mirror of
https://github.com/kvcache-ai/ktransformers.git
synced 2025-09-06 20:49:55 +00:00
update readme
This commit is contained in:
parent
d7becadcf7
commit
034a116365
3 changed files with 4 additions and 2 deletions
|
@ -23,6 +23,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
|
|||
|
||||
<h2 id="Updates">🔥 Updates</h2>
|
||||
|
||||
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
|
||||
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
|
||||
* **Feb 15, 2025**: Longer Context (from 4K to 8K for 24GB VRAM) & Slightly Faster Speed (+15%, up to 16 Tokens/s), update [docs](./doc/en/DeepseekR1_V3_tutorial.md) and [online books](https://kvcache-ai.github.io/ktransformers/).
|
||||
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. For detailed show case and reproduction tutorial, see [here](./doc/en/DeepseekR1_V3_tutorial.md).
|
||||
|
|
|
@ -22,6 +22,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
|
|||
|
||||
<h2 id="Updates">🔥 Updates</h2>
|
||||
|
||||
* **Mar 5, 2025**: Support unsloth 1.58/2.51 bits weights and [IQ1_S/FP8 hybrid](./doc/en/fp8_kernel.md) weights. Support 139K [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context) for DeepSeek-V3 and R1 in 24GB VRAM.
|
||||
* **Feb 25, 2025**: Support [FP8 GPU kernel](./doc/en/fp8_kernel.md) for DeepSeek-V3 and R1; [Longer Context](./doc/en/DeepseekR1_V3_tutorial.md#v022-longer-context).
|
||||
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./en/DeepseekR1_V3_tutorial.md).
|
||||
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./en/long_context_tutorial.md).
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
- [Memory consumptions:](#memory-consumptions)
|
||||
- [Benchmark results](#benchmark-results-2)
|
||||
- [How to Run](#how-to-run)
|
||||
- [V0.2.2 longer context \& FP8 kernel](#v022-longer-context--fp8-kernel)
|
||||
- [v0.2.2 \& v0.2.3 longer context \& FP8 kernel](#v022--v023-longer-context--fp8-kernel)
|
||||
- [longer context](#longer-context)
|
||||
- [FP8 kernel](#fp8-kernel)
|
||||
- [V0.2 \& V0.2.1 Showcase](#v02--v021-showcase)
|
||||
|
@ -157,7 +157,7 @@ the output quality doesn't change. But the speed of decoding and prefill
|
|||
is speed up which is inspiring. So our showcase makes use of this finding*
|
||||
|
||||
## How to Run
|
||||
### V0.2.2 longer context & FP8 kernel
|
||||
### v0.2.2 & v0.2.3 longer context & FP8 kernel
|
||||
#### longer context
|
||||
To use this feature, [install flashinfer](https://github.com/flashinfer-ai/flashinfer) first.
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue