Enable support for Intel XPU devices, add support for DeepSeek V2/V3 first

This commit is contained in:
rnwang04 2025-05-14 14:28:22 +00:00
parent 333351c7c8
commit 142fb7ce6c
22 changed files with 673 additions and 81 deletions

View file

@ -14,18 +14,20 @@ Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
import ctypes
import torch
from torch import Tensor, nn
import KTransformersOps
import vLLMMarlin
if not torch.xpu.is_available():
import KTransformersOps
import vLLMMarlin
from ktransformers.util.custom_loader import GGUFLoader, SafeTensorLoader
from ktransformers.util.utils import InferenceState
from ktransformers.ktransformers_ext.operators.custom_marlin.quantize.utils.marlin_utils import (
MarlinWorkspace,
marlin_quantize,
GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MIN_THREAD_K,
GPTQ_MARLIN_MAX_PARALLEL,
vllm_marlin_quantize
)
if not torch.xpu.is_available():
from ktransformers.ktransformers_ext.operators.custom_marlin.quantize.utils.marlin_utils import (
MarlinWorkspace,
marlin_quantize,
GPTQ_MARLIN_MIN_THREAD_N,
GPTQ_MARLIN_MIN_THREAD_K,
GPTQ_MARLIN_MAX_PARALLEL,
vllm_marlin_quantize
)
from ktransformers.operators.base_operator import BaseInjectedModule
from transformers.configuration_utils import PretrainedConfig
from ktransformers.ktransformers_ext.triton.fp8gemm import fp8_gemm, act_quant, weight_dequant
@ -778,6 +780,75 @@ class KLinearCPUInfer(KLinearBase):
if self.has_bias:
self.bias = None
class KLinearIPEXLLM(KLinearBase):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
device: str = "xpu",
precision: str = "sym_int4",
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
self.has_bias = False
self.dtype = torch.get_default_dtype()
self.weight = None
self.has_bias = False
self.precision = precision
self.qtype = None
def forward(self, x: torch.Tensor, bsz_tensor: torch.Tensor = None) -> torch.Tensor:
dtype = x.dtype
out_device = x.device
from ipex_llm.transformers.models.common import linear_forward
x = linear_forward(x.half(), self.weight, self.qtype, self.out_features)
if self.has_bias:
x = x + self.bias
x = x.to(dtype=dtype, device=out_device)
return x
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None):
if self.loaded: return
if device is None: device = self.device
assert device.lower()[:3] == "xpu", "IPEX-LLM quantized linear only supports XPU device"
if w is None: w = self.load_weight(device=device)
if isinstance(w, nn.Parameter):
try:
weight = w.to(dtype=self.dtype).view(self.out_features, self.in_features).T
except:
weight = w.to(dtype=self.dtype).T
self.has_bias = False
elif isinstance(w, tuple):
try:
weight = w[0].to(dtype=self.dtype).view(self.out_features, self.in_features).T
except:
weight = w[0].to(dtype=self.dtype).T
self.bias = w[1].to(dtype=self.dtype)
self.has_bias = True
else:
raise ValueError("Invalid weight type")
weight = weight.to("cpu").float().transpose(0, 1).contiguous()
if self.has_bias:
self.bias = self.bias.to(device)
# quantize linear weight
from ipex_llm.transformers.models.common import quantize_linear
paramsLowBit, qtype = quantize_linear(weight, self.in_features, self.precision)
self.weight = paramsLowBit.to(device)
self.qtype = qtype
self.loaded = True
def unload(self):
if self.weight is not None:
self.weight = None
if self.has_bias:
self.bias = None
LINEAR_MAP = {
"KLinearMarlin": KLinearMarlin,
"KLinearTorch": KLinearTorch,
@ -785,6 +856,7 @@ LINEAR_MAP = {
"VLinearMarlin": VLinearMarlin,
"KLinearFP8": KLinearFP8,
"KLinearQ8": KLinearQ8,
"KLinearIPEXLLM": KLinearIPEXLLM,
}
class KTransformersLinear(BaseInjectedModule, KLinearBase):