Merge pull request #799 from aubreyli/cpu_offloading
Some checks failed
Book-CI / test (push) Has been cancelled
Deploy / deploy (macos-latest) (push) Has been cancelled
Deploy / deploy (ubuntu-latest) (push) Has been cancelled
Deploy / deploy (windows-latest) (push) Has been cancelled

Restore CPU offloading capability
This commit is contained in:
Atream 2025-05-09 00:38:54 -06:00 committed by GitHub
commit 30eab48a75
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 192 additions and 2 deletions

View file

@ -0,0 +1,184 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === Rotary Embedding Replacement ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === Linear Layers Replacement (excluding self_attn) ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
generate_op: "KLinearCPUInfer"
prefill_op: "KLinearTorch"
out_device: "cpu"
# === MLP (MoE) Replacement ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === MLP Gate Replacement ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === MLP Experts Replacement ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cpu"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cpu"
recursive: False # don't recursively inject submodules of this module
# === Self-Attention Replacement ===
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
# CPU: layers 10-29
- match:
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
# === Overall Model Replacement with Transfer Map ===
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
10: "cpu"
# === Default Catch-All for Other Modules ===#
# GPU 0: layers 09
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
#lmm_head on GPU 0
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
# CPU: layers 10-29
- match:
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"