Enable support for Intel XPU devices, add support for DeepSeek V2/V3 first

This commit is contained in:
rnwang04 2025-05-14 14:28:22 +00:00
parent 333351c7c8
commit 142fb7ce6c
22 changed files with 673 additions and 81 deletions

View file

@ -30,10 +30,11 @@ from ktransformers.models.modeling_qwen2_moe import Qwen2MoeRMSNorm
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeRMSNorm
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_loader import GGUFLoader
from flashinfer.norm import (
fused_add_rmsnorm,
rmsnorm,
)
if not torch.xpu.is_available():
from flashinfer.norm import (
fused_add_rmsnorm,
rmsnorm,
)
logger = logging.getLogger(__name__)
@ -193,4 +194,29 @@ class DeepseekV3RMSNormTorch(DeepseekV3RMSNorm, BaseInjectedModule):
x = x * torch.rsqrt(variance + self.variance_epsilon)
if residual is not None:
return self.weight * x.to(input_dtype), residual
return self.weight * x.to(input_dtype)
return self.weight * x.to(input_dtype)
class KDeepseekRMSNormIPEXLLM(DeepseekV3RMSNorm, BaseInjectedModule):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "xpu",
generate_device: str = "xpu",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.hidden_size,
orig_module.variance_epsilon)
self.eps = orig_module.variance_epsilon
def forward(self, x: torch.Tensor) -> torch.Tensor:
from ipex_llm.transformers.models.common import rms_norm_forward
output = rms_norm_forward(self, x.float())
return output.to(x.dtype)
def load(self):
BaseInjectedModule.load(self)
if self.weight.dtype != torch.float32:
self.weight = self.weight.float()