Merge pull request #178 from fxzjshm/hip

[Feat] Port to ROCm/HIP
This commit is contained in:
Azure 2025-03-15 02:31:07 +08:00 committed by GitHub
commit 3986e2d2cf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
31 changed files with 1713 additions and 114 deletions

View file

@ -23,6 +23,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Mar 15, 2025**: Support ROCm on AMD GPU ([Tutorial](./doc/en/ROCm.md)).
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
* **Feb 15, 2025**: Longer Context (from 4K to 8K for 24GB VRAM) & Slightly Faster Speed +15%, up to 16 Tokens/s), update [docs](./doc/en/DeepseekR1_V3_tutorial.md) and [online books](https://kvcache-ai.github.io/ktransformers/).

View file

@ -22,6 +22,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Mar 15, 2025**: Support ROCm on AMD GPU ([Tutorial](./doc/en/ROCm.md)).
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./en/DeepseekR1_V3_tutorial.md).

View file

@ -10,6 +10,7 @@
- [Injection Tutorial](en/injection_tutorial.md)
- [Multi-GPU Tutorial](en/multi-gpu-tutorial.md)
- [Use FP8 GPU Kernel](en/fp8_kernel.md)
- [Use AMD GPU](en/ROCm.md)
# Server
- [Server](en/api/server/server.md)
- [Website](en/api/server/website.md)

96
doc/en/ROCm.md Normal file
View file

@ -0,0 +1,96 @@
# ROCm Support for ktransformers (Beta)
## Introduction
### Overview
In our effort to expand GPU architecture support beyond NVIDIA, we are excited to introduce **AMD GPU support through ROCm** in ktransformers (Beta release). This implementation has been tested and developed using EPYC 9274F processors and AMD Radeon 7900xtx GPUs.
## Installation Guide
### 1. Install ROCm Driver
Begin by installing the ROCm drivers for your AMD GPU:
- [Official ROCm Installation Guide for Radeon GPUs](https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/native_linux/install-radeon.html)
### 2. Set Up Conda Environment
We recommend using Miniconda3/Anaconda3 for environment management:
```bash
# Download Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
# Create environment
conda create --name ktransformers python=3.11
conda activate ktransformers
# Install required libraries
conda install -c conda-forge libstdcxx-ng
# Verify GLIBCXX version (should include 3.4.32)
strings ~/anaconda3/envs/ktransformers/lib/libstdc++.so.6 | grep GLIBCXX
```
> **Note:** Adjust the Anaconda path if your installation directory differs from `~/anaconda3`
### 3. Install PyTorch for ROCm
Install PyTorch with ROCm 6.2.4 support:
```bash
pip3 install torch torchvision torchaudio \
--index-url https://download.pytorch.org/whl/rocm6.2.4
pip3 install packaging ninja cpufeature numpy
```
> **Tip:** For other ROCm versions, visit [PyTorch Previous Versions](https://pytorch.org/get-started/previous-versions/)
### 4. Build ktransformers
```bash
# Clone repository
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
git submodule update --init
# Optional: Compile web interface
# See: api/server/website.md
# Install dependencies
bash install.sh
```
## Running DeepSeek-R1 Models
### Configuration for 24GB VRAM GPUs
Use our optimized configuration for constrained VRAM:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path ktransformers/optimize/optimize_rules/rocm/DeepSeek-V3-Chat.yaml \
--cpu_infer <cpu_cores + 1>
```
> **Beta Note:** Current Q8 linear implementation (Marlin alternative) shows suboptimal performance. Expect optimizations in future releases.
### Configuration for 40GB+ VRAM GPUs
For better performance on high-VRAM GPUs:
1. Modify `DeepSeek-V3-Chat.yaml`:
```yaml
# Replace all instances of:
KLinearMarlin → KLinearTorch
```
2. Execute with:
```bash
python ktransformers/local_chat.py \
--model_path deepseek-ai/DeepSeek-R1 \
--gguf_path <path_to_gguf_files> \
--optimize_config_path <modified_yaml_path> \
--cpu_infer <cpu_cores + 1>
```
> **Tip:** If you got 2 * 24GB AMD GPUS, you may also do the same modify and run `ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat-multi-gpu.yaml` instead.
## Known Limitations
- Marlin operations not supported on ROCm platform
- Current Q8 linear implementation shows reduced performance (Beta limitation)

View file

@ -32,6 +32,7 @@ endif()
option(LLAMA_AVX512_FANCY_SIMD "llama: enable AVX512-VL, AVX512-BW, AVX512-DQ, AVX512-VNNI" OFF)
option(KTRANSFORMERS_USE_CUDA "ktransformers: use CUDA" OFF)
option(KTRANSFORMERS_USE_MUSA "ktransformers: use MUSA" OFF)
option(KTRANSFORMERS_USE_ROCM "ktransformers: use ROCM" OFF)
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
@ -201,6 +202,31 @@ endif()
# message(STATUS "Can't found CUDA lib")
# endif()
if (NOT EXISTS $ENV{ROCM_PATH})
if (NOT EXISTS /opt/rocm)
set(ROCM_PATH /usr)
else()
set(ROCM_PATH /opt/rocm)
endif()
else()
set(ROCM_PATH $ENV{ROCM_PATH})
endif()
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
list(APPEND CMAKE_PREFIX_PATH "${ROCM_PATH}/lib64/cmake")
if (NOT EXISTS $ENV{MUSA_PATH})
if (NOT EXISTS /opt/musa)
set(MUSA_PATH /usr/local/musa)
else()
set(MUSA_PATH /opt/musa)
endif()
else()
set(MUSA_PATH $ENV{MUSA_PATH})
endif()
list(APPEND CMAKE_MODULE_PATH "${MUSA_PATH}/cmake")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
@ -218,6 +244,14 @@ elseif (UNIX)
add_compile_definitions(KTRANSFORMERS_USE_CUDA=1)
endif()
if (KTRANSFORMERS_USE_ROCM)
find_package(HIP REQUIRED)
if(HIP_FOUND)
include_directories("${HIP_INCLUDE_DIRS}")
add_compile_definitions(KTRANSFORMERS_USE_ROCM=1)
endif()
endif()
if (KTRANSFORMERS_USE_MUSA)
if (NOT EXISTS $ENV{MUSA_PATH})
if (NOT EXISTS /opt/musa)
@ -258,6 +292,11 @@ elseif(UNIX)
endif()
target_link_libraries(${PROJECT_NAME} PRIVATE "$ENV{CUDA_HOME}/lib64/libcudart.so")
endif()
if (KTRANSFORMERS_USE_ROCM)
add_compile_definitions(USE_HIP=1)
target_link_libraries(${PROJECT_NAME} PRIVATE "${ROCM_PATH}/lib/libamdhip64.so")
message(STATUS "Building for HIP")
endif()
if(KTRANSFORMERS_USE_MUSA)
target_link_libraries(${PROJECT_NAME} PRIVATE MUSA::musart)
endif()

View file

@ -7,79 +7,83 @@
* @LastEditTime : 2024-08-07 09:47:43
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_CPUINFER_H
#define CPUINFER_CPUINFER_H
#include <atomic>
#include <condition_variable>
#include <functional>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
#ifdef KTRANSFORMERS_USE_CUDA
#include "vendors/cuda.h"
#elif KTRANSFORMERS_USE_MUSA
#include "vendors/musa.h"
#endif
#include "backend.h"
#include "task_queue.h"
#include "llama.cpp/ggml-impl.h"
class CPUInfer {
public:
CPUInfer(int thread_num) {
backend_ = new Backend(thread_num - 1);
task_queue_ = new TaskQueue();
for (int i = 0; i < (1 << 16); ++i) {
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(i);
}
}
~CPUInfer() {
delete backend_;
delete task_queue_;
}
template <typename Func, typename Obj, typename... Args>
void enqueue(Func f, Obj* obj, Args... args) {
task_queue_->enqueue([=]() {
std::invoke(f, *obj, args..., backend_);
});
}
void submit(std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
func(args);
}
