[fix] format classes and files name

This commit is contained in:
TangJingqi 2024-08-15 10:44:59 +08:00
parent 1db4a67dca
commit 67043b4b5c
15 changed files with 212 additions and 212 deletions

View file

@ -5,8 +5,8 @@ Description :
Author : Azure-Tang, Boxin Zhang, chenht2022
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : kkk1nak0
LastEditTime : 2024-08-11 12:14:39
LastEditors : Azure
LastEditTime : 2024-08-15 02:36:29
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -31,13 +31,13 @@ from ktransformers.server.config.config import Config
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from abc import ABC, abstractmethod
from ktransformers.operators.linear import QuantizedLinearMarlin, QuantizedLinearTorch, KTransformerLinear
from ktransformers.operators.linear import KLinearMarlin, KLinearTorch, KTransformersLinear
import time
from ktransformers.operators.cpuinfer import CPUInfer
# class Base(BaseInjectedModule, ABC):
class MLPExpertsBase(ABC):
class KExpertsBase(ABC):
def __init__(self, key: str, gguf_loader: GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, device: str = "cuda", **kwargs):
# super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
self.key = key
@ -111,7 +111,7 @@ class MLPExpertsBase(ABC):
tensors[k] = self.gguf_loader.load_gguf_tensor(key + k, device=device)
return tensors
class MLPCPUExperts(MLPExpertsBase):
class KExpertsCPU(KExpertsBase):
input_tensor_cpu:Tensor = None
expert_ids_cpu:Tensor = None
weights_cpu:Tensor = None
@ -131,13 +131,13 @@ class MLPCPUExperts(MLPExpertsBase):
**kwargs
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU"
assert device.lower() == "cpu", "KExpertsCPU can only be loaded on CPU"
self.n_routed_experts = n_routed_experts
self.out_device = out_device
def load(self, w: dict | nn.Parameter | tuple | None = None, device:str|None = None, warmup:bool = False):
if device:
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU, Parameter \"device\" can be cpu or None."
assert device.lower() == "cpu", "KExpertsCPU can only be loaded on CPU, Parameter \"device\" can be cpu or None."
if w is None: w = self.load_weights()[self.key]
self.gate = w["gate"]
self.up = w["up"]
@ -176,28 +176,28 @@ class MLPCPUExperts(MLPExpertsBase):
# print(n_routed_experts, hidden_size, moe_intermediate_size)
num_experts_per_tok = self.config.num_experts_per_tok
self.moe = MOE(moe_config)
self.cpu_infer = MLPCPUExperts.CPU_INFER
self.cpu_infer = KExpertsCPU.CPU_INFER
if warmup:
self.cpu_infer.submit(self.moe.warm_up())
self.cpu_infer.sync()
if self.out_device not in MLPCPUExperts.output_gpu_map:
MLPCPUExperts.output_gpu_map[self.out_device] = torch.zeros((self.config.hidden_size), device=self.out_device)
if MLPCPUExperts.input_tensor_cpu == None:
MLPCPUExperts.input_tensor_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True)
MLPCPUExperts.expert_ids_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.long, pin_memory=True)
MLPCPUExperts.weights_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.float32, pin_memory=True)
MLPCPUExperts.output_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True, dtype=torch.bfloat16)
if self.out_device not in KExpertsCPU.output_gpu_map:
KExpertsCPU.output_gpu_map[self.out_device] = torch.zeros((self.config.hidden_size), device=self.out_device)
if KExpertsCPU.input_tensor_cpu == None:
KExpertsCPU.input_tensor_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True)
KExpertsCPU.expert_ids_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.long, pin_memory=True)
KExpertsCPU.weights_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.float32, pin_memory=True)
KExpertsCPU.output_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True, dtype=torch.bfloat16)
def submit_for_one_decode(self, input_tensor, expert_ids, weights):
MLPCPUExperts.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
MLPCPUExperts.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
MLPCPUExperts.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream(self.out_device).cuda_stream, self.moe.forward(1, expert_ids.size(0), MLPCPUExperts.expert_ids_cpu.data_ptr(), MLPCPUExperts.weights_cpu.data_ptr(), MLPCPUExperts.input_tensor_cpu.data_ptr(), MLPCPUExperts.output_cpu.data_ptr()))
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
KExpertsCPU.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
KExpertsCPU.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream(self.out_device).cuda_stream, self.moe.forward(1, expert_ids.size(0), KExpertsCPU.expert_ids_cpu.data_ptr(), KExpertsCPU.weights_cpu.data_ptr(), KExpertsCPU.input_tensor_cpu.data_ptr(), KExpertsCPU.output_cpu.data_ptr()))
def sync_for_one_decode(self):
self.cpu_infer.sync_with_cuda_stream(torch.cuda.current_stream(self.out_device).cuda_stream)
MLPCPUExperts.output_gpu_map[self.out_device].copy_(MLPCPUExperts.output_cpu, non_blocking=True)
return MLPCPUExperts.output_gpu_map[self.out_device]
KExpertsCPU.output_gpu_map[self.out_device].copy_(KExpertsCPU.output_cpu, non_blocking=True)
return KExpertsCPU.output_gpu_map[self.out_device]
def forward(self, input_tensor, expert_ids, weights):
# generate, capture and run cuda graph
@ -205,13 +205,13 @@ class MLPCPUExperts(MLPExpertsBase):
if input_tensor.size(0)==1:
# TODO: this branch is unreachable, but the shape of input_tensor([1,hidden_size]) and input_tensor_cpu([hidden_size]) is not compatible
#print("capturing experts")
MLPCPUExperts.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
MLPCPUExperts.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
MLPCPUExperts.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream().cuda_stream, self.moe.forward(1, expert_ids.size(1), MLPCPUExperts.expert_ids_cpu.data_ptr(), MLPCPUExperts.weights_cpu.data_ptr(), MLPCPUExperts.input_tensor_cpu.data_ptr(), MLPCPUExperts.output_cpu.data_ptr()))
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
KExpertsCPU.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
KExpertsCPU.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream().cuda_stream, self.moe.forward(1, expert_ids.size(1), KExpertsCPU.expert_ids_cpu.data_ptr(), KExpertsCPU.weights_cpu.data_ptr(), KExpertsCPU.input_tensor_cpu.data_ptr(), KExpertsCPU.output_cpu.data_ptr()))
self.cpu_infer.sync_with_cuda_stream(torch.cuda.current_stream().cuda_stream)
MLPCPUExperts.output_gpu_map[self.out_device].copy_(MLPCPUExperts.output_cpu, non_blocking=True)
return MLPCPUExperts.output_gpu_map[self.out_device]
KExpertsCPU.output_gpu_map[self.out_device].copy_(KExpertsCPU.output_cpu, non_blocking=True)
return KExpertsCPU.output_gpu_map[self.out_device]
else:
input_tensor = input_tensor.contiguous().cpu()
expert_ids = expert_ids.contiguous().cpu()
@ -269,7 +269,7 @@ class MLPCPUExperts(MLPExpertsBase):
res = {key:{"gate": gate, "up": up, "down": down, "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
return res
class MLPExpertsMarlin(MLPExpertsBase):
class KExpertsMarlin(KExpertsBase):
expert_num: int
loaded_experts_idx: list[int]
def __init__(
@ -290,11 +290,11 @@ class MLPExpertsMarlin(MLPExpertsBase):
self.device = device
# create empty marlin experts according to the number of experts per token
# up
self.up_projs = [QuantizedLinearMarlin(key+ "." + "ffn_up_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.up_projs = [KLinearMarlin(key+ "." + "ffn_up_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
# gate
self.gate_projs = [QuantizedLinearMarlin(key+ "." + "ffn_gate_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.gate_projs = [KLinearMarlin(key+ "." + "ffn_gate_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
# down
self.down_projs = [QuantizedLinearMarlin(key+ "." + "ffn_down_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.down_projs = [KLinearMarlin(key+ "." + "ffn_down_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str | None = None, warmup: bool = False):
if device is None: device = self.device
@ -359,7 +359,7 @@ class MLPExpertsMarlin(MLPExpertsBase):
outs = outs.to(device)
return outs
class MLPExpertsTorch(MLPExpertsBase):
class KExpertsTorch(KExpertsBase):
expert_num: int
loaded_experts_idx: list[int]
gate: torch.Tensor
@ -439,12 +439,12 @@ class MLPExpertsTorch(MLPExpertsBase):
return final_hidden_states.to(org_dtype, device=org_device)
EXPERTS_MAP = {
"MLPCPUExperts": MLPCPUExperts,
"MLPExpertsTorch": MLPExpertsTorch,
"MLPExpertsMarlin": MLPExpertsMarlin,
"KExpertsCPU": KExpertsCPU,
"KExpertsTorch": KExpertsTorch,
"KExpertsMarlin": KExpertsMarlin,
}
class KTransformersMLPExpert(BaseInjectedModule, MLPExpertsBase):
class KTransformersExperts(BaseInjectedModule, KExpertsBase):
def __init__(self,
key: str,
gguf_loader: GGUFLoader,
@ -452,22 +452,22 @@ class KTransformersMLPExpert(BaseInjectedModule, MLPExpertsBase):
orig_module: nn.Module,
# device: str = "cuda",
prefill_device:str = "cuda",
prefill_mlp_type: str | None = "MLPExpertsTorch",
prefill_op: str | None = "KExpertsTorch",
generate_device: str = "cpu",
generate_mlp_type: str | None = "MLPCPUExperts",
generate_op: str | None = "KExpertsCPU",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
MLPExpertsBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
if generate_mlp_type is not None:
self.generate_experts = EXPERTS_MAP[generate_mlp_type](key, gguf_loader, config, len(orig_module), device=generate_device, **kwargs)
KExpertsBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
if generate_op is not None:
self.generate_experts = EXPERTS_MAP[generate_op](key, gguf_loader, config, len(orig_module), device=generate_device, **kwargs)
else:
self.generate_experts = None
if prefill_mlp_type is not None:
self.prefill_experts = EXPERTS_MAP[prefill_mlp_type](key, gguf_loader, config, len(orig_module), device=prefill_device, **kwargs)
if prefill_op is not None:
self.prefill_experts = EXPERTS_MAP[prefill_op](key, gguf_loader, config, len(orig_module), device=prefill_device, **kwargs)
else:
self.prefill_experts = None
self.gpu_mlp_type = prefill_mlp_type
self.cpu_mlp_type = generate_mlp_type
self.gpu_mlp_type = prefill_op
self.cpu_mlp_type = generate_op
self.mode = InferenceState.UNLOAD
def load(self, w: dict = None, mode: InferenceState = None, warmup: bool = True):
@ -523,7 +523,7 @@ from ktransformers.models.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
from ktransformers.models.modeling_mixtral import MixtralSparseMoeBlock
class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock):
class KQwen2MoeSparseMoeBlock(BaseInjectedModule, Qwen2MoeSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
orig_shape = hidden_states.shape
@ -548,16 +548,16 @@ class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock)
y.resize_(*orig_shape)
return y, router_logits
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else routing_weights_expert.cpu()
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else routing_weights_expert.cpu()
shared_expert_output = self.shared_expert(hidden_states)
shared_expert_output = (
F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
)
if isinstance(self.experts, MLPExpertsBase):
if isinstance(self.experts, KExpertsBase):
y = (
self.moe_on_cpuinfer(
hidden_states_expert, selected_experts_expert, routing_weights_expert
@ -628,7 +628,7 @@ class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock)
return final_hidden_states
class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
@ -648,7 +648,7 @@ class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)
if isinstance(self.experts, MLPExpertsBase):
if isinstance(self.experts, KExpertsBase):
y = self.moe_on_cpuinfer(hidden_states, topk_idx, topk_weight).view(*orig_shape).to(device=hidden_states.device)
elif hidden_states.size(0) > 10:
# TODO may bugs here
@ -727,7 +727,7 @@ class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
)
return final_out
class MisrtalSparseMoEBlockInjected(BaseInjectedModule, MixtralSparseMoeBlock):
class KMisrtalSparseMoEBlock(BaseInjectedModule, MixtralSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
@ -751,11 +751,11 @@ class MisrtalSparseMoEBlockInjected(BaseInjectedModule, MixtralSparseMoeBlock):
y.resize_(*orig_shape)
return y, router_logits
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else routing_weights_expert.cpu()
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else routing_weights_expert.cpu()
if isinstance(self.experts, MLPExpertsBase):
if isinstance(self.experts, KExpertsBase):
y = (
self.moe_on_cpuinfer(
hidden_states_expert, selected_experts_expert, routing_weights_expert