support qwen3, dont speak human language

This commit is contained in:
djw 2025-04-28 08:44:47 +00:00
parent f3d842a0ca
commit 3f9bbf1181
30 changed files with 3696 additions and 290 deletions

View file

@ -27,6 +27,8 @@ from ktransformers.server.balance_serve.inference.forward_batch import ForwardBa
from ktransformers.server.config.config import Config
from ktransformers.models.custom_modeling_deepseek_v3 import KDeepseekV3ForCausalLM
from ktransformers.models.custom_modeling_deepseek_v2 import KDeepseekV2ForCausalLM
from ktransformers.models.custom_modeling_qwen2_moe import KQwen2MoeForCausalLM
from ktransformers.models.custom_modeling_qwen3_moe import KQwen3MoeForCausalLM
from ktransformers.server.balance_serve.inference.query_manager import QueryManager
from ktransformers.server.balance_serve.settings import sched_ext
@ -40,11 +42,11 @@ def deduplicate_and_sort(lst):
class ModelRunner:
"""A CudaGraphRunner runs the forward pass of a model with CUDA graph and torch.compile."""
model: KDeepseekV3ForCausalLM
model: KDeepseekV3ForCausalLM | KQwen2MoeForCausalLM | KQwen3MoeForCausalLM
input: ForwardBatchInput | list[ForwardBatchInput]
output: ForwardBatchOutput
def __init__(self, model = None, device = None, use_cuda_graph = False, max_decode_batch_size = 1, max_chunk_size = 4096, num_mini_batches: int = 1, page_size = 256):
def __init__(self, model = None, device = None, use_cuda_graph = False, max_decode_batch_size = 1, max_chunk_size = 4096, num_mini_batches: int = 1, page_size = 256, block_num = 8):
self.stream = torch.cuda.Stream(device=device)
# 先注释掉
@ -58,120 +60,92 @@ class ModelRunner:
self.use_cuda_graph = use_cuda_graph
self.model_time = 0
self.page_size = page_size
self.block_num = block_num
# GPU timing for model execution
self.start_model_event = torch.cuda.Event(enable_timing=True)
self.end_model_event = torch.cuda.Event(enable_timing=True)
if isinstance(self.cuda_graphs, list):
self.graphs = [torch.cuda.CUDAGraph() for _ in range(len(self.cuda_graphs))]
self.page_idx_buf = [torch.zeros([self.cuda_graphs[i]], dtype=torch.int32, device = self.device) for i in range(len(self.cuda_graphs))]
self.page_offset_buf = [torch.zeros([self.cuda_graphs[i]], dtype=torch.int32, device = self.device) for i in range(len(self.cuda_graphs))]
else:
self.graphs = torch.cuda.CUDAGraph()
self.page_idx_buf = torch.zeros([self.cuda_graphs], dtype=torch.int32, device = self.device)
self.page_offset_buf = torch.zeros([self.cuda_graphs], dtype=torch.int32, device = self.device)
self.graphs = [torch.cuda.CUDAGraph() for _ in range(len(self.cuda_graphs))]
self.page_idx_buf = [torch.zeros([self.cuda_graphs[i]], dtype=torch.int32, device = self.device) for i in range(len(self.cuda_graphs))]
self.page_offset_buf = [torch.zeros([self.cuda_graphs[i]], dtype=torch.int32, device = self.device) for i in range(len(self.cuda_graphs))]
self.num_mini_batches = num_mini_batches
self.max_chunk_size = max_chunk_size
self.bsz_tensor_buf = torch.empty((1, ),dtype=torch.int32, device=device)
self.num_tokens_tensor_buf = torch.empty((1, ),dtype=torch.int32, device=device)
def model_attn_plan(self, batch, cuda_graph_idx=0):
if isinstance(self.model, KDeepseekV3ForCausalLM):
self.model.flash_infer_attn_plan(batch, self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.model.cache.page_size, causal=True,
sm_scale=self.model.model.layers[0].self_attn.softmax_scale, q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
elif isinstance(self.model, KQwen2MoeForCausalLM) or isinstance(self.model, KQwen3MoeForCausalLM):
self.model.flash_infer_attn_plan(batch, self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_q_heads=self.model.config.num_attention_heads, num_kv_heads=self.model.config.num_key_value_heads,
head_dim=self.model.config.hidden_size // self.model.config.num_attention_heads,
page_size=self.model.cache.page_size, causal=True,
q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16, cuda_graph_idx=cuda_graph_idx)
else:
assert False, "model type not supported"
def warmup(self):
def capture_graphs(cuda_graph_idx=-1):
if cuda_graph_idx != -1:
with torch.cuda.graph(self.graphs[cuda_graph_idx], pool=self.graph_memory_pool, stream=self.stream):
self.outputs_buf[cuda_graph_idx] = self.model(self.input[cuda_graph_idx], self.features_buf[cuda_graph_idx], self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf[cuda_graph_idx], self.page_offset_buf[cuda_graph_idx], cuda_graph_idx=cuda_graph_idx)
self.graph_memory_pool = self.graphs[cuda_graph_idx].pool()
else:
with torch.cuda.graph(self.graphs, pool=self.graph_memory_pool, stream=self.stream):
self.outputs_buf = self.model(self.input, self.features_buf, self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf, self.page_offset_buf)
self.graph_memory_pool = self.graphs.pool()
def capture_graphs(cuda_graph_idx):
with torch.cuda.graph(self.graphs[cuda_graph_idx], pool=self.graph_memory_pool, stream=self.stream):
self.outputs_buf[cuda_graph_idx] = self.model(self.input[cuda_graph_idx], self.features_buf[cuda_graph_idx], self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf[cuda_graph_idx], self.page_offset_buf[cuda_graph_idx], cuda_graph_idx=cuda_graph_idx)
self.graph_memory_pool = self.graphs[cuda_graph_idx].pool()
if isinstance(self.cuda_graphs, list):
self.input = []
self.features_buf = []
self.outputs_buf = []
self.bsz_tensor_buf = torch.tensor([0], dtype=torch.int32, device=self.device)
self.num_tokens_tensor_buf = torch.tensor([0], dtype=torch.int32, device=self.device)
for i in range(len(self.cuda_graphs)):
prefill_query_length = (self.cuda_graphs[i] - Config().max_decode_batch_size) // Config().max_prefill_batch_size if self.cuda_graphs[i] > Config().max_decode_batch_size else 0 #@TODO only supprot 2 prefill batch
self.input.append(ForwardBatchInput.gen_max_forward_batch(device=self.device, num_mini_batches = self.num_mini_batches, prefill_query_length=prefill_query_length, prefill_active_length=prefill_query_length, page_size=self.page_size, cuda_lens = self.cuda_graphs[i]))
self.input = []
self.features_buf = []
self.outputs_buf = []
self.bsz_tensor_buf = torch.tensor([0], dtype=torch.int32, device=self.device)
self.num_tokens_tensor_buf = torch.tensor([0], dtype=torch.int32, device=self.device)
for i in range(len(self.cuda_graphs)):
prefill_query_length = (self.cuda_graphs[i] - Config().max_decode_batch_size) // Config().max_prefill_batch_size if self.cuda_graphs[i] > Config().max_decode_batch_size else 0 #@TODO only supprot 2 prefill batch
self.input.append(ForwardBatchInput.gen_max_forward_batch(device=self.device, num_mini_batches = self.num_mini_batches, prefill_query_length=prefill_query_length, prefill_active_length=prefill_query_length, page_size=self.page_size, cuda_lens=self.cuda_graphs[i]))
self.features_buf.append(self.model.batch_embeddings(self.input[i]))
batch_size = self.input[i].minibatch.q_indptr.size(0)-1
num_tokens = self.features_buf[i][0].size(0)
print("capturing cuda graph", batch_size, num_tokens)
self.bsz_tensor_buf[0] = batch_size
self.num_tokens_tensor_buf[0] = num_tokens
self.features_buf.append(self.model.batch_embeddings(self.input[i]))
batch_size = self.input[i].minibatch.q_indptr.size(0)-1
num_tokens = self.features_buf[i][0].size(0)
print("capturing cuda graph", batch_size, num_tokens)
self.model.flash_infer_attn_plan(self.input[i], self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.model.cache.page_size, causal=True,
sm_scale=self.model.model.layers[0].self_attn.softmax_scale, q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