void sync() {
task_queue_->sync();
}
void submit_with_cuda_stream(intptr_t user_cuda_stream, std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)func, args);
}
static void sync_(void* cpu_infer_ptr) {
CPUInfer* cpuinfer = (CPUInfer*)cpu_infer_ptr;
cpuinfer->sync();
}
void sync_with_cuda_stream(intptr_t user_cuda_stream) {
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)&sync_, (void*)this);
}
public:
Backend* backend_;
TaskQueue* task_queue_;
};
#endif
#ifndef CPUINFER_CPUINFER_H
#define CPUINFER_CPUINFER_H
#include <atomic>
#include <condition_variable>
#include <functional>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
#ifdef KTRANSFORMERS_USE_CUDA
#include "vendors/cuda.h"
#elif KTRANSFORMERS_USE_MUSA
#include "vendors/musa.h"
#elif KTRANSFORMERS_USE_ROCM
#define __HIP_PLATFORM_AMD__
#include "vendors/hip.h"
#endif
#include "backend.h"
#include "task_queue.h"
#include "../vendors/vendor.h"
#include "llama.cpp/ggml-impl.h"
class CPUInfer {
public:
CPUInfer(int thread_num) {
backend_ = new Backend(thread_num - 1);
task_queue_ = new TaskQueue();
for (int i = 0; i < (1 << 16); ++i) {
ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(i);
}
}
~CPUInfer() {
delete backend_;
delete task_queue_;
}
template <typename Func, typename Obj, typename... Args>
void enqueue(Func f, Obj* obj, Args... args) {
task_queue_->enqueue([=]() {
std::invoke(f, *obj, args..., backend_);
});
}
void submit(std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
func(args);
}
void sync() {
task_queue_->sync();
}
void submit_with_cuda_stream(intptr_t user_cuda_stream, std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)func, args);
}
static void sync_(void* cpu_infer_ptr) {
CPUInfer* cpuinfer = (CPUInfer*)cpu_infer_ptr;
cpuinfer->sync();
}
void sync_with_cuda_stream(intptr_t user_cuda_stream) {
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)&sync_, (void*)this);
}
public:
Backend* backend_;
TaskQueue* task_queue_;
};
#endif

View file

@ -1,3 +1,15 @@
#pragma once
#include <cuda_runtime.h>
#include <cuda_runtime.h>
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define cublasComputeType_t cudaDataType_t
#endif // CUDART_VERSION < 11020

View file

@ -0,0 +1,172 @@
#pragma once
#define HIP_ENABLE_WARP_SYNC_BUILTINS 1
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended
#define CU_MEM_ALLOCATION_TYPE_PINNED hipMemAllocationTypePinned
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cublasOperation_t hipblasOperation_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEventSynchronize hipEventSynchronize
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaHostRegister hipHostRegister
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync
#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cuDeviceGet hipDeviceGet
#define CUdevice hipDevice_t
#define CUdeviceptr hipDeviceptr_t
#define cuMemUnmap hipMemUnmap
#define CUmemAccessDesc hipMemAccessDesc
#define cuMemAddressFree hipMemAddressFree
#define cuMemRelease hipMemRelease
#define CUmemGenericAllocationHandle hipMemGenericAllocationHandle_t
#define cuMemCreate hipMemCreate
#define cuMemAddressReserve hipMemAddressReserve
#define cuMemMap hipMemMap
#define cuMemSetAccess hipMemSetAccess
#define cuMemGetAllocationGranularity hipMemGetAllocationGranularity
#define CUmemAllocationProp hipMemAllocationProp
#define cuDeviceGetAttribute hipDeviceGetAttribute
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaGraphExec_t hipGraphExec_t
#define cudaGraphNode_t hipGraphNode_t
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaGraphExecDestroy hipGraphExecDestroy
#define cudaGraphLaunch hipGraphLaunch
#define cudaErrorGraphExecUpdateFailure hipErrorGraphExecUpdateFailure
#define cudaGraphExecUpdateResultInfo hipGraphExecUpdateResult
#define cudaGraphNodeType hipGraphNodeType
#define cudaGraphNodeTypeKernel hipGraphNodeTypeKernel
#define cudaGraphInstantiate hipGraphInstantiate
#define cudaStreamEndCapture hipStreamEndCapture
#define cudaGraphDestroy hipGraphDestroy
#define cudaGraphKernelNodeSetParams hipGraphKernelNodeSetParams
#define cudaErrorInvalidDeviceFunction hipErrorInvalidDeviceFunction
#define cudaGraphKernelNodeGetParams hipGraphKernelNodeGetParams
#define cudaGraphNodeGetType hipGraphNodeGetType
#define cudaGraphGetNodes hipGraphGetNodes
#define cudaGraphExecUpdate hipGraphExecUpdate
#define cudaStreamCaptureModeRelaxed hipStreamCaptureModeRelaxed
#define cudaStreamBeginCapture hipStreamBeginCapture
#define cudaGraph_t hipGraph_t
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define cudaHostFn_t hipHostFn_t
#define __trap() do { abort(); __builtin_unreachable(); } while(0)
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#define __CUDA_ARCH__ 1300
#if defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__)
#define GCN
#endif
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx942__)
#define CDNA
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
#define RDNA2
#endif
#if defined(__gfx1010__) || defined(__gfx1012__)
#define RDNA1
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef hip_bfloat16 nv_bfloat16;

View file

@ -1,9 +1,137 @@
#pragma once
#include <musa_runtime.h>
#include <musa.h>
#include <mublas.h>
#include <musa_bf16.h>
#include <musa_fp16.h>
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F MUBLAS_COMPUTE_32F_FAST_16F
#define CUBLAS_GEMM_DEFAULT MUBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP MUBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N MUBLAS_OP_N
#define CUBLAS_OP_T MUBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS MUBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH MUBLAS_MATH_MODE_DEFAULT
#define CUDA_R_16F MUSA_R_16F
#define CUDA_R_32F MUSA_R_32F
#define cublasComputeType_t cudaDataType_t
#define cublasCreate mublasCreate
#define cublasDestroy mublasDestroy
#define cublasGemmEx mublasGemmEx
#define cublasGemmBatchedEx mublasGemmBatchedEx
#define cublasGemmStridedBatchedEx mublasGemmStridedBatchedEx
#define cublasHandle_t mublasHandle_t
#define cublasSetMathMode mublasSetMathMode
#define cublasSetStream mublasSetStream
#define cublasSgemm mublasSgemm
#define cublasStatus_t mublasStatus_t
#define cublasOperation_t mublasOperation_t
#define cublasGetStatusString mublasStatus_to_string
#define cudaDataType_t musaDataType_t
#define cudaDeviceCanAccessPeer musaDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess musaDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess musaDeviceEnablePeerAccess
#define cudaDeviceProp musaDeviceProp
#define cudaDeviceSynchronize musaDeviceSynchronize
#define cudaError_t musaError_t
#define cudaErrorPeerAccessAlreadyEnabled musaErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled musaErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags musaEventCreateWithFlags
#define cudaEventDisableTiming musaEventDisableTiming
#define cudaEventRecord musaEventRecord
#define cudaEventSynchronize musaEventSynchronize
#define cudaEvent_t musaEvent_t
#define cudaEventDestroy musaEventDestroy
#define cudaFree musaFree
#define cudaFreeHost musaFreeHost
#define cudaGetDevice musaGetDevice
#define cudaGetDeviceCount musaGetDeviceCount
#define cudaGetDeviceProperties musaGetDeviceProperties
#define cudaGetErrorString musaGetErrorString
#define cudaGetLastError musaGetLastError
#define cudaHostRegister musaHostRegister
#define cudaHostRegisterPortable musaHostRegisterPortable
#define cudaHostRegisterReadOnly musaHostRegisterReadOnly
#define cudaHostUnregister musaHostUnregister
#define cudaLaunchHostFunc musaLaunchHostFunc
#define cudaMalloc musaMalloc
#define cudaMallocHost musaMallocHost
#define cudaMallocManaged musaMallocManaged
#define cudaMemcpy musaMemcpy
#define cudaMemcpyAsync musaMemcpyAsync
#define cudaMemcpyPeerAsync musaMemcpyPeerAsync
#define cudaMemcpy2DAsync musaMemcpy2DAsync
#define cudaMemcpyDeviceToDevice musaMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost musaMemcpyDeviceToHost
#define cudaMemcpyHostToDevice musaMemcpyHostToDevice
#define cudaMemcpyKind musaMemcpyKind
#define cudaMemset musaMemset
#define cudaMemsetAsync musaMemsetAsync
#define cudaMemGetInfo musaMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize musaOccupancyMaxPotentialBlockSize
#define cudaSetDevice musaSetDevice
#define cudaStreamCreateWithFlags musaStreamCreateWithFlags
#define cudaStreamDestroy musaStreamDestroy
#define cudaStreamFireAndForget musaStreamFireAndForget
#define cudaStreamNonBlocking musaStreamNonBlocking
#define cudaStreamPerThread musaStreamPerThread
#define cudaStreamSynchronize musaStreamSynchronize
#define cudaStreamWaitEvent musaStreamWaitEvent
#define cudaStream_t musaStream_t
#define cudaHostFn_t musaHostFn_t
#define nv_bfloat16 mt_bfloat16
#define cudaSuccess musaSuccess
// Additional mappings for MUSA virtual memory pool
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED MU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE MU_MEM_ACCESS_FLAGS_PROT_READWRITE
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED MU_MEM_ALLOC_GRANULARITY_RECOMMENDED
#define CU_MEM_ALLOCATION_TYPE_PINNED MU_MEM_ALLOCATION_TYPE_PINNED
#define CU_MEM_LOCATION_TYPE_DEVICE MU_MEM_LOCATION_TYPE_DEVICE
#define CUdevice MUdevice
#define CUdeviceptr MUdeviceptr
#define CUmemAccessDesc MUmemAccessDesc
#define CUmemAllocationProp MUmemAllocationProp
#define CUmemGenericAllocationHandle MUmemGenericAllocationHandle
#define cuDeviceGet muDeviceGet
#define cuDeviceGetAttribute muDeviceGetAttribute
#define cuMemAddressFree muMemAddressFree
#define cuMemAddressReserve muMemAddressReserve
#define cuMemCreate muMemCreate
#define cuMemGetAllocationGranularity muMemGetAllocationGranularity
#define cuMemMap muMemMap
#define cuMemRelease muMemRelease
#define cuMemSetAccess muMemSetAccess
#define cuMemUnmap muMemUnmap
#define cudaFuncAttributeMaxDynamicSharedMemorySize musaFuncAttributeMaxDynamicSharedMemorySize
#define cudaFuncSetAttribute musaFuncSetAttribute
#define cudaMemcpy3DPeerParms musaMemcpy3DPeerParms
#define make_cudaExtent make_musaExtent
#define make_cudaPitchedPtr make_musaPitchedPtr
// Additional mappings for MUSA graphs
#define CUDA_SUCCESS MUSA_SUCCESS
#define CUresult MUresult
#define cuGetErrorString muGetErrorString
#define cudaErrorGraphExecUpdateFailure musaErrorGraphExecUpdateFailure
#define cudaErrorInvalidDeviceFunction musaErrorInvalidDeviceFunction
#define cudaGraphDestroy musaGraphDestroy
#define cudaGraphExecDestroy musaGraphExecDestroy
#define cudaGraphExec_t musaGraphExec_t
#define cudaGraphExecUpdate musaGraphExecUpdate
#define cudaGraphExecUpdateResultInfo musaGraphExecUpdateResult
#define cudaGraphGetNodes musaGraphGetNodes
#define cudaGraphInstantiate musaGraphInstantiate
#define cudaGraphKernelNodeGetParams musaGraphKernelNodeGetParams
#define cudaGraphKernelNodeSetParams musaGraphKernelNodeSetParams
#define cudaGraphLaunch musaGraphLaunch
#define cudaGraphNodeGetType musaGraphNodeGetType
#define cudaGraphNode_t musaGraphNode_t
#define cudaGraphNodeType musaGraphNodeType
#define cudaGraphNodeTypeKernel musaGraphNodeTypeKernel
#define cudaGraph_t musaGraph_t
#define cudaKernelNodeParams musaKernelNodeParams
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
#define cudaStreamEndCapture musaStreamEndCapture
typedef mt_bfloat16 nv_bfloat16;

View file

@ -0,0 +1,13 @@
#ifndef CPUINFER_VENDOR_VENDOR_H
#define CPUINFER_VENDOR_VENDOR_H
#ifdef USE_CUDA
#include "cuda.h"
#elif USE_HIP
#define __HIP_PLATFORM_AMD__
#include "hip.h"
#elif USE_MUSA
#include "musa.h"
#endif
#endif // CPUINFER_VENDOR_VENDOR_H

View file

@ -15,6 +15,7 @@
#include <torch/torch.h>
#include <cstdint>
#include <c10/cuda/CUDAGuard.h>
typedef hip_bfloat16 nv_bfloat16;
__global__ void dequantize_q8_0_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;

View file

@ -36,7 +36,7 @@ inline std::string str(T x) {
namespace gptq_marlin {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800) || defined(__HIP_PLATFORM_AMD__)
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,

View file

@ -39,7 +39,7 @@ using I4 = Vec<int, 4>;
constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800) || defined (__HIP_PLATFORM_AMD__)
// No support for async
#else

View file

@ -8,6 +8,11 @@
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#ifdef __HIP_PLATFORM_AMD__
typedef __hip_bfloat16 nv_bfloat16;
typedef __hip_bfloat162 nv_bfloat162;
#endif
namespace gptq_marlin {
template <typename scalar_t>

View file

@ -9,7 +9,6 @@
**/
// Python bindings
#include "cpu_backend/cpuinfer.h"
#include "device_launch_parameters.h"
#include "llamafile/flags.h"
#include "operators/kvcache/kvcache.h"
#include "operators/llamafile/linear.h"

View file

@ -0,0 +1,15 @@
#pragma once
#include <cuda_runtime.h>
#include <cuda.h>
#include <cublas_v2.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define cublasComputeType_t cudaDataType_t
#endif // CUDART_VERSION < 11020

View file

@ -0,0 +1,172 @@
#pragma once
#define HIP_ENABLE_WARP_SYNC_BUILTINS 1
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#include <hip/hip_bfloat16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
#define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
#define CUBLAS_OP_T HIPBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended
#define CU_MEM_ALLOCATION_TYPE_PINNED hipMemAllocationTypePinned
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cublasHandle_t hipblasHandle_t
#define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cublasOperation_t hipblasOperation_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags hipEventCreateWithFlags
#define cudaEventDisableTiming hipEventDisableTiming
#define cudaEventRecord hipEventRecord
#define cudaEventSynchronize hipEventSynchronize
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaHostRegister hipHostRegister
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
#define cudaMemcpyHostToDevice hipMemcpyHostToDevice
