mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-05 22:59:05 +00:00
* move ggml-cpu-aarch64 to repack * split quantize_row_q8_0/1 * split helper functions * split ggml_vec_dot_q4_0_q8_0 * split ggml_vec_dot_q4_1_q8_1 * split ggml_vec_dot_q5_0_q8_0 * split ggml_vec_dot_q5_1_q8_1 * split ggml_vec_dot_q8_0_q8_0 * split ggml_vec_dot_tq1_0_q8_K * split ggml_vec_dot_tq2_0_q8_K * split ggml_vec_dot_q2_K_q8_K * split ggml_vec_dot_q3_K_q8_K * split ggml_vec_dot_q4_K_q8_K * split ggml_vec_dot_q5_K_q8_K * split ggml_vec_dot_q6_K_q8_K * split ggml_vec_dot_iq2_xxs_q8_K * split ggml_vec_dot_iq2_xs_q8_K * split ggml_vec_dot_iq2_s_q8_K * split ggml_vec_dot_iq3_xxs_q8_K * split ggml_vec_dot_iq3_s_q8_K * split ggml_vec_dot_iq1_s_q8_K * split ggml_vec_dot_iq1_m_q8_K * split ggml_vec_dot_iq4_nl_q8_0 * split ggml_vec_dot_iq4_xs_q8_K * fix typos * fix missing prototypes * rename ggml-cpu-quants.c * rename ggml-cpu-traits * rename arm folder * move cpu-feats-x86.cpp * rename ggml-cpu-hbm * update arm detection macro in quants.c * move iq quant tables * split ggml_quantize_mat_q8_0/K * split ggml_gemv_* * split ggml_gemm_* * rename namespace aarch64 to repack * use weak aliases to replace test macros * rename GGML_CPU_AARCH64 to GGML_CPU_REPACK * rename more aarch64 to repack * clean up rebase leftover * fix compilation errors * remove trailing spaces * try to fix clang compilation errors * try to fix clang compilation errors again * try to fix clang compilation errors, 3rd attempt * try to fix clang compilation errors, 4th attempt * try to fix clang compilation errors, 5th attempt * try to fix clang compilation errors, 6th attempt * try to fix clang compilation errors, 7th attempt * try to fix clang compilation errors, 8th attempt * try to fix clang compilation errors, 9th attempt * more cleanup * fix compilation errors * fix apple targets * fix a typo in arm version of ggml_vec_dot_q4_K_q8_K Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
1480 lines
54 KiB
C
1480 lines
54 KiB
C
#define GGML_COMMON_IMPL_C
|
|
#include "ggml-common.h"
|
|
#include "ggml-quants.h"
|
|
#include "ggml-impl.h"
|
|
#include "ggml-cpu.h"
|
|
|
|
#include "../../quants.h"
|
|
#include "../../ggml-cpu-impl.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <stdlib.h> // for qsort
|
|
#include <stdio.h> // for GGML_ASSERT
|
|
|
|
#define GROUP_MAX_EPS 1e-15f
|
|
#define GROUP_MAX_EPS_IQ3_XXS 1e-8f
|
|
#define GROUP_MAX_EPS_IQ2_S 1e-8f
|
|
#define GROUP_MAX_EPS_IQ1_M 1e-7f
|
|
#define GROUP_MAX_EPS_IQ1_S 1e-12f
|
|
|
|
#define UNUSED GGML_UNUSED
|
|
|
|
#if defined(__wasm_simd128__)
|
|
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
|
|
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
|
|
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
|
|
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
|
|
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
|
|
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
|
|
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
|
|
#define B8(c,s ) B7(c,s, c), B7(c,s, s)
|
|
|
|
// precomputed tables for expanding 8bits to 8 bytes:
|
|
static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
|
|
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
|
|
#endif
|
|
|
|
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
|
assert(QK8_0 == 32);
|
|
assert(k % QK8_0 == 0);
|
|
const int nb = k / QK8_0;
|
|
|
|
block_q8_0 * GGML_RESTRICT y = vy;
|
|
|
|
#if defined __wasm_simd128__
|
|
for (int i = 0; i < nb; i++) {
|
|
v128_t srcv [8];
|
|
v128_t asrcv[8];
|
|
v128_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
|
|
wasm_f32x4_extract_lane(amaxv[0], 1)),
|
|
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
|
|
wasm_f32x4_extract_lane(amaxv[0], 3)));
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
|
|
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
|
|
|
|
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
|
|
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
|
|
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
|
|
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
|
|
}
|
|
}
|
|
#else
|
|
GGML_UNUSED(nb);
|
|
// scalar
|
|
quantize_row_q8_0_ref(x, y, k);
|
|
#endif
|
|
}
|
|
|
|
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
|
assert(k % QK8_1 == 0);
|
|
const int nb = k / QK8_1;
|
|
|
|
block_q8_1 * GGML_RESTRICT y = vy;
|
|
#if defined __wasm_simd128__
|
|
for (int i = 0; i < nb; i++) {
|
|
v128_t srcv [8];
|
|
v128_t asrcv[8];
|
|
v128_t amaxv[8];
|
|
|
|
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
|
|
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
|
|
|
|
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
|
|
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
|
|
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
|
|
|
|
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
|
|
wasm_f32x4_extract_lane(amaxv[0], 1)),
|
|
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
|
|
wasm_f32x4_extract_lane(amaxv[0], 3)));
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
y[i].d = GGML_FP32_TO_FP16(d);
|
|
|
|
v128_t accv = wasm_i32x4_splat(0);
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
|
|
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
|
|
|
|
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
|
|
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
|
|
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
|
|
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
|
|
|
|
accv = wasm_i32x4_add(accv, vi);
|
|
}
|
|
|
|
y[i].s = GGML_FP32_TO_FP16(
|
|
d * (wasm_i32x4_extract_lane(accv, 0) +
|
|
wasm_i32x4_extract_lane(accv, 1) +
|
|
wasm_i32x4_extract_lane(accv, 2) +
|
|
wasm_i32x4_extract_lane(accv, 3)));
|
|
}
|
|
#else
|
|
GGML_UNUSED(nb);
|
|
// scalar
|
|
quantize_row_q8_1_ref(x, y, k);
|
|
#endif
|
|
}
|
|
|
|
//===================================== Q8_K ==============================================
|
|
|
|
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
|
|
#ifdef __wasm_simd128__
|
|
assert(k % QK_K == 0);
|
|
const int64_t nb = k / QK_K;
|
|
block_q8_K * GGML_RESTRICT yc = y; // Cast to proper type
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const float * x_block = x + i * QK_K;
|
|
|
|
v128_t min_vec = wasm_v128_load(x_block);
|
|
v128_t max_vec = min_vec;
|
|
|
|
for (int j = 4; j < QK_K; j += 4) {
|
|
v128_t x_vec = wasm_v128_load(x_block + j);
|
|
max_vec = wasm_f32x4_pmax(max_vec, x_vec);
|
|
min_vec = wasm_f32x4_pmin(min_vec, x_vec);
|
|
}
|
|
max_vec = wasm_f32x4_pmax(max_vec, wasm_i32x4_shuffle(max_vec, max_vec, 2, 3, 0, 1));
|
|
max_vec = wasm_f32x4_pmax(max_vec, wasm_i32x4_shuffle(max_vec, max_vec, 1, 0, 3, 2));
|
|
min_vec = wasm_f32x4_pmin(min_vec, wasm_i32x4_shuffle(min_vec, min_vec, 2, 3, 0, 1));
|
|
min_vec = wasm_f32x4_pmin(min_vec, wasm_i32x4_shuffle(min_vec, min_vec, 1, 0, 3, 2));
|
|
float max = wasm_f32x4_extract_lane(max_vec, 0);
|
|
float min = wasm_f32x4_extract_lane(min_vec, 0);
|
|
float amax = -min > max ? min : max;
|
|
|
|
if (amax == 0.0f) {
|
|
yc[i].d = 0.0f;
|
|
const v128_t zero = wasm_i8x16_splat(0);
|
|
for (int j = 0; j < QK_K; j += 16) {
|
|
wasm_v128_store(yc[i].qs + j, zero);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const float iscale = -127.0f / amax;
|
|
const v128_t scale_vec = wasm_f32x4_splat(iscale);
|
|
|
|
// Process 16 elements per iteration
|
|
for (int j = 0, jb = 0; j < QK_K; j += 16, jb++) {
|
|
// Load and quantize 16 floats
|
|
v128_t x0 = wasm_v128_load(x_block + j);
|
|
v128_t x1 = wasm_v128_load(x_block + j + 4);
|
|
v128_t x2 = wasm_v128_load(x_block + j + 8);
|
|
v128_t x3 = wasm_v128_load(x_block + j + 12);
|
|
|
|
v128_t q0 = wasm_f32x4_nearest(wasm_f32x4_mul(x0, scale_vec));
|
|
v128_t q1 = wasm_f32x4_nearest(wasm_f32x4_mul(x1, scale_vec));
|
|
v128_t q2 = wasm_f32x4_nearest(wasm_f32x4_mul(x2, scale_vec));
|
|
v128_t q3 = wasm_f32x4_nearest(wasm_f32x4_mul(x3, scale_vec));
|
|
|
|
// Convert to i32 with saturation
|
|
v128_t i0 = wasm_i32x4_trunc_sat_f32x4(q0);
|
|
v128_t i1 = wasm_i32x4_trunc_sat_f32x4(q1);
|
|
v128_t i2 = wasm_i32x4_trunc_sat_f32x4(q2);
|
|
v128_t i3 = wasm_i32x4_trunc_sat_f32x4(q3);
|
|
|
|
// Pack into 16 i8 values
|
|
v128_t i8 = wasm_i8x16_narrow_i16x8(
|
|
wasm_i16x8_narrow_i32x4(i0, i1),
|
|
wasm_i16x8_narrow_i32x4(i2, i3)
|
|
);
|
|
wasm_v128_store(yc[i].qs + j, i8);
|
|
|
|
// Calculate bsums using SIMD
|
|
v128_t sum16 = wasm_i16x8_add(
|
|
wasm_i16x8_extend_low_i8x16(i8),
|
|
wasm_i16x8_extend_high_i8x16(i8)
|
|
);
|
|
v128_t sum32 = wasm_i32x4_add(
|
|
wasm_i32x4_extend_low_i16x8(sum16),
|
|
wasm_i32x4_extend_high_i16x8(sum16)
|
|
);
|
|
sum32 = wasm_i32x4_add(sum32, wasm_i32x4_shuffle(sum32, sum32, 2, 3, 0, 1));
|
|
sum32 = wasm_i32x4_add(sum32, wasm_i32x4_shuffle(sum32, sum32, 1, 0, 3, 2));
|
|
yc[i].bsums[jb] = wasm_i32x4_extract_lane(sum32, 0);
|
|
}
|
|
|
|
yc[i].d = 1.0f / iscale;
|
|
}
|
|
#else
|
|
quantize_row_q8_K_ref(x, y, k);
|
|
#endif
|
|
}
|
|
|
|
|
|
//===================================== Dot products =================================
|
|
|
|
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q4_0 * GGML_RESTRICT x = vx;
|
|
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
|
|
int ib = 0;
|
|
float sumf = 0;
|
|
|
|
#if defined __wasm_simd128__
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
|
const v128_t s8b = wasm_i8x16_splat(0x8);
|
|
|
|
for (; ib + 1 < nb; ib += 2) {
|
|
const block_q4_0 * GGML_RESTRICT x0 = &x[ib];
|
|
const block_q4_0 * GGML_RESTRICT x1 = &x[ib + 1];
|
|
const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
|
|
const block_q8_0 * GGML_RESTRICT y1 = &y[ib + 1];
|
|
|
|
// Load and process x0
|
|
v128_t v0_0 = wasm_v128_load(x0->qs);
|
|
v128_t v0_0l = wasm_v128_and(v0_0, m4b);
|
|
v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
|
|
v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
|
|
v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
|
|
|
|
// Load y0 vectors
|
|
v128_t y0_l = wasm_v128_load(y0->qs);
|
|
v128_t y0_h = wasm_v128_load(y0->qs + 16);
|
|
|
|
// Extend to i16x8 and compute dot products
|
|
v128_t dx0l = wasm_i16x8_extend_low_i8x16(v0_0ls);
|
|
v128_t dx0h = wasm_i16x8_extend_high_i8x16(v0_0ls);
|
|
v128_t dx0hl = wasm_i16x8_extend_low_i8x16(v0_0hs);
|
|
v128_t dx0hh = wasm_i16x8_extend_high_i8x16(v0_0hs);
|
|
|
|
v128_t dy0ll = wasm_i16x8_extend_low_i8x16(y0_l);
|
|
v128_t dy0lh = wasm_i16x8_extend_high_i8x16(y0_l);
|
|
v128_t dy0hl = wasm_i16x8_extend_low_i8x16(y0_h);
|
|
v128_t dy0hh = wasm_i16x8_extend_high_i8x16(y0_h);
|
|
|
|
v128_t dp0 = wasm_i32x4_add(
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_dot_i16x8(dx0l, dy0ll),
|
|
wasm_i32x4_dot_i16x8(dx0h, dy0lh)
|
|
),
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_dot_i16x8(dx0hl, dy0hl),
|
|
wasm_i32x4_dot_i16x8(dx0hh, dy0hh)
|
|
)
|
|
);
|
|
|
|
// Load and process x1
|
|
v128_t v0_1 = wasm_v128_load(x1->qs);
|
|
v128_t v0_1l = wasm_v128_and(v0_1, m4b);
|
|
v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
|
|
v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
|
|
v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
|
|
|
|
// Load y1 vectors
|
|
v128_t y1_l = wasm_v128_load(y1->qs);
|
|
v128_t y1_h = wasm_v128_load(y1->qs + 16);
|
|
|
|
// Extend to i16x8 and compute dot products
|
|
v128_t dx1l = wasm_i16x8_extend_low_i8x16(v0_1ls);
|
|
v128_t dx1h = wasm_i16x8_extend_high_i8x16(v0_1ls);
|
|
v128_t dx1hl = wasm_i16x8_extend_low_i8x16(v0_1hs);
|
|
v128_t dx1hh = wasm_i16x8_extend_high_i8x16(v0_1hs);
|
|
|
|
v128_t dy1ll = wasm_i16x8_extend_low_i8x16(y1_l);
|
|
v128_t dy1lh = wasm_i16x8_extend_high_i8x16(y1_l);
|
|
v128_t dy1hl = wasm_i16x8_extend_low_i8x16(y1_h);
|
|
v128_t dy1hh = wasm_i16x8_extend_high_i8x16(y1_h);
|
|
|
|
v128_t dp1 = wasm_i32x4_add(
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_dot_i16x8(dx1l, dy1ll),
|
|
wasm_i32x4_dot_i16x8(dx1h, dy1lh)
|
|
),
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_dot_i16x8(dx1hl, dy1hl),
|
|
wasm_i32x4_dot_i16x8(dx1hh, dy1hh)
|
|
)
|
|
);
|
|
|
|
// Accumulate results with scaling
|
|
float scale0 = GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d);
|
|
float scale1 = GGML_FP16_TO_FP32(x1->d) * GGML_FP16_TO_FP32(y1->d);
|
|
|
|
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp0), wasm_f32x4_splat(scale0)));
|
|
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp1), wasm_f32x4_splat(scale1)));
|
|
}
|
|
|
|
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
|
|
|
#endif
|
|
for (; ib < nb; ++ib) {
|
|
int sumi0 = 0;
|
|
int sumi1 = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
|
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
|
|
|
sumi0 += (v0 * y[ib].qs[j]);
|
|
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
|
}
|
|
|
|
int sumi = sumi0 + sumi1;
|
|
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
|
}
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
int ib = 0;
|
|
float sumf = 0;
|
|
|
|
assert(n % qk == 0);
|
|
assert(qk == QK5_0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q5_0 * GGML_RESTRICT x = vx;
|
|
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
|
|
#if defined __wasm_simd128__
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
uint32_t qh_;
|
|
uint64_t tmp[4];
|
|
|
|
// TODO: check if unrolling this is better
|
|
for (; ib < nb; ++ib) {
|
|
const block_q5_0 * GGML_RESTRICT x0 = &x[ib];
|
|
const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
|
|
|
|
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
|
|
|
// extract the 5th bit
|
|
memcpy(&qh_, x0->qh, sizeof(qh_));
|
|
|
|
tmp[0] = table_b2b_1[(qh_ >> 0) & 0xFF];
|
|
tmp[1] = table_b2b_1[(qh_ >> 8) & 0xFF];
|
|
tmp[2] = table_b2b_1[(qh_ >> 16) & 0xFF];
|
|
tmp[3] = table_b2b_1[(qh_ >> 24) ];
|
|
|
|
const v128_t qhl = wasm_v128_load(tmp + 0);
|
|
const v128_t qhh = wasm_v128_load(tmp + 2);
|
|
|
|
const v128_t v0 = wasm_v128_load(x0->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const v128_t v0l = wasm_v128_and (v0, m4b);
|
|
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
|
|
|