page_idx, page_offset = self.model.cache.get_page_table(self.input[i].minibatch.position_ids, self.input[i].minibatch.q_indptr, self.input[i].minibatch.kv_indptr, self.input[i].minibatch.kv_indices, self.num_tokens_tensor_buf)
if isinstance(self.model, KQwen2MoeForCausalLM) or isinstance(self.model, KQwen3MoeForCausalLM):
self.model.init_wrapper(self.use_cuda_graph, self.device, num_tokens ,batch_size, self.block_num, i) # TODO: 1024 is a magic number(max_batch_tokens)
self.page_idx_buf[i][:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[i][:num_tokens].copy_(page_offset[:num_tokens])
self.page_idx_buf[i][num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size -1)
self.outputs_buf.append(None)
torch.cuda.synchronize()
for warm_up_iters in range(11):
with torch.cuda.stream(self.stream):
self.outputs_buf[i] = self.model(self.input[i], self.features_buf[i], self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf[i], self.page_offset_buf[i])
torch.cuda.synchronize()
self.bsz_tensor_buf[0] = batch_size
self.num_tokens_tensor_buf[0] = num_tokens
capture_graphs(i)
with torch.cuda.stream(self.stream):
self.graphs[i].replay()
self.sync(calc_time=False)
print(f"cuda_graph: {i+1}/{len(self.cuda_graphs)}, warmup finished.")
else:
self.input = ForwardBatchInput.gen_max_forward_batch(device=self.device, num_mini_batches = self.num_mini_batches)
self.features_buf = self.model.batch_embeddings(self.input)
batch_size = self.input.minibatch.q_indptr.size(0)-1
num_tokens = self.features_buf[0].size(0)
self.model_attn_plan(self.input[i], i)
page_idx, page_offset = self.model.cache.get_page_table(self.input[i].minibatch.position_ids, self.input[i].minibatch.q_indptr, self.input[i].minibatch.kv_indptr, self.input[i].minibatch.kv_indices, self.num_tokens_tensor_buf)
self.bsz_tensor_buf = torch.tensor([batch_size], dtype=torch.int32, device=self.device)
self.num_tokens_tensor_buf = torch.tensor([num_tokens], dtype=torch.int32, device=self.device)
self.page_idx_buf[i][:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[i][:num_tokens].copy_(page_offset[:num_tokens])
self.model.flash_infer_attn_plan(self.input, self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.model.cache.page_size, causal=True,
sm_scale=self.model.model.layers[0].self_attn.softmax_scale, q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
page_idx, page_offset = self.model.cache.get_page_table(self.input.minibatch.position_ids, self.input.minibatch.q_indptr, self.input.minibatch.kv_indptr, self.input.minibatch.kv_indices, self.num_tokens_tensor_buf)
self.page_idx_buf[:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[:num_tokens].copy_(page_offset[:num_tokens])
self.page_idx_buf[num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size - 1)
self.page_idx_buf[i][num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size -1)
self.outputs_buf.append(None)
torch.cuda.synchronize()
for warm_up_iters in range(11):
with torch.cuda.stream(self.stream):
self.outputs_buf = self.model(self.input, self.features_buf, self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf, self.page_offset_buf)
self.outputs_buf[i] = self.model(self.input[i], self.features_buf[i], self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf[i], self.page_offset_buf[i], cuda_graph_idx=i)
torch.cuda.synchronize()
def capture_graphs():
with torch.cuda.graph(self.graphs, stream=self.stream):
self.outputs_buf = self.model(self.input, self.features_buf, self.bsz_tensor_buf, self.num_tokens_tensor_buf, self.page_idx_buf, self.page_offset_buf)
# self.graph_memory_pool = self.graphs.pool()
self.outputs_buf[i].num_batchs = batch_size
capture_graphs()
capture_graphs(i)
with torch.cuda.stream(self.stream):
self.graphs.replay()
self.graphs[i].replay()
self.sync(calc_time=False)
print("warmup finished.")
print(f"cuda_graph: {i+1}/{len(self.cuda_graphs)}, warmup finished.")