#define cudaMemcpyKind hipMemcpyKind
#define cudaMemset hipMemset
#define cudaMemsetAsync hipMemsetAsync
#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cuDeviceGet hipDeviceGet
#define CUdevice hipDevice_t
#define CUdeviceptr hipDeviceptr_t
#define cuMemUnmap hipMemUnmap
#define CUmemAccessDesc hipMemAccessDesc
#define cuMemAddressFree hipMemAddressFree
#define cuMemRelease hipMemRelease
#define CUmemGenericAllocationHandle hipMemGenericAllocationHandle_t
#define cuMemCreate hipMemCreate
#define cuMemAddressReserve hipMemAddressReserve
#define cuMemMap hipMemMap
#define cuMemSetAccess hipMemSetAccess
#define cuMemGetAllocationGranularity hipMemGetAllocationGranularity
#define CUmemAllocationProp hipMemAllocationProp
#define cuDeviceGetAttribute hipDeviceGetAttribute
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaGraphExec_t hipGraphExec_t
#define cudaGraphNode_t hipGraphNode_t
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaGraphExecDestroy hipGraphExecDestroy
#define cudaGraphLaunch hipGraphLaunch
#define cudaErrorGraphExecUpdateFailure hipErrorGraphExecUpdateFailure
#define cudaGraphExecUpdateResultInfo hipGraphExecUpdateResult
#define cudaGraphNodeType hipGraphNodeType
#define cudaGraphNodeTypeKernel hipGraphNodeTypeKernel
#define cudaGraphInstantiate hipGraphInstantiate
#define cudaStreamEndCapture hipStreamEndCapture
#define cudaGraphDestroy hipGraphDestroy
#define cudaGraphKernelNodeSetParams hipGraphKernelNodeSetParams
#define cudaErrorInvalidDeviceFunction hipErrorInvalidDeviceFunction
#define cudaGraphKernelNodeGetParams hipGraphKernelNodeGetParams
#define cudaGraphNodeGetType hipGraphNodeGetType
#define cudaGraphGetNodes hipGraphGetNodes
#define cudaGraphExecUpdate hipGraphExecUpdate
#define cudaStreamCaptureModeRelaxed hipStreamCaptureModeRelaxed
#define cudaStreamBeginCapture hipStreamBeginCapture
#define cudaGraph_t hipGraph_t
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define cudaHostFn_t hipHostFn_t
#define __trap() do { abort(); __builtin_unreachable(); } while(0)
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
#define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
#define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
#define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
#define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
#define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
#define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
#define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
#define __CUDA_ARCH__ 1300
#if defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__)
#define GCN
#endif
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx942__)
#define CDNA
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3
#endif
#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
#define RDNA2
#endif
#if defined(__gfx1010__) || defined(__gfx1012__)
#define RDNA1
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
typedef hip_bfloat16 nv_bfloat16;

View file

@ -0,0 +1,137 @@
#pragma once
#include <musa_runtime.h>
#include <musa.h>
#include <mublas.h>
#include <musa_bf16.h>
#include <musa_fp16.h>
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define CUBLAS_COMPUTE_32F_FAST_16F MUBLAS_COMPUTE_32F_FAST_16F
#define CUBLAS_GEMM_DEFAULT MUBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP MUBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N MUBLAS_OP_N
#define CUBLAS_OP_T MUBLAS_OP_T
#define CUBLAS_STATUS_SUCCESS MUBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH MUBLAS_MATH_MODE_DEFAULT
#define CUDA_R_16F MUSA_R_16F
#define CUDA_R_32F MUSA_R_32F
#define cublasComputeType_t cudaDataType_t
#define cublasCreate mublasCreate
#define cublasDestroy mublasDestroy
#define cublasGemmEx mublasGemmEx
#define cublasGemmBatchedEx mublasGemmBatchedEx
#define cublasGemmStridedBatchedEx mublasGemmStridedBatchedEx
#define cublasHandle_t mublasHandle_t
#define cublasSetMathMode mublasSetMathMode
#define cublasSetStream mublasSetStream
#define cublasSgemm mublasSgemm
#define cublasStatus_t mublasStatus_t
#define cublasOperation_t mublasOperation_t
#define cublasGetStatusString mublasStatus_to_string
#define cudaDataType_t musaDataType_t
#define cudaDeviceCanAccessPeer musaDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess musaDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess musaDeviceEnablePeerAccess
#define cudaDeviceProp musaDeviceProp
#define cudaDeviceSynchronize musaDeviceSynchronize
#define cudaError_t musaError_t
#define cudaErrorPeerAccessAlreadyEnabled musaErrorPeerAccessAlreadyEnabled
#define cudaErrorPeerAccessNotEnabled musaErrorPeerAccessNotEnabled
#define cudaEventCreateWithFlags musaEventCreateWithFlags
#define cudaEventDisableTiming musaEventDisableTiming
#define cudaEventRecord musaEventRecord
#define cudaEventSynchronize musaEventSynchronize
#define cudaEvent_t musaEvent_t
#define cudaEventDestroy musaEventDestroy
#define cudaFree musaFree
#define cudaFreeHost musaFreeHost
#define cudaGetDevice musaGetDevice
#define cudaGetDeviceCount musaGetDeviceCount
#define cudaGetDeviceProperties musaGetDeviceProperties
#define cudaGetErrorString musaGetErrorString
#define cudaGetLastError musaGetLastError
#define cudaHostRegister musaHostRegister
#define cudaHostRegisterPortable musaHostRegisterPortable
#define cudaHostRegisterReadOnly musaHostRegisterReadOnly
#define cudaHostUnregister musaHostUnregister
#define cudaLaunchHostFunc musaLaunchHostFunc
#define cudaMalloc musaMalloc
#define cudaMallocHost musaMallocHost
#define cudaMallocManaged musaMallocManaged
#define cudaMemcpy musaMemcpy
#define cudaMemcpyAsync musaMemcpyAsync
#define cudaMemcpyPeerAsync musaMemcpyPeerAsync
#define cudaMemcpy2DAsync musaMemcpy2DAsync
#define cudaMemcpyDeviceToDevice musaMemcpyDeviceToDevice
#define cudaMemcpyDeviceToHost musaMemcpyDeviceToHost
#define cudaMemcpyHostToDevice musaMemcpyHostToDevice
#define cudaMemcpyKind musaMemcpyKind
#define cudaMemset musaMemset
#define cudaMemsetAsync musaMemsetAsync
#define cudaMemGetInfo musaMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize musaOccupancyMaxPotentialBlockSize
#define cudaSetDevice musaSetDevice
#define cudaStreamCreateWithFlags musaStreamCreateWithFlags
#define cudaStreamDestroy musaStreamDestroy
#define cudaStreamFireAndForget musaStreamFireAndForget
#define cudaStreamNonBlocking musaStreamNonBlocking
#define cudaStreamPerThread musaStreamPerThread
#define cudaStreamSynchronize musaStreamSynchronize
#define cudaStreamWaitEvent musaStreamWaitEvent
#define cudaStream_t musaStream_t
#define cudaSuccess musaSuccess
// Additional mappings for MUSA virtual memory pool
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED MU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE MU_MEM_ACCESS_FLAGS_PROT_READWRITE
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED MU_MEM_ALLOC_GRANULARITY_RECOMMENDED
#define CU_MEM_ALLOCATION_TYPE_PINNED MU_MEM_ALLOCATION_TYPE_PINNED
#define CU_MEM_LOCATION_TYPE_DEVICE MU_MEM_LOCATION_TYPE_DEVICE
#define CUdevice MUdevice
#define CUdeviceptr MUdeviceptr
#define CUmemAccessDesc MUmemAccessDesc
#define CUmemAllocationProp MUmemAllocationProp
#define CUmemGenericAllocationHandle MUmemGenericAllocationHandle
#define cuDeviceGet muDeviceGet
#define cuDeviceGetAttribute muDeviceGetAttribute
#define cuMemAddressFree muMemAddressFree
#define cuMemAddressReserve muMemAddressReserve
#define cuMemCreate muMemCreate
#define cuMemGetAllocationGranularity muMemGetAllocationGranularity
#define cuMemMap muMemMap
#define cuMemRelease muMemRelease
#define cuMemSetAccess muMemSetAccess
#define cuMemUnmap muMemUnmap
#define cudaFuncAttributeMaxDynamicSharedMemorySize musaFuncAttributeMaxDynamicSharedMemorySize
#define cudaFuncSetAttribute musaFuncSetAttribute
#define cudaMemcpy3DPeerParms musaMemcpy3DPeerParms
#define make_cudaExtent make_musaExtent
#define make_cudaPitchedPtr make_musaPitchedPtr
// Additional mappings for MUSA graphs
#define CUDA_SUCCESS MUSA_SUCCESS
#define CUresult MUresult
#define cuGetErrorString muGetErrorString
#define cudaErrorGraphExecUpdateFailure musaErrorGraphExecUpdateFailure
#define cudaErrorInvalidDeviceFunction musaErrorInvalidDeviceFunction
#define cudaGraphDestroy musaGraphDestroy
#define cudaGraphExecDestroy musaGraphExecDestroy
#define cudaGraphExec_t musaGraphExec_t
#define cudaGraphExecUpdate musaGraphExecUpdate
#define cudaGraphExecUpdateResultInfo musaGraphExecUpdateResult
#define cudaGraphGetNodes musaGraphGetNodes
#define cudaGraphInstantiate musaGraphInstantiate
#define cudaGraphKernelNodeGetParams musaGraphKernelNodeGetParams
#define cudaGraphKernelNodeSetParams musaGraphKernelNodeSetParams
#define cudaGraphLaunch musaGraphLaunch
#define cudaGraphNodeGetType musaGraphNodeGetType
#define cudaGraphNode_t musaGraphNode_t
#define cudaGraphNodeType musaGraphNodeType
#define cudaGraphNodeTypeKernel musaGraphNodeTypeKernel
#define cudaGraph_t musaGraph_t
#define cudaKernelNodeParams musaKernelNodeParams
#define cudaStreamCaptureModeRelaxed musaStreamCaptureModeRelaxed
#define cudaStreamEndCapture musaStreamEndCapture
typedef mt_bfloat16 nv_bfloat16;

View file

@ -0,0 +1,13 @@
#ifndef CPUINFER_VENDOR_VENDOR_H
#define CPUINFER_VENDOR_VENDOR_H
#ifdef USE_CUDA
#include "cuda.h"
#elif USE_HIP
#define __HIP_PLATFORM_AMD__
#include "hip.h"
#elif USE_MUSA
#include "musa.h"
#endif
#endif // CPUINFER_VENDOR_VENDOR_H

View file

@ -31,6 +31,7 @@ from ktransformers.models.modeling_mixtral import MixtralForCausalLM
from ktransformers.util.utils import prefill_and_generate, get_compute_capability
from ktransformers.server.config.config import Config
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
custom_models = {
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
@ -169,7 +170,7 @@ def local_chat(
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
if system != "Windows" and (config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM") and flashinfer_enabled and get_compute_capability() >= 8:
if system != "Windows" and (config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM") and flashinfer_enabled and get_compute_capability() >= 8 and device_manager.gpu_vendor == GPUVendor.NVIDIA:
generated = prefill_and_generate(
model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think, chunk_prefill_size = chunk_prefill_size,
use_flashinfer_mla = True, num_heads = config.num_attention_heads, head_dim_ckv = config.kv_lora_rank, head_dim_kpe = config.qk_rope_head_dim, q_head_dim = config.qk_rope_head_dim + config.qk_nope_head_dim

View file

@ -20,8 +20,14 @@ from ktransformers.util.utils import get_compute_capability
import logging
from transformers.configuration_utils import PretrainedConfig
from transformers.cache_utils import Cache
from flash_attn import flash_attn_func
from ktransformers.operators.triton_attention import decode_attention_fwd_grouped
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
try:
from flash_attn import flash_attn_func
except:
pass
from ktransformers.operators.triton_attention import decode_attention_fwd_grouped
from ktransformers.operators.triton_attention_prefill import context_attention_fwd
import os
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled
if flashinfer_enabled:
@ -319,18 +325,27 @@ class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
key_states[:, :, :, self.qk_nope_head_dim:] = k_pe.view(bsz, kv_seq_len, 1, -1)
value_states = value_states.view(bsz, kv_seq_len, self.num_heads, self.v_head_dim)
value_states_padded = torch.nn.functional.pad(value_states, [0, query_states.shape[-1] - value_states.shape[-1]], value=0)
attn_output = flash_attn_func(
query_states,
key_states,
value_states_padded,
softmax_scale=self.softmax_scale,
causal=True,
# for bsz = 1
attn_output = torch.zeros(bsz * q_len, self.num_heads, self.v_head_dim, device=hidden_states.device)
b_start_loc = torch.zeros(bsz, dtype=torch.int64, device=hidden_states.device)
b_seq_len = torch.full((bsz,), q_len, dtype=torch.int64, device=hidden_states.device)
max_input_len = q_len
context_attention_fwd(
q=query_states.squeeze(0).view(-1, self.num_heads, self.q_head_dim),
k=key_states.squeeze(0).view(-1, self.num_heads, self.q_head_dim),
v=value_states.squeeze(0).view(-1, self.num_heads, self.v_head_dim),
o=attn_output,
b_start_loc=b_start_loc,
b_seq_len=b_seq_len,
max_input_len=max_input_len,
is_causal=True
)
if self.q_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output[:, :, : self.v_head_dim]
attn_output = attn_output.reshape(
bsz, q_len, self.num_heads * self.v_head_dim
@ -589,8 +604,7 @@ class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if os.name == 'nt' or get_compute_capability()<8:
print("for Windows or GPU before ampere, use forward_windows")
if os.name == 'nt' or get_compute_capability()<8 or device_manager.gpu_vendor != GPUVendor.NVIDIA:
return self.forward_windows(
hidden_states,
attention_mask,

View file

@ -17,7 +17,10 @@ import logging
logger = logging.getLogger("dynamic_attention")
sys.path.append(os.path.dirname(__file__) + "/../ktransformers_ext/cpu_backend")
from ktransformers.operators.cpuinfer import CPUInfer, CPUInferKVCache
from flash_attn import flash_attn_func, flash_attn_with_kvcache
try:
from flash_attn import flash_attn_func, flash_attn_with_kvcache
except:
print("falsh attn not found")
import math

View file

@ -35,6 +35,8 @@ sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext
import cpuinfer_ext
from ktransformers.operators.cpuinfer import CPUInfer
from ktransformers.server.config.config import Config
from typing import Dict, Tuple, Optional, Union
import numpy as np
#class KLinearBase(BaseInjectedModule, ABC):
class KLinearBase(ABC):
@ -176,16 +178,182 @@ class KLinearTorch(KLinearBase):
if self.has_bias:
self.bias = None
class KLinearQ8(KLinearBase):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
device: str = "cuda",
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
self.has_bias = False
self.compute_dtype = torch.float32
self.weight = None
self.weight_scale = None
self.weight_zero_point = None
self.bias = None
self.loaded = False
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_dtype = x.dtype
out_device = x.device
x = x.to(device=self.device, dtype=self.compute_dtype)
# 使用原始权重做矩阵乘法,模拟原始行为
# 反量化权重进行矩阵乘法
weight_dequant = self._dequantize_weight(self.weight, self.weight_scale, bits=8)
out = x @ weight_dequant.T
if self.has_bias:
out = out + self.bias
return out.to(dtype=orig_dtype, device=out_device)
def _dequantize_weight(self, q_matrix, scales, bits=8):
"""
Dequantize a low-precision matrix back to floating-point
Args:
q_matrix (torch.Tensor): Quantized int matrix
scales (torch.Tensor): Scale factors for each column
bits (int): Quantization bits used (8 or 4)
Returns:
torch.Tensor: Dequantized floating-point matrix
"""
# Ensure inputs are torch tensors
if not isinstance(q_matrix, torch.Tensor):
q_matrix = torch.tensor(q_matrix, dtype=torch.int8)
if not isinstance(scales, torch.Tensor):
scales = torch.tensor(scales, dtype=torch.float32)
# Convert to correct dtype if needed
if q_matrix.dtype != torch.int8:
q_matrix = q_matrix.to(torch.int8)
if scales.dtype != torch.float32:
scales = scales.to(torch.float32)
# For Q4, ensure the values stay within 4-bit range
if bits == 4:
q_matrix = torch.clamp(q_matrix, -7, 7)
rows, cols = q_matrix.shape
dequant_matrix = q_matrix.to(torch.float32)
scales_broadcast = scales.view(1, cols)
# Apply dequantization to all columns at once using matrix multiplication
dequant_matrix = dequant_matrix * scales_broadcast
return dequant_matrix
def _quantize_weight(self, matrix, bits=8):
"""
Quantize a floating-point matrix to lower precision (Q8 or Q4)
Args:
matrix (torch.Tensor): Input matrix in floating-point format
bits (int): Quantization bits, either 8 or 4
Returns:
tuple: (quantized int matrix, scale factors for each column)
"""
if not isinstance(matrix, torch.Tensor):
matrix = torch.tensor(matrix, dtype=torch.float32)
# Convert to float32 if needed
if matrix.dtype != torch.float32:
matrix = matrix.to(torch.float32)
# Get matrix shape
rows, cols = matrix.shape
# Determine quantization parameters based on bits
if bits == 8:
max_int = 127
qtype = torch.int8
elif bits == 4:
max_int = 7
qtype = torch.int8 # We'll still use int8 storage but limit to 4-bit range, wait for native support
else:
raise ValueError("Quantization bits must be either 8 or 4")
scales = torch.zeros(cols, dtype=torch.float32, device=matrix.device)
# Calculate max absolute value for each column
max_abs_vals, _ = torch.max(torch.abs(matrix), dim=0)
# Handle zero columns (avoid division by zero)
zero_cols = max_abs_vals == 0
max_abs_vals[zero_cols] = 1.0
# Calculate scale factors for all columns at once
scales = max_abs_vals / max_int
# Prepare the scales for broadcasting [1, cols]
scales_broadcast = scales.view(1, cols)
# Apply quantization to the entire matrix at once
q_matrix = torch.round(matrix / scales_broadcast).to(qtype)
# For Q4, clamp values to ensure they stay within 4-bit range
if bits == 4:
q_matrix = torch.clamp(q_matrix, -max_int, max_int)
return q_matrix, scales
def load(self, w: Union[Dict, nn.Parameter, Tuple, None] = None, device: Optional[str] = None):
if self.loaded: return
if device is None: device = self.device
if w is None: w = self.load_weight(device=device)
if isinstance(w, nn.Parameter):
try:
weight = w.to(dtype=self.compute_dtype).view(self.out_features, self.in_features)
except:
weight = w.to(dtype=self.compute_dtype)
self.has_bias = False
elif isinstance(w, tuple):
try:
weight = w[0].to(dtype=self.compute_dtype).view(self.out_features, self.in_features)
except:
weight = w[0].to(dtype=self.compute_dtype)
self.bias = w[1].to(dtype=self.compute_dtype).to(device)
self.has_bias = True
else:
raise ValueError("Invalid weight type")
self.weight, self.weight_scale = self._quantize_weight(weight, bits=8)
self.weight = self.weight.to(device)
self.weight_scale = self.weight_scale.to(device)
if self.has_bias:
self.bias = self.bias.to(device)
self.loaded = True
def unload(self):
self.weight = None
self.weight_scale = None
self.weight_zero_point = None
self._orig_weight = None
if self.has_bias:
self.bias = None
self.loaded = False
class KLinearFP8(KLinearBase):
# this kernel requires special handling for weight
# Please load the weight file downloaded from KVCache.AI
marlin_q_w: torch.Tensor
marlin_s: torch.Tensor
g_idx: torch.Tensor
sort_indices: torch.Tensor
has_bias: bool
weight: torch.Tensor
scale_w: torch.Tensor
bias: torch.Tensor
def __init__(
self,
@ -468,6 +636,7 @@ LINEAR_MAP = {
"KLinearTorch": KLinearTorch,
"KLinearCPUInfer": KLinearCPUInfer,
"KLinearFP8": KLinearFP8,
"KLinearQ8": KLinearQ8,
}
class KTransformersLinear(BaseInjectedModule, KLinearBase):

View file

@ -53,6 +53,7 @@ from ktransformers.models.modeling_deepseek import (
DeepseekV2DecoderLayer,
DeepseekV2MoE,
)
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
from transformers.models.qwen2_moe.configuration_qwen2_moe import Qwen2MoeConfig
from ktransformers.models.configuration_llama import LlamaConfig
from ktransformers.operators.base_operator import BaseInjectedModule
@ -649,8 +650,8 @@ class KDeepseekV2Model(BaseInjectedModule):
if per_layer_prefill_flag:
causal_mask = None
else:
if os.name == 'nt' or get_compute_capability()<8:
print("for Windows or GPU before ampere, use forward_windows")
if os.name == 'nt' or get_compute_capability()<8 or device_manager.gpu_vendor != GPUVendor.NVIDIA:
# print("for Windows or GPU before ampere, use forward_windows")
# only use mask in forward windows or can't flash attn
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
@ -673,6 +674,7 @@ class KDeepseekV2Model(BaseInjectedModule):
t_f = 0
for i, decoder_layer in enumerate(self.layers):
# print(f"@@@@@@@@@@@@@@@@@layer {i}@@@@@@@@@@@@@@@@@@@@ \n")
if self.transfer_map is not None and i in self.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.transfer_map[i]

View file

@ -6,7 +6,7 @@
import triton
import triton.language as tl
from ktransformers.util.vendors import device_manager, get_device, to_device, GPUVendor
@triton.jit
def tanh(x):
# Tanh is just a scaled sigmoid
@ -181,8 +181,8 @@ def _decode_grouped_att_m_fwd(
# [TODO] work around shmem limit on MI3xx
# TODO: support hip
#if is_hip_ and Lk >= 576:
# BLOCK = 16
if device_manager.gpu_vendor == GPUVendor.AMD and Lk >= 576:
BLOCK = 16
if Lk == 576:
BLOCK_DMODEL = 512

View file

@ -0,0 +1,206 @@
# Adapted from
# https://github.com/sgl-project/sglang/blob/9f635ea50de920aa507f486daafba26a5b837574/python/sglang/srt/layers/attention/triton_ops/prefill_attention.py
# which was originally adapted from
# https://github.com/ModelTC/lightllm/blob/f2a54f0912293f683bf1d1695fd12c4098a5bf82/lightllm/models/llama/triton_kernel/context_flashattention_nopad.py#L1
"""
Memory-efficient attention for prefill.
It supporst page size = 1.
"""
# Adapted from
# https://github.com/ModelTC/lightllm/blob/f2a54f0912293f683bf1d1695fd12c4098a5bf82/lightllm/models/llama/triton_kernel/context_flashattention_nopad.py#L1
import torch
import triton
import triton.language as tl
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
CUDA_CAPABILITY = torch.cuda.get_device_capability()
@triton.jit
def _fwd_kernel(
Q,
K,
V,
sm_scale,
B_Start_Loc,
B_Seqlen,
Out,
stride_qbs,
stride_qh,
stride_kbs,
stride_kh,
stride_vbs,
stride_vh,
stride_obs,
stride_oh,
kv_group_num: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
IS_CAUSAL: tl.constexpr,
Lk: tl.constexpr,
):
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)
start_m = tl.program_id(2)
cur_kv_head = cur_head // kv_group_num
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
block_start_loc = BLOCK_M * start_m
# initialize offsets
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
off_q = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs
+ cur_head * stride_qh
+ offs_d[None, :]
)
off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[:, None]
off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[None, :]
mask_d = offs_d < Lk
q = tl.load(
Q + off_q,
mask=(offs_m[:, None] < cur_batch_seq_len) & (mask_d[None, :]),
other=0.0,
)
k_ptrs = K + off_k
v_ptrs = V + off_v
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
block_mask = tl.where(block_start_loc < cur_batch_seq_len, 1, 0)
end_n = (
cur_batch_seq_len
if not IS_CAUSAL
else tl.minimum((start_m + 1) * BLOCK_M, cur_batch_seq_len)
)
for start_n in range(0, block_mask * end_n, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
# -- compute qk ----
k = tl.load(
k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs,
mask=((start_n + offs_n[None, :]) < cur_batch_seq_len) & (mask_d[:, None]),
other=0.0,
)
# mask = tl.load(mask_ptrs + start_n, mask=start_n + offs_n < cur_batch_end_loc, other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk *= sm_scale
if IS_CAUSAL:
qk += tl.where(
(start_n + offs_n[None, :] < cur_batch_seq_len)
& (offs_m[:, None] >= (start_n + offs_n[None, :])),
0,
float("-inf"),
)
else:
qk += tl.where(
(start_n + offs_n[None, :]) < cur_batch_seq_len, 0, float("-inf")
)
# -- compute m_ij, p, l_ij
m_ij = tl.max(qk, 1)
p = tl.exp(qk - m_ij[:, None])
l_ij = tl.sum(p, 1)
# -- update m_i and l_i
m_i_new = tl.maximum(m_i, m_ij)
alpha = tl.exp(m_i - m_i_new)
beta = tl.exp(m_ij - m_i_new)
l_i_new = alpha * l_i + beta * l_ij
# -- update output accumulator --
# scale p
p_scale = beta / l_i_new
p = p * p_scale[:, None]
# scale acc
acc_scale = l_i / l_i_new * alpha
acc = acc * acc_scale[:, None]
# update acc
v = tl.load(
v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs,
mask=((start_n + offs_n[:, None]) < cur_batch_seq_len) & (mask_d[None, :]),
other=0.0,
)
p = p.to(v.dtype)
acc += tl.dot(p, v)
# update m_i and l_i
l_i = l_i_new
m_i = m_i_new
# initialize pointers to output
off_o = (
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs
+ cur_head * stride_oh
+ offs_d[None, :]
)
out_ptrs = Out + off_o
tl.store(
out_ptrs, acc, mask=(offs_m[:, None] < cur_batch_seq_len) & (mask_d[None, :])
)
def context_attention_fwd(
q, k, v, o, b_start_loc, b_seq_len, max_input_len, is_causal=True
):
"""
q, k, v: [b * s, head, head_dim]
b_start_loc: [b]
b_seq_len: [b]
out: [b * s, head, head_dim]
"""
if is_cuda_available and CUDA_CAPABILITY[0] > 8:
BLOCK = 128
else:
BLOCK = 64
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
sm_scale = 1.0 / (Lq**0.5)
batch, head = b_seq_len.shape[0], q.shape[1]
kv_group_num = q.shape[1] // k.shape[1]
grid = (batch, head, triton.cdiv(max_input_len, BLOCK))
num_warps = 4 if Lk <= 64 else 8
_fwd_kernel[grid](
q,
k,
v,
sm_scale,
b_start_loc,
b_seq_len,
o,
q.stride(0),
q.stride(1),
k.stride(0),
k.stride(1),
v.stride(0),
v.stride(1),
o.stride(0),
o.stride(1),
kv_group_num=kv_group_num,
BLOCK_M=BLOCK,
BLOCK_DMODEL=triton.next_power_of_2(Lk),
BLOCK_N=BLOCK,
IS_CAUSAL=is_causal,
num_warps=num_warps,
num_stages=1,
Lk=Lk,
)

View file

@ -22,7 +22,7 @@
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda"
generate_device: "cpu"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"

View file

@ -0,0 +1,76 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearCPUInfer"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cpu"
prefill_device: "cuda"
generate_op: "KLinearQ8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View file

@ -0,0 +1,46 @@
import torch
# 定义一个包含线性层的浮点模型
class LinearModel(torch.nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features)
def forward(self, x):
return self.linear(x)
# 创建浮点模型实例
in_features = 64
out_features = 128
model_fp32 = LinearModel(in_features, out_features)
# 创建量化模型实例
model_int8 = torch.ao.quantization.quantize_dynamic(
model_fp32, # 原始浮点模型
{torch.nn.Linear}, # 要量化的层类型集合
dtype=torch.qint8 # 量化的目标数据类型
)
# 测试模型
batch_size = 32
input_fp32 = torch.randn(1, batch_size, in_features) # 生成随机输入数据
output_int8 = model_int8(input_fp32) # 通过量化模型运行数据
# 打印输出形状验证
print(f"输入形状: {input_fp32.shape}")
print(f"输出形状: {output_int8.shape}")
# 比较原始模型和量化模型的输出
with torch.no_grad():
output_fp32 = model_fp32(input_fp32)
print(f"FP32输出的前几个值: {output_fp32[0, :5]}")
print(f"INT8输出的前几个值: {output_int8[0, :5]}")
# 计算平均误差
error = torch.abs(output_fp32 - output_int8).mean().item()
print(f"平均绝对误差: {error}")
# 打印模型类型信息
print(f"量化前模型类型: {type(model_fp32.linear)}")
print(f"量化后模型类型: {type(model_int8.linear)}")

View file

@ -0,0 +1,202 @@
from __future__ import annotations
from enum import IntEnum, auto
from typing import Optional, Union, List
import torch
class GPUVendor(IntEnum):
NVIDIA = auto()
AMD = auto()
MooreThreads = auto()
MetaX = auto()
MUSA = auto()
Unknown = auto()
class DeviceManager:
"""
Device manager that provides a unified interface for handling different GPU vendors
"""
def __init__(self):
self.gpu_vendor = self._detect_gpu_vendor()
self.available_devices = self._get_available_devices()
def _detect_gpu_vendor(self) -> GPUVendor:
"""Detect GPU vendor type"""
if not torch.cuda.is_available():
# Check MUSA availability (assuming a musa module exists)
try:
import musa
if musa.is_available():
return GPUVendor.MUSA
except (ImportError, AttributeError):
pass
return GPUVendor.Unknown
device_name = torch.cuda.get_device_name(0).lower()
if any(name in device_name for name in ["nvidia", "geforce", "quadro", "tesla", "titan", "rtx", "gtx"]):
return GPUVendor.NVIDIA
elif any(name in device_name for name in ["amd", "radeon", "rx", "vega", "instinct", "firepro", "mi"]):
return GPUVendor.AMD
elif any(name in device_name for name in ["mthreads", "moore", "mtt"]):
return GPUVendor.MooreThreads
elif any(name in device_name for name in ["metax", "meta"]):
return GPUVendor.MetaX
elif "musa" in device_name:
return GPUVendor.MUSA
# Backend check
try:
if hasattr(torch.version, 'hip') and torch.version.hip is not None:
return GPUVendor.AMD
elif hasattr(torch.version, 'cuda') and torch.version.cuda is not None:
return GPUVendor.NVIDIA
except:
pass
return GPUVendor.Unknown
def _get_available_devices(self) -> List[int]:
"""Get list of available device indices"""
devices = []
if self.gpu_vendor == GPUVendor.NVIDIA or self.gpu_vendor == GPUVendor.AMD:
devices = list(range(torch.cuda.device_count()))
elif self.gpu_vendor == GPUVendor.MUSA:
try:
import musa
devices = list(range(musa.device_count()))
except (ImportError, AttributeError):
pass
return devices
def get_device_str(self, device_id: Union[int, str]) -> str:
"""
Get device string for the given device ID
Args:
device_id: Device index (0, 1, 2, etc.), -1 for CPU, or "cpu" string
Returns:
Device string representation (e.g., "cuda:0", "musa:1", "cpu")
"""
if device_id == -1 or device_id == "cpu":
return "cpu"
if isinstance(device_id, int):
if self.gpu_vendor == GPUVendor.NVIDIA or self.gpu_vendor == GPUVendor.AMD:
if device_id < torch.cuda.device_count():
return f"cuda:{device_id}"
elif self.gpu_vendor == GPUVendor.MUSA:
try:
import musa
if device_id < musa.device_count():
return f"musa:{device_id}"
except (ImportError, AttributeError):
pass
return "cpu"
def to_torch_device(self, device_id: Union[int, str] = 0) -> torch.device:
"""
Convert device ID to torch.device object
Args:
device_id: Device index (0, 1, 2, etc.), -1 for CPU, or "cpu" string
Returns:
torch.device object
"""
device_str = self.get_device_str(device_id)
# Handle MUSA device
if device_str.startswith("musa:"):
try:
import musa
index = int(device_str.split(":")[-1])
return musa.device(index)
except (ImportError, ValueError, AttributeError):
return torch.device("cpu")
# Standard PyTorch device
return torch.device(device_str)
def move_tensor_to_device(self, tensor: torch.Tensor, device_id: Union[int, str] = 0) -> torch.Tensor:
"""
Move tensor to specified device
Args:
tensor: PyTorch tensor to move
device_id: Device index (0, 1, 2, etc.), -1 for CPU, or "cpu" string
Returns:
Tensor moved to the specified device
"""
device = self.to_torch_device(device_id)
return tensor.to(device)
def is_available(self, index: int = 0) -> bool:
"""
Check if device at specified index is available
Args:
index: Device index to check
Returns:
True if the device is available, False otherwise
"""
if index < 0:
return True # CPU is always available
return index in self.available_devices
def get_all_devices(self) -> List[int]:
"""
Get all available device indices
Returns:
List of available device indices (0, 1, 2, etc.)
"""
return self.available_devices
# Create global device manager instance
device_manager = DeviceManager()
# Convenience functions
def get_device(device_id: Union[int, str] = 0) -> torch.device:
"""
Get torch.device object for the specified device ID
Args:
device_id: Device index (0, 1, 2, etc.), -1 for CPU, or "cpu" string
Returns:
torch.device object
"""
return device_manager.to_torch_device(device_id)
def to_device(tensor: torch.Tensor, device_id: Union[int, str] = 0) -> torch.Tensor:
"""
Move tensor to specified device
Args:
tensor: PyTorch tensor to move
device_id: Device index (0, 1, 2, etc.), -1 for CPU, or "cpu" string
Returns:
Tensor moved to the specified device
"""
return device_manager.move_tensor_to_device(tensor, device_id)
# Get devices
cpu_device = get_device(-1) # CPU using index -1
cpu_device2 = get_device("cpu") # CPU using string "cpu"
gpu0 = get_device(0) # First GPU
# Move tensors
x = torch.randn(3, 3)
x_gpu = to_device(x, 0) # Move to first GPU
x_cpu1 = to_device(x, -1) # Move to CPU using index -1
x_cpu2 = to_device(x, "cpu") # Move to CPU using string "cpu"

View file

@ -29,7 +29,7 @@ import torch.version
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
from setuptools import setup, Extension
from cpufeature.extension import CPUFeature
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME, ROCM_HOME
try:
from torch_musa.utils.simple_porting import SimplePorting
from torch_musa.utils.musa_extension import BuildExtension, MUSAExtension, MUSA_HOME
@ -64,6 +64,70 @@ class VersionInfo:
musa_version = f"{bare_metal_version.major}{bare_metal_version.minor}"
return musa_version
def get_rocm_bare_metal_version(self, rocm_dir):
"""
Get the ROCm version from the ROCm installation directory.
Args:
rocm_dir: Path to the ROCm installation directory
Returns:
A string representation of the ROCm version (e.g., "63" for ROCm 6.3)
"""
try:
# Try using rocm_agent_enumerator to get version info
raw_output = subprocess.check_output(
[rocm_dir + "/bin/rocminfo", "--version"],
universal_newlines=True,
stderr=subprocess.STDOUT)
# Extract version number from output
match = re.search(r'(\d+\.\d+)', raw_output)
if match:
version_str = match.group(1)
version = parse(version_str)
rocm_version = f"{version.major}{version.minor}"
return rocm_version
except (subprocess.CalledProcessError, FileNotFoundError):
# If rocminfo --version fails, try alternative methods
pass
try:
# Try reading version from release file
with open(os.path.join(rocm_dir, "share/doc/hip/version.txt"), "r") as f:
version_str = f.read().strip()
version = parse(version_str)
rocm_version = f"{version.major}{version.minor}"
return rocm_version
except (FileNotFoundError, IOError):
pass
# If all else fails, try to extract from directory name
dir_name = os.path.basename(os.path.normpath(rocm_dir))
match = re.search(r'rocm-(\d+\.\d+)', dir_name)
if match:
version_str = match.group(1)
version = parse(version_str)
rocm_version = f"{version.major}{version.minor}"
return rocm_version
# Fallback to extracting from hipcc version
try:
raw_output = subprocess.check_output(
[rocm_dir + "/bin/hipcc", "--version"],
universal_newlines=True,
stderr=subprocess.STDOUT)
match = re.search(r'HIP version: (\d+\.\d+)', raw_output)
if match:
version_str = match.group(1)
version = parse(version_str)
rocm_version = f"{version.major}{version.minor}"
return rocm_version
except (subprocess.CalledProcessError, FileNotFoundError):
pass
# If we still can't determine the version, raise an error
raise ValueError(f"Could not determine ROCm version from directory: {rocm_dir}")
def get_cuda_bare_metal_version(self, cuda_dir):
raw_output = subprocess.check_output(
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
@ -148,11 +212,13 @@ class VersionInfo:
cpu_instruct = self.get_cpu_instruct()
backend_version = ""
if CUDA_HOME is not None:
backend_version = f"cu{self.get_cuda_bare_metal_version(CUDA_HOME)}"
backend_version = f""
elif MUSA_HOME is not None:
backend_version = f"mu{self.get_musa_bare_metal_version(MUSA_HOME)}"
elif ROCM_HOME is not None:
backend_version = f"rocm{self.get_rocm_bare_metal_version(ROCM_HOME)}"
else:
raise ValueError("Unsupported backend: CUDA_HOME and MUSA_HOME are not set.")
raise ValueError("Unsupported backend: CUDA_HOME MUSA_HOME ROCM_HOME all not set.")
package_version = f"{flash_version}+{backend_version}torch{torch_version}{cpu_instruct}"
if full_version:
return package_version
@ -247,9 +313,13 @@ class CMakeBuild(BuildExtension):
cmake_args += ["-DKTRANSFORMERS_USE_CUDA=ON"]
elif MUSA_HOME is not None:
cmake_args += ["-DKTRANSFORMERS_USE_MUSA=ON"]
elif ROCM_HOME is not None:
cmake_args += ["-DKTRANSFORMERS_USE_ROCM=ON"]
else:
raise ValueError("Unsupported backend: CUDA_HOME and MUSA_HOME are not set.")
# log cmake_args
print("CMake args:", cmake_args)
build_args = []
if "CMAKE_ARGS" in os.environ:
cmake_args += [
@ -328,7 +398,7 @@ class CMakeBuild(BuildExtension):
["cmake", "--build", ".", "--verbose", *build_args], cwd=build_temp, check=True
)
if CUDA_HOME is not None:
if CUDA_HOME is not None or ROCM_HOME is not None:
ops_module = CUDAExtension('KTransformersOps', [
'ktransformers/ktransformers_ext/cuda/custom_gguf/dequant.cu',
'ktransformers/ktransformers_ext/cuda/binding.cpp',
@ -338,7 +408,7 @@ if CUDA_HOME is not None:
'cxx': ['-O3', '-DKTRANSFORMERS_USE_CUDA'],
'nvcc': [
'-O3',
'--use_fast_math',
# '--use_fast_math',
'-Xcompiler', '-fPIC',
'-DKTRANSFORMERS_USE_CUDA',
]
@ -371,6 +441,7 @@ else:
raise ValueError("Unsupported backend: CUDA_HOME and MUSA_HOME are not set.")
setup(
name=VersionInfo.PACKAGE_NAME,
version=VersionInfo().get_package_version(),
cmdclass={"bdist_wheel":BuildWheelsCommand ,"build_ext": CMakeBuild},
ext_modules=[