[feature] experts can be injected using CPUInfer

[fix] fix ktransformers interface when use new CUDAGraphRunner
[fix] fix YAML and optimize logic, the top rule has the highest priority
This commit is contained in:
Atream 2024-08-14 16:10:54 +08:00
parent 80815dbc50
commit 412055d450
13 changed files with 318 additions and 158 deletions

View file

@ -33,6 +33,7 @@ from transformers.configuration_utils import PretrainedConfig
from abc import ABC, abstractmethod
from ktransformers.operators.linear import QuantizedLinearMarlin, QuantizedLinearTorch, KTransformerLinear
import time
from ktransformers.operators.cpuinfer import CPUInfer
# class Base(BaseInjectedModule, ABC):
@ -117,7 +118,7 @@ class MLPCPUExperts(MLPExpertsBase):
output_cpu:Tensor = None
output_gpu_map:dict = {} # Manage output tensor buffer on different gpu
#stream_map:dict = {} # Manage cuda stream on different gpu
CPU_INFER = cpuinfer_ext.CPUInfer(Config().cpu_infer)
CPU_INFER = CPUInfer(Config().cpu_infer)
def __init__(
self,
key: str,
@ -126,7 +127,7 @@ class MLPCPUExperts(MLPExpertsBase):
n_routed_experts: int,
orig_module: nn.Module = None,
device: str = "cpu",
out_device: str = "cuda", # this device mean which device the output should on
out_device: str = "cuda", # this device mean which device the output should on. TODO: support cpu.
**kwargs
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
@ -135,51 +136,50 @@ class MLPCPUExperts(MLPExpertsBase):
self.out_device = out_device
def load(self, w: dict | nn.Parameter | tuple | None = None, device:str|None = None, warmup:bool = False):
with torch.device(self.out_device):
if device:
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU, Parameter \"device\" can be cpu or None."
if w is None: w = self.load_weights()[self.key]
self.gate = w["gate"]
self.up = w["up"]
self.down = w["down"]
self.gate_type = w["gate_type"]
self.up_type = w["up_type"]
self.down_type = w["down_type"]
gate_ptr = ctypes.addressof(
ctypes.cast(self.gate.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
up_ptr = ctypes.addressof(
ctypes.cast(self.up.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
down_ptr = ctypes.addressof(
ctypes.cast(self.down.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
# print(self.gate_qtype, self.up_qtype, self.down_qtype)
n_routed_experts = self.n_routed_experts
# n_routed_experts = len(self.orig_module)
moe_config = MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
64,
10,
1024,
gate_ptr,
up_ptr,
down_ptr,
self.gate_type,
self.up_type,
self.down_type,
30, # TODO: get from model.dtype
)
# print(n_routed_experts, hidden_size, moe_intermediate_size)
num_experts_per_tok = self.config.num_experts_per_tok
self.moe = MOE(moe_config)
self.cpu_infer = MLPCPUExperts.CPU_INFER
if warmup:
self.cpu_infer.submit(self.moe.warm_up())
self.cpu_infer.sync()
if device:
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU, Parameter \"device\" can be cpu or None."
if w is None: w = self.load_weights()[self.key]
self.gate = w["gate"]
self.up = w["up"]
self.down = w["down"]
self.gate_type = w["gate_type"]
self.up_type = w["up_type"]
self.down_type = w["down_type"]
gate_ptr = ctypes.addressof(
ctypes.cast(self.gate.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
up_ptr = ctypes.addressof(
ctypes.cast(self.up.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
down_ptr = ctypes.addressof(
ctypes.cast(self.down.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
# print(self.gate_qtype, self.up_qtype, self.down_qtype)
n_routed_experts = self.n_routed_experts
# n_routed_experts = len(self.orig_module)
moe_config = MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
64,
10,
1024,
gate_ptr,
up_ptr,
down_ptr,
self.gate_type,
self.up_type,
self.down_type,
30, # TODO: get from model.dtype
)
# print(n_routed_experts, hidden_size, moe_intermediate_size)
num_experts_per_tok = self.config.num_experts_per_tok
self.moe = MOE(moe_config)
self.cpu_infer = MLPCPUExperts.CPU_INFER
if warmup:
self.cpu_infer.submit(self.moe.warm_up())
self.cpu_infer.sync()
if self.out_device not in MLPCPUExperts.output_gpu_map:
MLPCPUExperts.output_gpu_map[self.out_device] = torch.zeros((self.config.hidden_size), device=self.out_device)
if MLPCPUExperts.input_tensor_cpu == None: