support deepseekv3; runable but have precition problem

This commit is contained in:
Azure 2025-01-31 08:27:24 +00:00
parent de7e892f72
commit 476b1d8dc6
13 changed files with 2178 additions and 24 deletions

View file

@ -46,17 +46,26 @@ class KTransformersInterface(TransformersInterface):
)
optimize_and_load_gguf(self.model, optimize_rule_path, gguf_path, config)
device_map = self.model.gguf_loader.tensor_device_map
logger.info(f"{args.model_name} loaded from {args.model_dir} to {device_map}")
self.device_map = self.model.gguf_loader.tensor_device_map
# logger.info(f"{args.model_name} loaded from {args.model_dir} to {self.device_map}")
self.cache = StaticCache(
config=self.model.config,
max_batch_size=args.batch_size,
max_cache_len=args.cache_lens,
device=device_map,
device=self.device_map,
dtype=self.model.dtype,
)
logger.info(f"StaticCache (length={args.cache_lens}) created at {device_map}, batch size:{args.batch_size}")
self.model.generation_config = GenerationConfig.from_pretrained(args.model_dir)
# logger.info(f"StaticCache (length={args.cache_lens}), batch size:{args.batch_size}")
try:
self.model.generation_config = GenerationConfig.from_pretrained(args.model_dir)
except:
gen_config = GenerationConfig(
max_length=128,
temperature=0.7,
top_p=0.9,
do_sample=True
)
self.model.generation_config = gen_config
if self.model.generation_config.pad_token_id is None:
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.streamer = TextStreamer(self.tokenizer)
@ -102,3 +111,63 @@ class KTransformersInterface(TransformersInterface):
logits = logits[0, -1, :]
return self.logits_to_token(logits)
@torch.no_grad
def prefill(self, input_ids: torch.Tensor, is_new: bool):
input_ids_length = input_ids.shape[-1]
self.profiler.set_counter("prefill", input_ids_length)
logger.debug(f"input_ids: {input_ids.shape}")
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
if is_new:
self.cache.reset()
self.ever_generated_ids.clear()
former_seq_length = 0
self.seq_length = input_ids_length
self.generated_ids = torch.zeros(
self.args.batch_size,
self.seq_length + self.args.max_new_tokens + 1,
dtype=torch.int,
device=self.args.device,
)
else:
logger.debug(f"generate_ids: {self.generated_ids.shape}")
former_seq_length = self.seq_length
self.seq_length += input_ids_length
expected_length = self.seq_length + self.args.max_new_tokens + 1
delta_length = expected_length - self.generated_ids.shape[-1]
if delta_length > 0:
new_generate_ids = torch.zeros(
self.args.batch_size, delta_length, dtype=torch.int, device=self.args.device
)
self.generated_ids = torch.cat([self.generated_ids, new_generate_ids], dim=-1)
logger.debug(f"cache position: {former_seq_length} to {self.seq_length}")
cache_position = torch.arange(former_seq_length, self.seq_length, device=device)
self.generated_ids[:, cache_position] = input_ids.to(self.args.device).to(torch.int)
mask = torch.ones((1, self.seq_length)).to(device)
if not (type(self) is TransformersInterface):
input_ids = input_ids.to("cpu")
inputs_embeds = self.model.model.embed_tokens(input_ids).to(device)
if self.use_static_cache:
logits = self.model(
inputs_embeds=inputs_embeds,
cache_position=cache_position,
past_key_values=self.cache,
return_dict=False,
use_cache=True,
attention_mask=mask,
)[0]
else:
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
next_token = self.logits_to_token(logits[0, -1, :])
yield self.append_new_tokens(next_token)
@property
def active_cache_position(self):
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
return torch.tensor([self.seq_length - 1], device=device)