mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 04:30:03 +00:00
Merge pull request #799 from aubreyli/cpu_offloading
Restore CPU offloading capability
This commit is contained in:
commit
30eab48a75
3 changed files with 192 additions and 2 deletions
|
@ -598,7 +598,10 @@ class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
|
||||||
cache_position: Optional[torch.LongTensor] = None,
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
if os.name == 'nt' or get_compute_capability()<8 or device_manager.gpu_vendor != GPUVendor.NVIDIA:
|
if (os.name == 'nt'
|
||||||
|
or get_compute_capability() < 8
|
||||||
|
or hidden_states.device.type == 'cpu'
|
||||||
|
or device_manager.gpu_vendor != GPUVendor.NVIDIA):
|
||||||
return self.forward_windows(
|
return self.forward_windows(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
attention_mask,
|
attention_mask,
|
||||||
|
|
|
@ -650,7 +650,10 @@ class KDeepseekV2Model(BaseInjectedModule):
|
||||||
if per_layer_prefill_flag:
|
if per_layer_prefill_flag:
|
||||||
causal_mask = None
|
causal_mask = None
|
||||||
else:
|
else:
|
||||||
if os.name == 'nt' or get_compute_capability()<8 or device_manager.gpu_vendor != GPUVendor.NVIDIA:
|
if (os.name == 'nt'
|
||||||
|
or get_compute_capability() < 8
|
||||||
|
or (self.transfer_map is not None and 'cpu' in self.transfer_map.values())
|
||||||
|
or device_manager.gpu_vendor != GPUVendor.NVIDIA):
|
||||||
# print("for Windows or GPU before ampere, use forward_windows")
|
# print("for Windows or GPU before ampere, use forward_windows")
|
||||||
# only use mask in forward windows or can't flash attn
|
# only use mask in forward windows or can't flash attn
|
||||||
causal_mask = self._update_causal_mask(
|
causal_mask = self._update_causal_mask(
|
||||||
|
|
|
@ -0,0 +1,184 @@
|
||||||
|
- match:
|
||||||
|
name: "^model.embed_tokens"
|
||||||
|
replace:
|
||||||
|
class: "default"
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
|
||||||
|
# === Rotary Embedding Replacement ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\."
|
||||||
|
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\."
|
||||||
|
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
|
||||||
|
# === Linear Layers Replacement (excluding self_attn) ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\.(?!self_attn).*$" # regular expression
|
||||||
|
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
generate_op: "KLinearMarlin"
|
||||||
|
prefill_op: "KLinearTorch"
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\.(?!self_attn).*$" # regular expression
|
||||||
|
class: torch.nn.Linear # only match modules matching name and class simultaneously
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
generate_op: "KLinearCPUInfer"
|
||||||
|
prefill_op: "KLinearTorch"
|
||||||
|
out_device: "cpu"
|
||||||
|
|
||||||
|
# === MLP (MoE) Replacement ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
|
||||||
|
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
|
||||||
|
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
|
||||||
|
# === MLP Gate Replacement ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.gate$"
|
||||||
|
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.gate.KMoEGate
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.gate$"
|
||||||
|
class: ktransformers.models.modeling_deepseek_v3.MoEGate
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.gate.KMoEGate
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
|
||||||
|
# === MLP Experts Replacement ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||||
|
kwargs:
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
prefill_op: "KExpertsTorch"
|
||||||
|
generate_device: "cpu"
|
||||||
|
generate_op: "KExpertsCPU"
|
||||||
|
out_device: "cuda:0"
|
||||||
|
recursive: False # don't recursively inject submodules of this module
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
|
||||||
|
kwargs:
|
||||||
|
prefill_device: "cpu"
|
||||||
|
prefill_op: "KExpertsTorch"
|
||||||
|
generate_device: "cpu"
|
||||||
|
generate_op: "KExpertsCPU"
|
||||||
|
out_device: "cpu"
|
||||||
|
recursive: False # don't recursively inject submodules of this module
|
||||||
|
|
||||||
|
# === Self-Attention Replacement ===
|
||||||
|
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
||||||
|
|
||||||
|
# === Overall Model Replacement with Transfer Map ===
|
||||||
|
|
||||||
|
- match:
|
||||||
|
name: "^model$"
|
||||||
|
replace:
|
||||||
|
class: "ktransformers.operators.models.KDeepseekV2Model"
|
||||||
|
kwargs:
|
||||||
|
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
|
||||||
|
transfer_map:
|
||||||
|
10: "cpu"
|
||||||
|
|
||||||
|
# === Default Catch-All for Other Modules ===#
|
||||||
|
# GPU 0: layers 0–9
|
||||||
|
- match:
|
||||||
|
name: "^model\\.layers\\.(0|[1-9])\\."
|
||||||
|
replace:
|
||||||
|
class: "default"
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
|
||||||
|
#lmm_head on GPU 0
|
||||||
|
- match:
|
||||||
|
name: "^lm_head"
|
||||||
|
class: torch.nn.Linear
|
||||||
|
replace:
|
||||||
|
class: ktransformers.operators.linear.KTransformersLinear
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cuda:0"
|
||||||
|
prefill_device: "cuda:0"
|
||||||
|
generate_op: "KLinearMarlin"
|
||||||
|
prefill_op: "KLinearTorch"
|
||||||
|
|
||||||
|
# CPU: layers 10-29
|
||||||
|
- match:
|
||||||
|
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)"
|
||||||
|
replace:
|
||||||
|
class: "default"
|
||||||
|
kwargs:
|
||||||
|
generate_device: "cpu"
|
||||||
|
prefill_device: "cpu"
|
Loading…
Add table
Reference in a new issue