support qwen3, dont speak human language

This commit is contained in:
djw 2025-04-28 08:44:47 +00:00
parent f3d842a0ca
commit 3f9bbf1181
30 changed files with 3696 additions and 290 deletions

View file

@ -56,7 +56,7 @@
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.flashinfer_attn # optimized MLA implementation
class: ktransformers.operators.balance_serve_attention.flashinfer_attn # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View file

@ -50,7 +50,7 @@
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.flashinfer_attn # optimized MLA implementation
class: ktransformers.operators.balance_serve_attention.flashinfer_attn # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View file

@ -0,0 +1,95 @@
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
# - match:
# name: "^model\\.layers\\..*$" # regular expression
# class: torch.nn.Linear # only match modules matching name and class simultaneously
# replace:
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
# kwargs:
# generate_device: "cuda"
# prefill_device: "cuda"
# generate_op: "VLinearMarlin"
# prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlockV2 # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.balance_serve_attention.KQwen2MoeAttention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen2MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRMSNorm
replace:
class: ktransformers.operators.layernorm.KQwen2MoeRMSNorm
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeMLP
replace:
class: ktransformers.operators.mlp.KQwen2MoeMLP
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View file

@ -0,0 +1,95 @@
- match:
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
# - match:
# name: "^model\\.layers\\..*$" # regular expression
# class: torch.nn.Linear # only match modules matching name and class simultaneously
# replace:
# class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
# kwargs:
# generate_device: "cuda"
# prefill_device: "cuda"
# generate_op: "VLinearMarlin"
# prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*mlp\\.shared_expert_gate).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_qwen3_moe.Qwen3MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.KQwen3MoeSparseMoeBlockV2 # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.balance_serve_attention.KQwen3MoeAttention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen2MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: ktransformers.models.modeling_qwen3_moe.Qwen3MoeRMSNorm
replace:
class: ktransformers.operators.layernorm.KQwen3MoeRMSNorm
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_qwen3_moe.Qwen3MoeMLP
replace:
class: ktransformers.operators.mlp.KQwen2MoeMLP
kwargs:
generate_device: "cuda"
prefill_device: "cuda"