mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-10 14:51:06 +00:00
support qwen3, dont speak human language
This commit is contained in:
parent
f3d842a0ca
commit
3f9bbf1181
30 changed files with 3696 additions and 290 deletions
177
ktransformers/models/configuration_qwen2_moe.py
Normal file
177
ktransformers/models/configuration_qwen2_moe.py
Normal file
|
@ -0,0 +1,177 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Qwen2MoE model configuration"""
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Qwen2MoeConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a
|
||||
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of
|
||||
Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B").
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 151936):
|
||||
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`Qwen2MoeModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 5632):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 16):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
num_key_value_heads (`int`, *optional*, defaults to 16):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model's input and output word embeddings should be tied.
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use sliding window attention.
|
||||
sliding_window (`int`, *optional*, defaults to 4096):
|
||||
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
||||
max_window_layers (`int`, *optional*, defaults to 28):
|
||||
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
decoder_sparse_step (`int`, *optional*, defaults to 1):
|
||||
The frequency of the MoE layer.
|
||||
moe_intermediate_size (`int`, *optional*, defaults to 1408):
|
||||
Intermediate size of the routed expert.
|
||||
shared_expert_intermediate_size (`int`, *optional*, defaults to 5632):
|
||||
Intermediate size of the shared expert.
|
||||
num_experts_per_tok (`int`, *optional*, defaults to 4):
|
||||
Number of selected experts.
|
||||
num_experts (`int`, *optional*, defaults to 60):
|
||||
Number of routed experts.
|
||||
norm_topk_prob (`bool`, *optional*, defaults to `False`):
|
||||
Whether to normalize the topk probabilities.
|
||||
output_router_logits (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the router logits should be returned by the model. Enabeling this will also
|
||||
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
|
||||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
||||
The aux loss factor for the total loss.
|
||||
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
|
||||
Indicate which layers use Qwen2MoeMLP rather than Qwen2MoeSparseMoeBlock
|
||||
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
|
||||
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
|
||||
|
||||
```python
|
||||
>>> from transformers import Qwen2MoeModel, Qwen2MoeConfig
|
||||
|
||||
>>> # Initializing a Qwen2MoE style configuration
|
||||
>>> configuration = Qwen2MoeConfig()
|
||||
|
||||
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration
|
||||
>>> model = Qwen2MoeModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "qwen2_moe"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=151936,
|
||||
hidden_size=2048,
|
||||
intermediate_size=5632,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
num_key_value_heads=16,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=32768,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
use_sliding_window=False,
|
||||
sliding_window=4096,
|
||||
max_window_layers=28,
|
||||
attention_dropout=0.0,
|
||||
decoder_sparse_step=1,
|
||||
moe_intermediate_size=1408,
|
||||
shared_expert_intermediate_size=5632,
|
||||
num_experts_per_tok=4,
|
||||
num_experts=60,
|
||||
norm_topk_prob=False,
|
||||
output_router_logits=False,
|
||||
router_aux_loss_coef=0.001,
|
||||
mlp_only_layers=None,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.use_sliding_window = use_sliding_window
|
||||
self.sliding_window = sliding_window if use_sliding_window else None
|
||||
self.max_window_layers = max_window_layers
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
# MoE arguments
|
||||
self.decoder_sparse_step = decoder_sparse_step
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.num_experts = num_experts
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.output_router_logits = output_router_logits
|
||||
self.router_aux_loss_coef = router_aux_loss_coef
|
||||
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
|
||||
|
||||
super().__init__(
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue