add balance-serve, support concurrence

This commit is contained in:
Atream 2025-03-31 22:55:32 +08:00
parent 8d0292aa44
commit 25cee5810e
196 changed files with 22077 additions and 565 deletions

View file

@ -22,7 +22,7 @@
replace:
class: ktransformers.operators.linear.KTransformersLinear
kwargs:
generate_device: "cpu"
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"

View file

@ -0,0 +1,90 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearFP8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoEV2 # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.flashinfer_attn # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RMSNorm
replace:
class: ktransformers.operators.layernorm.RMSNorm
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MLP
replace:
class: ktransformers.operators.mlp.kDeepseekV3MLP
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"

View file

@ -10,7 +10,7 @@
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
@ -18,7 +18,7 @@
name: "^model\\.layers\\.([3456][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
@ -66,7 +66,7 @@
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
@ -74,7 +74,7 @@
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
class: ktransformers.operators.gate.KMoEGateDeepSeekV3 # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View file

@ -10,7 +10,7 @@
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.KMoEGateDeepSeekV3
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
@ -66,7 +66,7 @@
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
@ -74,7 +74,7 @@
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
class: ktransformers.operators.gate.KMoEGateDeepSeekV3 # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View file

@ -0,0 +1,92 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoEV2 # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.flashinfer_attn # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RMSNorm
replace:
class: ktransformers.operators.layernorm.RMSNorm
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MLP
replace:
class: ktransformers.operators.mlp.kDeepseekV3MLP
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View file

@ -38,7 +38,7 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"

View file

@ -0,0 +1,94 @@
- match:
name: "^lm_head$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "VLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoEV2 # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExpertsV2 # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.flashinfer_attn # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RMSNorm
replace:
class: ktransformers.operators.layernorm.RMSNorm
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MLP
replace:
class: ktransformers.operators.mlp.kDeepseekV3MLP
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbeddingV4
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View file

@ -38,7 +38,7 @@
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
class: ktransformers.operators.gate.KMoEGateDeepSeekV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"