// add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
|
|
const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
|
|
const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
|
|
|
|
// load y
|
|
const v128_t v1l = wasm_v128_load(y0->qs);
|
|
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
|
|
|
// int8x16 -> int16x8
|
|
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
|
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
|
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
|
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
|
|
|
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
|
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
|
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
|
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
|
|
|
// dot product
|
|
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
|
|
wasm_i32x4_add(
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
|
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
|
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
|
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
|
|
}
|
|
|
|
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
|
|
|
#endif
|
|
for (; ib < nb; ++ib) {
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
int sumi0 = 0;
|
|
int sumi1 = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
|
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
|
|
|
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
|
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
|
|
|
sumi0 += (x0 * y[ib].qs[j]);
|
|
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
|
}
|
|
|
|
int sumi = sumi0 + sumi1;
|
|
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
|
|
}
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
const int qk = QK8_1;
|
|
const int nb = n / qk;
|
|
|
|
int ib = 0;
|
|
float sumf = 0;
|
|
|
|
assert(n % qk == 0);
|
|
assert(qk == QK5_1);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q5_1 * GGML_RESTRICT x = vx;
|
|
const block_q8_1 * GGML_RESTRICT y = vy;
|
|
|
|
#if defined __wasm_simd128__
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
float summs = 0.0f;
|
|
|
|
uint32_t qh_;
|
|
uint64_t tmp[4];
|
|
|
|
// TODO: check if unrolling this is better
|
|
for (; ib < nb; ++ib) {
|
|
const block_q5_1 * GGML_RESTRICT x0 = &x[ib];
|
|
const block_q8_1 * GGML_RESTRICT y0 = &y[ib];
|
|
|
|
summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
|
|
|
|
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
|
|
|
// extract the 5th bit
|
|
memcpy(&qh_, x0->qh, sizeof(qh_));
|
|
|
|
tmp[0] = table_b2b_0[(qh_ >> 0) & 0xFF];
|
|
tmp[1] = table_b2b_0[(qh_ >> 8) & 0xFF];
|
|
tmp[2] = table_b2b_0[(qh_ >> 16) & 0xFF];
|
|
tmp[3] = table_b2b_0[(qh_ >> 24) ];
|
|
|
|
const v128_t qhl = wasm_v128_load(tmp + 0);
|
|
const v128_t qhh = wasm_v128_load(tmp + 2);
|
|
|
|
const v128_t v0 = wasm_v128_load(x0->qs);
|
|
|
|
// 4-bit -> 8-bit
|
|
const v128_t v0l = wasm_v128_and (v0, m4b);
|
|
const v128_t v0h = wasm_u8x16_shr(v0, 4);
|
|
|
|
// add high bit
|
|
const v128_t v0lf = wasm_v128_or(v0l, qhl);
|
|
const v128_t v0hf = wasm_v128_or(v0h, qhh);
|
|
|
|
// load y
|
|
const v128_t v1l = wasm_v128_load(y0->qs);
|
|
const v128_t v1h = wasm_v128_load(y0->qs + 16);
|
|
|
|
// int8x16 -> int16x8
|
|
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
|
|
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
|
|
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
|
|
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
|
|
|