def run(self, batch: sched_ext.BatchQueryTodo = None, query_manager: QueryManager = None):
with torch.cuda.stream(self.stream):
@ -189,107 +163,54 @@ class ModelRunner:
if isinstance(self.cuda_graphs, list):
# cuda graph idx equal to min idx i in self.cuda_graphs, that self.cuda_graphs[i] > num_tokens
cuda_graph_idx = next((i for i, token in enumerate(self.cuda_graphs) if token >= num_tokens), len(self.cuda_graphs))
if cuda_graph_idx == len(self.cuda_graphs):
assert False, "num_tokens is too large"
else:
cuda_graph_idx = -1
# cuda graph idx equal to min idx i in self.cuda_graphs, that self.cuda_graphs[i] > num_tokens
cuda_graph_idx = next((i for i, token in enumerate(self.cuda_graphs) if token >= num_tokens), len(self.cuda_graphs))
if not self.use_cuda_graph:
cuda_graph_idx = 0
# if cuda_graph_idx == len(self.cuda_graphs):
# assert False, "num_tokens is too large"
if self.use_cuda_graph:
if cuda_graph_idx != -1:
self.input[cuda_graph_idx].fill(batch, query_manager, self.page_size)
else:
self.input.fill(batch, query_manager, self.page_size)
self.input[cuda_graph_idx].fill(batch, query_manager, self.page_size)
else:
self.input = ForwardBatchInput(batch=batch, query_manager=query_manager, device=self.device)
self.input = [ForwardBatchInput(batch=batch, query_manager=query_manager, device=self.device)]
if cuda_graph_idx != -1 and self.use_cuda_graph:
if self.use_cuda_graph:
self.features = self.model.batch_embeddings(self.input[cuda_graph_idx], device=self.device)
else:
self.features = self.model.batch_embeddings(self.input, device=self.device)
self.features = self.model.batch_embeddings(self.input[cuda_graph_idx], device=self.device)
self.bsz_tensor_buf.copy_(batch_size)
self.num_tokens_tensor_buf.copy_(torch.tensor([num_tokens], dtype=torch.int32, device=self.device))
if self.use_cuda_graph:
if cuda_graph_idx != -1:
self.features_buf[cuda_graph_idx][0].copy_(self.features[0], non_blocking=True)
else:
self.features_buf[0].copy_(self.features[0], non_blocking=True)
"""
if num_tokens_0 > 64:
padded_num_tokens_0 = pad_num_tokens(num_tokens_0)
self.features_buf[0][num_tokens_0:padded_num_tokens_0] = 0
"""
#self.input.forward_minibatchs[0].print()
# print([[hash(k[i].float().cpu().numpy().tobytes()) for i in self.input.forward_minibatchs[0].kv_indices] for k in self.model.cache.k_caches])
# print(f"overlap: {overlap}, is_compute_bound: {is_compute_bound}")
self.features_buf[cuda_graph_idx][0].copy_(self.features[0], non_blocking=True)
# self.model.flash_infer_attn_plan(self.input, self.bsz_tensors, self.num_tokens_tensors)
"""
self.model_attn_plan(self.input[cuda_graph_idx], cuda_graph_idx)
self.start_model_event.record(self.stream)
page_idx, page_offset = self.model.cache.get_page_table(self.input[cuda_graph_idx].minibatch.position_ids, self.input[cuda_graph_idx].minibatch.q_indptr, self.input[cuda_graph_idx].minibatch.kv_indptr, self.input[cuda_graph_idx].minibatch.kv_indices, self.num_tokens_tensor_buf)
if self.use_cuda_graph:
print("before replay features_buf", self.features_buf[0])
print("features_buf addr", self.features_buf[0].data_ptr())
self.page_idx_buf[cuda_graph_idx][:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[cuda_graph_idx][:num_tokens].copy_(page_offset[:num_tokens])
self.page_idx_buf[cuda_graph_idx][num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size -1)
self.replay(cuda_graph_idx)
self.output = ForwardBatchOutput()
self.output.top_ps.append(self.input[cuda_graph_idx].minibatch.top_ps)
self.output.temperatures.append(self.input[cuda_graph_idx].minibatch.temperatures)
self.output.logits.append(self.outputs_buf[cuda_graph_idx].logits[0][self.input[cuda_graph_idx].minibatch.logits_start].clone())
else:
print("before run features", self.features[0])
"""
if cuda_graph_idx != -1 and self.use_cuda_graph:
self.model.flash_infer_attn_plan(self.input[cuda_graph_idx], self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.model.cache.page_size, causal=True,
sm_scale=self.model.model.layers[0].self_attn.softmax_scale, q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
self.start_model_event.record(self.stream)
page_idx, page_offset = self.model.cache.get_page_table(self.input[cuda_graph_idx].minibatch.position_ids, self.input[cuda_graph_idx].minibatch.q_indptr, self.input[cuda_graph_idx].minibatch.kv_indptr, self.input[cuda_graph_idx].minibatch.kv_indices, self.num_tokens_tensor_buf)
if self.use_cuda_graph:
self.page_idx_buf[cuda_graph_idx][:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[cuda_graph_idx][:num_tokens].copy_(page_offset[:num_tokens])
self.page_idx_buf[cuda_graph_idx][num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size - 1)
self.replay(cuda_graph_idx)
self.output = ForwardBatchOutput()
self.output.top_ps.append(self.input[cuda_graph_idx].minibatch.top_ps)
self.output.temperatures.append(self.input[cuda_graph_idx].minibatch.temperatures)
self.output = self.model(self.input[cuda_graph_idx], self.features, self.bsz_tensor_buf, self.num_tokens_tensor_buf, page_idx, page_offset)
self.output.logits[0] = self.output.logits[0][self.input[cuda_graph_idx].minibatch.logits_start]
self.output.top_ps.append(self.input[cuda_graph_idx].minibatch.top_ps)
self.output.temperatures.append(self.input[cuda_graph_idx].minibatch.temperatures)
self.end_model_event.record(self.stream)
self.output.logits.append(self.outputs_buf[cuda_graph_idx].logits[0][self.input[cuda_graph_idx].minibatch.logits_start].clone())
else:
self.output = self.model(self.input[cuda_graph_idx], self.features, self.bsz_tensor_buf, self.num_tokens_tensor_buf, page_idx, page_offset)
self.output.logits[0] = self.output.logits[0][self.input[cuda_graph_idx].minibatch.logits_start]
self.end_model_event.record(self.stream)
else:
self.model.flash_infer_attn_plan(self.input, self.bsz_tensor_buf, self.num_tokens_tensor_buf,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.model.cache.page_size, causal=True,
sm_scale=self.model.model.layers[0].self_attn.softmax_scale, q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
self.start_model_event.record(self.stream)
page_idx, page_offset = self.model.cache.get_page_table(self.input.minibatch.position_ids, self.input.minibatch.q_indptr, self.input.minibatch.kv_indptr, self.input.minibatch.kv_indices, self.num_tokens_tensor_buf)
if self.use_cuda_graph:
self.page_idx_buf[:num_tokens].copy_(page_idx[:num_tokens])
self.page_offset_buf[:num_tokens].copy_(page_offset[:num_tokens])
self.page_idx_buf[num_tokens:].fill_(self.model.cache.max_cache_len // self.model.cache.page_size - 1)
self.replay(cuda_graph_idx)
self.output = ForwardBatchOutput()
self.output.top_ps.append(self.input.minibatch.top_ps)
self.output.temperatures.append(self.input.minibatch.temperatures)
self.output.logits.append(self.outputs_buf.logits[0][self.input.minibatch.logits_start].clone())
else:
self.output = self.model(self.input, self.features, self.bsz_tensor_buf, self.num_tokens_tensor_buf, page_idx, page_offset)
self.output.logits[0] = self.output.logits[0][self.input.minibatch.logits_start]
self.output.top_ps.append(self.input.minibatch.top_ps)
self.output.temperatures.append(self.input.minibatch.temperatures)
self.end_model_event.record(self.stream)
if not self.use_cuda_graph:
self.output.num_batchs = self.input.batch_size
else:
self.output.num_batchs = self.input[cuda_graph_idx].batch_size
def replay(self, cuda_graph_idx=-1):