, input_tensor, expert_ids, weights):
# generate, capture and run cuda graph
# print(expert_ids)
if input_tensor.size(0)==1:
if input_tensor.size(0)==1 and torch.cuda.is_current_stream_capturing():
# TODO: this branch is unreachable, but the shape of input_tensor([1,hidden_size]) and input_tensor_cpu([hidden_size]) is not compatible
#print("capturing experts")
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
@ -636,7 +636,7 @@ class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode"):
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing():
self.experts.generate_experts.submit_for_one_decode(hidden_states[0], topk_idx[0], topk_weight[0])
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)

View file

@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-08-14 14:57:04
LastEditTime : 2024-08-29 09:11:16
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -277,7 +277,7 @@ class KLinearCPUInfer(KLinearBase):
def forward(self, x: torch.Tensor) -> torch.Tensor:
origin_shape = x.shape # [batch_size, q_len, hidden_size]
if origin_shape[1] == 1:
if origin_shape[1] == 1 and torch.cuda.is_current_stream_capturing():
out_device = x.device
self.input_tensor_cpu.copy_(x, non_blocking=True)
qlen = origin_shape[1]

View file

@ -670,11 +670,12 @@ class KDeepseekV2Model(BaseInjectedModule):
if self.transfer_map is not None and i in self.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.transfer_map[i]
if cur_device not in self.stream_device_map:
if cur_device not in self.stream_device_map and cur_device.lower() != "cpu":
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
if cur_device.lower() != "cpu":
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.transfer_map[i], non_blocking=True
)