|
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
|
|
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
|
|
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
|
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
|
|
|
// dot product
|
|
sumv = wasm_f32x4_add(sumv,
|
|
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
|
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
|
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
|
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
|
|
}
|
|
|
|
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
|
|
|
|
#endif
|
|
for (; ib < nb; ++ib) {
|
|
uint32_t qh;
|
|
memcpy(&qh, x[ib].qh, sizeof(qh));
|
|
|
|
int sumi0 = 0;
|
|
int sumi1 = 0;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
|
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
|
|
|
sumi0 += (x0 * y[ib].qs[j]);
|
|
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
|
}
|
|
|
|
int sumi = sumi0 + sumi1;
|
|
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
|
}
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
const int qk = QK8_0;
|
|
const int nb = n / qk;
|
|
|
|
assert(n % qk == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q8_0 * GGML_RESTRICT x = vx;
|
|
const block_q8_0 * GGML_RESTRICT y = vy;
|
|
|
|
int ib = 0;
|
|
float sumf = 0;
|
|
|
|
#if defined __wasm_simd128__
|
|
v128_t sumv = wasm_f32x4_splat(0.0f);
|
|
|
|
for (; ib < nb; ++ib) {
|
|
const block_q8_0 * GGML_RESTRICT x0 = &x[ib];
|
|
const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
|
|
|
|
const v128_t x0_0 = wasm_v128_load(x0->qs);
|
|
const v128_t x0_1 = wasm_v128_load(x0->qs + 16);
|
|
const v128_t y0_0 = wasm_v128_load(y0->qs);
|
|
const v128_t y0_1 = wasm_v128_load(y0->qs + 16);
|
|
|
|
// Extend 8-bit to 16-bit
|
|
const v128_t x0_0l = wasm_i16x8_extend_low_i8x16(x0_0);
|
|
const v128_t x0_0h = wasm_i16x8_extend_high_i8x16(x0_0);
|
|
const v128_t x0_1l = wasm_i16x8_extend_low_i8x16(x0_1);
|
|
const v128_t x0_1h = wasm_i16x8_extend_high_i8x16(x0_1);
|
|
|
|
const v128_t y0_0l = wasm_i16x8_extend_low_i8x16(y0_0);
|
|
const v128_t y0_0h = wasm_i16x8_extend_high_i8x16(y0_0);
|
|
const v128_t y0_1l = wasm_i16x8_extend_low_i8x16(y0_1);
|
|
const v128_t y0_1h = wasm_i16x8_extend_high_i8x16(y0_1);
|
|
|
|
// Compute dot products
|
|
const v128_t dx0_0 = wasm_i32x4_dot_i16x8(x0_0l, y0_0l);
|
|
const v128_t dx0_1 = wasm_i32x4_dot_i16x8(x0_0h, y0_0h);
|
|
const v128_t dx1_0 = wasm_i32x4_dot_i16x8(x0_1l, y0_1l);
|
|
const v128_t dx1_1 = wasm_i32x4_dot_i16x8(x0_1h, y0_1h);
|
|
|
|
// Sum all dot products
|
|
const v128_t sum_dots = wasm_i32x4_add(wasm_i32x4_add(dx0_0, dx0_1), wasm_i32x4_add(dx1_0, dx1_1));
|
|
|
|
// Convert to float and accumulate
|
|
const float scale = GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d);
|
|
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(sum_dots), wasm_f32x4_splat(scale)));
|
|
}
|
|
|
|
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
|
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
|
|
|
#endif
|
|
for (; ib < nb; ++ib) {
|
|
int sumi = 0;
|
|
|
|
for (int j = 0; j < qk; j++) {
|
|
sumi += x[ib].qs[j]*y[ib].qs[j];
|
|
}
|
|
|
|
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
|
}
|
|
|
|
*s = sumf;
|
|
}
|
|
|
|
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q2_K * GGML_RESTRICT x = vx;
|
|
const block_q8_K * GGML_RESTRICT y = vy;
|
|
|
|
const int nb = n / QK_K;
|
|
|
|
#if defined __wasm_simd128__
|
|
float sumf = 0;
|
|
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * q2 = x[i].qs;
|
|
const int8_t * q8 = y[i].qs;
|
|
const uint8_t * sc = x[i].scales;
|
|
|
|
// Vectorized summs calculation
|
|
v128_t summs_vec = wasm_i32x4_splat(0);
|
|
{
|
|
v128_t sc_vec = wasm_v128_load(sc);
|
|
v128_t sc_upper = wasm_u8x16_shr(sc_vec, 4);
|
|
|
|
v128_t sc_low = wasm_u16x8_extend_low_u8x16(sc_upper);
|
|
v128_t sc_high = wasm_u16x8_extend_high_u8x16(sc_upper);
|
|
|
|
v128_t bsums1 = wasm_v128_load(&y[i].bsums[0]);
|
|
v128_t bsums2 = wasm_v128_load(&y[i].bsums[8]);
|
|
|
|
summs_vec = wasm_i32x4_add(
|
|
wasm_i32x4_add(wasm_i32x4_dot_i16x8(sc_low, bsums1),
|
|
wasm_i32x4_dot_i16x8(sc_high, bsums2)),
|
|
summs_vec
|
|
);
|
|
|
|
summs_vec = wasm_i32x4_add(summs_vec, wasm_i32x4_shuffle(summs_vec, summs_vec, 2, 3, 0, 1));
|
|
summs_vec = wasm_i32x4_add(summs_vec, wasm_i32x4_shuffle(summs_vec, summs_vec, 1, 0, 3, 2));
|
|
}
|
|
int32_t summs = wasm_i32x4_extract_lane(summs_vec, 0);
|
|
|
|
// Vectorized isum calculation
|
|
int32_t isum = 0;
|
|
const uint8_t * sc_ptr = sc;
|
|
const int k_iters = QK_K/128;
|
|
|
|
for (int k = 0; k < k_iters; ++k) {
|
|
v128_t isum_vec = wasm_i32x4_splat(0);
|
|
int shift = 0;
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
const int d0 = (sc_ptr[0] & 0xF);
|
|
const int d1 = (sc_ptr[1] & 0xF);
|
|
sc_ptr += 2;
|
|
|
|
// Process first 16 elements
|
|
v128_t q2_0 = wasm_v128_load(q2);
|
|
v128_t q8_0 = wasm_v128_load(q8);
|
|
v128_t q2_shift_0 = wasm_u8x16_shr(q2_0, shift);
|
|
v128_t q2_bits_0 = wasm_v128_and(q2_shift_0, wasm_i8x16_splat(0x03));
|
|
|
|
// Process next 16 elements
|
|
v128_t q2_1 = wasm_v128_load(q2 + 16);
|
|
v128_t q8_1 = wasm_v128_load(q8 + 16);
|
|
v128_t q2_shift_1 = wasm_u8x16_shr(q2_1, shift);
|
|
v128_t q2_bits_1 = wasm_v128_and(q2_shift_1, wasm_i8x16_splat(0x03));
|
|
|
|
// Calculate dot products
|
|
v128_t p0 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q8_0),
|
|
wasm_i16x8_extend_low_i8x16(q2_bits_0)
|
|
);
|
|
v128_t p1 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q8_0),
|
|
wasm_i16x8_extend_high_i8x16(q2_bits_0)
|
|
);
|
|
v128_t p2 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q8_1),
|
|
wasm_i16x8_extend_low_i8x16(q2_bits_1)
|
|
);
|
|
v128_t p3 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q8_1),
|
|
wasm_i16x8_extend_high_i8x16(q2_bits_1)
|
|
);
|
|
|
|
// Accumulate scaled results
|
|
v128_t scaled = wasm_i32x4_add(
|
|
wasm_i32x4_mul(wasm_i32x4_add(p0, p1), wasm_i32x4_splat(d0)),
|
|
wasm_i32x4_mul(wasm_i32x4_add(p2, p3), wasm_i32x4_splat(d1))
|
|
);
|
|
|
|
isum_vec = wasm_i32x4_add(isum_vec, scaled);
|
|
q8 += 32;
|
|
shift += 2;
|
|
}
|
|
q2 += 32;
|
|
|
|
// Horizontal sum of isum_vec
|
|
isum_vec = wasm_i32x4_add(isum_vec, wasm_i32x4_shuffle(isum_vec, isum_vec, 2, 3, 0, 1));
|
|
isum_vec = wasm_i32x4_add(isum_vec, wasm_i32x4_shuffle(isum_vec, isum_vec, 1, 0, 3, 2));
|
|
isum += wasm_i32x4_extract_lane(isum_vec, 0);
|
|
}
|
|
|
|
const float dall = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
|
sumf += dall * isum - dmin * summs;
|
|
}
|
|
|
|
*s = sumf;
|
|
|
|
#else
|
|
|
|
float sumf = 0;
|
|
|
|
for (int i = 0; i < nb; ++i) {
|
|
|
|
const uint8_t * q2 = x[i].qs;
|
|
const int8_t * q8 = y[i].qs;
|
|
const uint8_t * sc = x[i].scales;
|
|
|
|
int summs = 0;
|
|
for (int j = 0; j < 16; ++j) {
|
|
summs += y[i].bsums[j] * (sc[j] >> 4);
|
|
}
|
|
|
|
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
|
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
|
|
|
int isum = 0;
|
|
int is = 0;
|
|
