support qwen3, dont speak human language

This commit is contained in:
djw 2025-04-28 08:44:47 +00:00
parent f3d842a0ca
commit 3f9bbf1181
30 changed files with 3696 additions and 290 deletions

View file

@ -1,5 +1,5 @@
from typing import Any, AsyncIterator, List, Optional, Set
from ktransformers.models.custom_cache import KDeepSeekV3Cache
from ktransformers.models.custom_cache import KDeepSeekV3Cache, KGQACache
from transformers import (
AutoTokenizer,
AutoConfig,
@ -22,6 +22,9 @@ from ktransformers.server.config.log import logger
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.custom_modeling_deepseek_v3 import KDeepseekV3ForCausalLM
from ktransformers.models.custom_modeling_deepseek_v2 import KDeepseekV2ForCausalLM
from ktransformers.models.custom_modeling_qwen2_moe import KQwen2MoeForCausalLM
from ktransformers.models.custom_modeling_qwen3_moe import KQwen3MoeForCausalLM
from ktransformers.models.configuration_qwen3_moe import Qwen3MoeConfig
from ktransformers.server.balance_serve.inference.model_runner import ModelRunner
from ktransformers.server.balance_serve.inference.sampling.sampler import Sampler, SamplingOptions
from ktransformers.server.balance_serve.inference.query_manager import QueryManager
@ -53,8 +56,10 @@ ktransformer_rules_dir = (
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "..", "./optimize/optimize_rules/")
)
default_optimize_rules = {
"DeepseekV3ForCausalLM": ktransformer_rules_dir + "DeepSeek-V3-Chat-serve.yaml",
"Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct-serve.yaml",
"DeepseekV3ForCausalLM": ktransformer_rules_dir + "Moonlight-16B-A3B-serve.yaml",
# "DeepseekV3ForCausalLM": ktransformer_rules_dir + "DeepSeek-V3-Chat-serve.yaml",
"Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-serve.yaml",
"Qwen3MoeForCausalLM": ktransformer_rules_dir + "Qwen3Moe-serve.yaml",
}
@ -105,7 +110,7 @@ class Engine:
model_runner: ModelRunner
sampler: Sampler
query_manager: QueryManager
cache: KDeepSeekV3Cache
cache: KDeepSeekV3Cache | KGQACache
def __init__(self, args: ConfigArgs = default_args, generated_token_queue:Queue = None, broadcast_endpoint: str = None, kvcache_event: Event = None):
self.args = args
@ -117,17 +122,32 @@ class Engine:
self.device = self.args.device
self.sched_client = SchedulerClient(args.sched_port)
self.updates = []
config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True)
self.cache = KDeepSeekV3Cache(config, self.args.page_size)
try:
config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True)
except:
if args.model_name == "Qwen3Moe":
config = Qwen3MoeConfig.from_pretrained(args.model_dir, trust_remote_code=True)
else:
assert False, f"model {args.model_name} not supported"
self.gen_queue = generated_token_queue
with torch.device("meta"):
if config.architectures[0] == "DeepseekV3ForCausalLM":
self.cache = KDeepSeekV3Cache(config, self.args.page_size)
self.model = KDeepseekV3ForCausalLM(config, self.cache)
elif config.architectures[0] == "DeepseekV2ForCausalLM":
self.cache = KDeepSeekV3Cache(config, self.args.page_size)
self.model = KDeepseekV2ForCausalLM(config, self.cache)
# print(self.block_num)
elif config.architectures[0] == "Qwen2MoeForCausalLM" or config.architectures[0] == "Qwen3MoeForCausalLM":
self.cache = KGQACache(config, self.args.page_size)
if config.architectures[0] == "Qwen2MoeForCausalLM":
self.model = KQwen2MoeForCausalLM(config, self.cache)
else:
self.model = KQwen3MoeForCausalLM(config, self.cache)
context = zmq.Context()
@ -176,9 +196,12 @@ class Engine:
self.block_num = inference_context.k_cache[0].size(1)
#@TODO add config
self.model.init_wrapper(self.args.use_cuda_graph, self.device, args.max_batch_size, self.block_num)
if config.architectures[0] == "Qwen2MoeForCausalLM" or config.architectures[0] == "Qwen3MoeForCausalLM":
self.model.init_wrapper(self.args.use_cuda_graph, self.device, 1024 ,args.max_batch_size, self.block_num) # TODO: 1024 is a magic number(max_batch_tokens)
else:
self.model.init_wrapper(self.args.use_cuda_graph, self.device, args.max_batch_size, self.block_num)
self.model_runner = ModelRunner(self.model, self.device, self.args.use_cuda_graph, page_size = args.page_size)
self.model_runner = ModelRunner(self.model, self.device, self.args.use_cuda_graph, page_size = args.page_size, block_num=self.block_num)
self.sampler = Sampler()
self.query_manager = QueryManager(device = self.device, page_size = args.page_size)
@ -231,7 +254,7 @@ class Engine:
if self.batch is not None:
self.model_runner.sync()
print(f"Model execution time (GPU): {self.model_runner.model_time:.3f} ms")
print(f"Model execution time (GPU): {self.model_runner.model_time:.3f} ms, {1000/self.model_runner.model_time:.3f} tokens/s")
# if self.rank == 0:
generated_tokens, probs = self.sampling( self.model_runner.output)