mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-15 01:29:42 +00:00
[fix] format classes and files name
This commit is contained in:
parent
1db4a67dca
commit
67043b4b5c
15 changed files with 212 additions and 212 deletions
|
@ -43,48 +43,48 @@
|
|||
name: "^model\\.layers\\.([0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -92,7 +92,7 @@
|
|||
name: "^model\\.layers\\.([1][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
@ -100,7 +100,7 @@
|
|||
name: "^model\\.layers\\.([2][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
|
@ -108,7 +108,7 @@
|
|||
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
@ -116,73 +116,73 @@
|
|||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:2"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:2"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:3"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:3"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([1][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([2][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:2"
|
||||
prefill_device: "cuda:2"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:3"
|
||||
prefill_device: "cuda:3"
|
||||
|
@ -190,7 +190,7 @@
|
|||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.DeepseekV2ModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
|
|
|
@ -27,29 +27,29 @@
|
|||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -57,7 +57,7 @@
|
|||
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
@ -65,45 +65,45 @@
|
|||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.DeepseekV2ModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
|
|
|
@ -9,53 +9,53 @@
|
|||
# name: "^model\\.layers\\.([1-5][0-9])\\.mlp\\.shared_experts.*$" # regular expression
|
||||
# class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
# replace:
|
||||
# class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
# kwargs:
|
||||
# generate_device: "cpu"
|
||||
# prefill_device: "cuda"
|
||||
# generate_op: "QuantizedLinearCPUInfer"
|
||||
# prefill_op: "QuantizedLinearTorch"
|
||||
# generate_op: "KLinearCPUInfer"
|
||||
# prefill_op: "KLinearTorch"
|
||||
# out_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\.(?!.*self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.DeepseekV2ModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KDeepseekV2Model"
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
|
|
|
@ -27,29 +27,29 @@
|
|||
name: "^model\\.layers\\.(0|[1-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.(?!self_attn).*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
|
@ -57,7 +57,7 @@
|
|||
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||
replace:
|
||||
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
|
@ -65,45 +65,45 @@
|
|||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
- match:
|
||||
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
|
||||
replace:
|
||||
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
|
||||
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.DeepseekV2ModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KDeepseekV2Model"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
|
|
|
@ -9,26 +9,26 @@
|
|||
name: "^model\\.layers\\..*$"
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.block_sparse_moe$"
|
||||
class: ktransformers.models.modeling_mixtral.MixtralSparseMoeBlock
|
||||
replace:
|
||||
class: ktransformers.operators.experts.MisrtalSparseMoEBlockInjected
|
||||
class: ktransformers.operators.experts.KMisrtalSparseMoEBlock
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.block_sparse_moe\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert
|
||||
class: ktransformers.operators.experts.KTransformersExperts
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
|
|
|
@ -10,27 +10,27 @@
|
|||
name: "^model\\.layers\\.([012])$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:0"
|
||||
prefill_device: "cuda:0"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([012])\\.mlp$"
|
||||
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
|
||||
replace:
|
||||
class: ktransformers.operators.experts.Qwen2MoeSparseMoeBlockInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
|
||||
- match:
|
||||
name: "^model\\.layers\\.([012])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
# device: "cpu" # which devices to load this module when initializing
|
||||
kwargs:
|
||||
prefill_device: "cuda:0"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:0"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
|
@ -46,27 +46,27 @@
|
|||
name: "^model\\.layers\\.([12][0-9]|[3-9])$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda:1"
|
||||
prefill_device: "cuda:1"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9]|[3-9])\\.mlp$"
|
||||
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
|
||||
replace:
|
||||
class: ktransformers.operators.experts.Qwen2MoeSparseMoeBlockInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
|
||||
- match:
|
||||
name: "^model\\.layers\\.([12][0-9]|[3-9])\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
# device: "cpu" # which devices to load this module when initializing
|
||||
kwargs:
|
||||
prefill_device: "cuda:1"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda:1"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
|
||||
|
@ -89,7 +89,7 @@
|
|||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.Qwen2MoeModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KQwen2MoeModel"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
transfer_map:
|
||||
|
|
|
@ -9,36 +9,36 @@
|
|||
name: "^model\\.layers\\..*$" # regular expression
|
||||
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||
replace:
|
||||
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
|
||||
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
generate_op: "QuantizedLinearMarlin"
|
||||
prefill_op: "QuantizedLinearTorch"
|
||||
generate_op: "KLinearMarlin"
|
||||
prefill_op: "KLinearTorch"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp$"
|
||||
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
|
||||
replace:
|
||||
class: ktransformers.operators.experts.Qwen2MoeSparseMoeBlockInjected # mlp module with custom forward function
|
||||
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
|
||||
kwargs:
|
||||
generate_device: "cuda"
|
||||
prefill_device: "cuda"
|
||||
- match:
|
||||
name: "^model\\.layers\\..*\\.mlp\\.experts$"
|
||||
replace:
|
||||
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
|
||||
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||
# device: "cpu" # which devices to load this module when initializing
|
||||
kwargs:
|
||||
prefill_device: "cuda"
|
||||
prefill_mlp_type: "MLPExpertsTorch"
|
||||
prefill_op: "KExpertsTorch"
|
||||
generate_device: "cpu"
|
||||
generate_mlp_type: "MLPCPUExperts"
|
||||
generate_op: "KExpertsCPU"
|
||||
out_device: "cuda"
|
||||
recursive: False # don't recursively inject submodules of this module
|
||||
- match:
|
||||
name: "^model$"
|
||||
replace:
|
||||
class: "ktransformers.operators.layer_wise_prefill.Qwen2MoeModelKTransformers"
|
||||
class: "ktransformers.operators.layer_wise_prefill.KQwen2MoeModel"
|
||||
kwargs:
|
||||
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||
- match:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue