mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-15 17:49:42 +00:00
add balance-serve, support concurrence
This commit is contained in:
parent
8d0292aa44
commit
25cee5810e
196 changed files with 22077 additions and 565 deletions
|
@ -0,0 +1,201 @@
|
|||
from contextlib import contextmanager
|
||||
from typing import Optional, Union
|
||||
|
||||
# ===================== import region =====================
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup, ReduceOp
|
||||
|
||||
from server.inference.distributed.pynccl_wrapper import (
|
||||
NCCLLibrary,
|
||||
buffer_type,
|
||||
cudaStream_t,
|
||||
ncclComm_t,
|
||||
ncclDataTypeEnum,
|
||||
ncclRedOpTypeEnum,
|
||||
ncclUniqueId,
|
||||
)
|
||||
from server.inference.distributed.utils import StatelessProcessGroup
|
||||
|
||||
|
||||
class PyNcclCommunicator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
group: Union[ProcessGroup, StatelessProcessGroup],
|
||||
device: Union[int, str, torch.device],
|
||||
library_path: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
group: the process group to work on. If None, it will use the
|
||||
default process group.
|
||||
device: the device to bind the PyNcclCommunicator to. If None,
|
||||
it will be bind to f"cuda:{local_rank}".
|
||||
library_path: the path to the NCCL library. If None, it will
|
||||
use the default library path.
|
||||
It is the caller's responsibility to make sure each communicator
|
||||
is bind to a unique device.
|
||||
"""
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
assert dist.is_initialized()
|
||||
assert (
|
||||
dist.get_backend(group) != dist.Backend.NCCL
|
||||
), "PyNcclCommunicator should be attached to a non-NCCL group."
|
||||
# note: this rank is the rank in the group
|
||||
self.rank = dist.get_rank(group)
|
||||
self.world_size = dist.get_world_size(group)
|
||||
else:
|
||||
self.rank = group.rank
|
||||
self.world_size = group.world_size
|
||||
|
||||
self.group = group
|
||||
|
||||
# if world_size == 1, no need to create communicator
|
||||
if self.world_size == 1:
|
||||
self.available = False
|
||||
self.disabled = True
|
||||
self.stream = None
|
||||
return
|
||||
try:
|
||||
self.nccl = NCCLLibrary(library_path)
|
||||
except Exception:
|
||||
# disable because of missing NCCL library
|
||||
# e.g. in a non-GPU environment
|
||||
self.available = False
|
||||
self.disabled = True
|
||||
self.stream = None
|
||||
return
|
||||
|
||||
self.available = True
|
||||
self.disabled = False
|
||||
|
||||
print("vLLM is using nccl==%s", self.nccl.ncclGetVersion())
|
||||
|
||||
if self.rank == 0:
|
||||
# get the unique id from NCCL
|
||||
self.unique_id = self.nccl.ncclGetUniqueId()
|
||||
else:
|
||||
# construct an empty unique id
|
||||
self.unique_id = ncclUniqueId()
|
||||
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
tensor = torch.ByteTensor(list(self.unique_id.internal))
|
||||
ranks = dist.get_process_group_ranks(group)
|
||||
# arg `src` in `broadcast` is the global rank
|
||||
dist.broadcast(tensor, src=ranks[0], group=group)
|
||||
byte_list = tensor.tolist()
|
||||
for i, byte in enumerate(byte_list):
|
||||
self.unique_id.internal[i] = byte
|
||||
else:
|
||||
self.unique_id = group.broadcast_obj(self.unique_id, src=0)
|
||||
if isinstance(device, int):
|
||||
device = torch.device(f"cuda:{device}")
|
||||
elif isinstance(device, str):
|
||||
device = torch.device(device)
|
||||
# now `device` is a `torch.device` object
|
||||
assert isinstance(device, torch.device)
|
||||
self.device = device
|
||||
# nccl communicator and stream will use this device
|
||||
# `torch.cuda.device` is a context manager that changes the
|
||||
# current cuda device to the specified one
|
||||
with torch.cuda.device(device):
|
||||
self.comm: ncclComm_t = self.nccl.ncclCommInitRank(
|
||||
self.world_size, self.unique_id, self.rank
|
||||
)
|
||||
self.stream = torch.cuda.Stream()
|
||||
|
||||
# A small all_reduce for warmup.
|
||||
data = torch.zeros(1, device=device)
|
||||
self.all_reduce(data)
|
||||
self.stream.synchronize()
|
||||
del data
|
||||
|
||||
# by default it is disabled, e.g. in profiling models and prefill phase.
|
||||
# to use it, use under `with obj.change_state(enable=True)`, usually
|
||||
# when we are using CUDA graph.
|
||||
self.disabled = True
|
||||
|
||||
def all_reduce(
|
||||
self, tensor: torch.Tensor, op: ReduceOp = ReduceOp.SUM, stream=None
|
||||
):
|
||||
if self.disabled:
|
||||
return
|
||||
# nccl communicator created on a specific device
|
||||
# will only work on tensors on the same device
|
||||
# otherwise it will cause "illegal memory access"
|
||||
assert tensor.device == self.device, (
|
||||
f"this nccl communicator is created to work on {self.device}, "
|
||||
f"but the input tensor is on {tensor.device}"
|
||||
)
|
||||
if stream is None:
|
||||
stream = self.stream
|
||||
self.nccl.ncclAllReduce(
|
||||
buffer_type(tensor.data_ptr()),
|
||||
buffer_type(tensor.data_ptr()),
|
||||
tensor.numel(),
|
||||
ncclDataTypeEnum.from_torch(tensor.dtype),
|
||||
ncclRedOpTypeEnum.from_torch(op),
|
||||
self.comm,
|
||||
cudaStream_t(stream.cuda_stream),
|
||||
)
|
||||
|
||||
def send(self, tensor: torch.Tensor, dst: int, stream=None):
|
||||
if self.disabled:
|
||||
return
|
||||
assert tensor.device == self.device, (
|
||||
f"this nccl communicator is created to work on {self.device}, "
|
||||
f"but the input tensor is on {tensor.device}"
|
||||
)
|
||||
if stream is None:
|
||||
stream = self.stream
|
||||
self.nccl.ncclSend(
|
||||
buffer_type(tensor.data_ptr()),
|
||||
tensor.numel(),
|
||||
ncclDataTypeEnum.from_torch(tensor.dtype),
|
||||
dst,
|
||||
self.comm,
|
||||
cudaStream_t(stream.cuda_stream),
|
||||
)
|
||||
|
||||
def recv(self, tensor: torch.Tensor, src: int, stream=None):
|
||||
if self.disabled:
|
||||
return
|
||||
assert tensor.device == self.device, (
|
||||
f"this nccl communicator is created to work on {self.device}, "
|
||||
f"but the input tensor is on {tensor.device}"
|
||||
)
|
||||
if stream is None:
|
||||
stream = self.stream
|
||||
self.nccl.ncclRecv(
|
||||
buffer_type(tensor.data_ptr()),
|
||||
tensor.numel(),
|
||||
ncclDataTypeEnum.from_torch(tensor.dtype),
|
||||
src,
|
||||
self.comm,
|
||||
cudaStream_t(stream.cuda_stream),
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def change_state(
|
||||
self, enable: Optional[bool] = None, stream: Optional[torch.cuda.Stream] = None
|
||||
):
|
||||
"""
|
||||
A context manager to change the state of the communicator.
|
||||
"""
|
||||
if enable is None:
|
||||
# guess a default value when not specified
|
||||
enable = self.available
|
||||
|
||||
if stream is None:
|
||||
stream = self.stream
|
||||
|
||||
old_disable = self.disabled
|
||||
old_stream = self.stream
|
||||
|
||||
self.stream = stream
|
||||
self.disabled = not enable
|
||||
yield
|
||||
|
||||
self.disabled = old_disable
|
||||
self.stream = old_stream
|
Loading…
Add table
Add a link
Reference in a new issue