int d;
|
|
for (int k = 0; k < QK_K/128; ++k) {
|
|
int shift = 0;
|
|
for (int j = 0; j < 4; ++j) {
|
|
d = sc[is++] & 0xF;
|
|
int isuml = 0;
|
|
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
|
isum += d * isuml;
|
|
d = sc[is++] & 0xF;
|
|
isuml = 0;
|
|
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
|
isum += d * isuml;
|
|
shift += 2;
|
|
q8 += 32;
|
|
}
|
|
q2 += 32;
|
|
}
|
|
sumf += dall * isum - dmin * summs;
|
|
}
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
assert(n % QK_K == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const uint32_t kmask1 = 0x03030303;
|
|
const uint32_t kmask2 = 0x0f0f0f0f;
|
|
|
|
const block_q3_K * GGML_RESTRICT x = vx;
|
|
const block_q8_K * GGML_RESTRICT y = vy;
|
|
|
|
const int nb = n / QK_K;
|
|
|
|
#if defined __wasm_simd128__
|
|
int8_t aux8[QK_K];
|
|
float sums[8] = {0};
|
|
uint32_t auxs[4];
|
|
|
|
float sumf = 0;
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
|
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
|
|
// Process blocks with SIMD
|
|
int8_t * a = aux8;
|
|
uint8_t m = 1;
|
|
for (int j = 0; j < QK_K; j += 128) {
|
|
for (int shift = 0; shift <= 6; shift += 2) {
|
|
v128_t v_m = wasm_i8x16_splat(m);
|
|
for (int l = 0; l < 32; l += 16) {
|
|
v128_t v_q3 = wasm_v128_load(q3 + l);
|
|
v128_t v_shift = wasm_i8x16_shr(v_q3, shift);
|
|
v128_t v_low2 = wasm_v128_and(v_shift, wasm_i8x16_splat(0x03));
|
|
|
|
v128_t v_hm = wasm_v128_load(hm + l);
|
|
v128_t v_mask = wasm_v128_and(v_hm, v_m);
|
|
v_mask = wasm_i8x16_ne(v_mask, wasm_i8x16_splat(0));
|
|
|
|
v_low2 = wasm_i8x16_sub(v_low2, wasm_v128_and(wasm_i8x16_splat(4), wasm_v128_not(v_mask)));
|
|
wasm_v128_store(a + l, v_low2);
|
|
}
|
|
a += 32;
|
|
m <<= 1;
|
|
}
|
|
q3 += 32;
|
|
}
|
|
|
|
// Extract scales
|
|
memcpy(auxs, x[i].scales, 12);
|
|
uint32_t tmp = auxs[2];
|
|
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
|
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
|
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
|
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
|
const int8_t * scales = (const int8_t *)auxs;
|
|
|
|
// SIMD dot product with register accumulators
|
|
v128_t v_acc0 = wasm_i32x4_splat(0);
|
|
v128_t v_acc1 = wasm_i32x4_splat(0);
|
|
a = aux8;
|
|
for (int j = 0; j < QK_K/16; ++j) {
|
|
const v128_t v_scale = wasm_i16x8_splat(scales[j] - 32);
|
|
|
|
// Process 16 elements per iteration
|
|
for (int k = 0; k < 2; ++k) {
|
|
const v128_t v_q8 = wasm_i16x8_load8x8(q8);
|
|
const v128_t v_a = wasm_i16x8_load8x8(a);
|
|
|
|
v128_t v_prod = wasm_i16x8_mul(v_q8, v_a);
|
|
v_prod = wasm_i16x8_mul(v_prod, v_scale);
|
|
|
|
v_acc0 = wasm_i32x4_add(v_acc0, wasm_i32x4_extend_low_i16x8(v_prod));
|
|
v_acc1 = wasm_i32x4_add(v_acc1, wasm_i32x4_extend_high_i16x8(v_prod));
|
|
|
|
q8 += 8;
|
|
a += 8;
|
|
}
|
|
}
|
|
|
|
// Accumulate results
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
const v128_t v_d = wasm_f32x4_splat(d);
|
|
v128_t v_sum = wasm_f32x4_add(
|
|
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(v_acc0), v_d),
|
|
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(v_acc1), v_d)
|
|
);
|
|
|
|
// Accumulate into sums vector
|
|
wasm_v128_store(sums, wasm_f32x4_add(wasm_v128_load(sums), v_sum));
|
|
}
|
|
|
|
// Horizontal sum
|
|
v128_t v_sum = wasm_f32x4_add(wasm_v128_load(sums), wasm_v128_load(sums + 4));
|
|
sumf = wasm_f32x4_extract_lane(v_sum, 0) +
|
|
wasm_f32x4_extract_lane(v_sum, 1) +
|
|
wasm_f32x4_extract_lane(v_sum, 2) +
|
|
wasm_f32x4_extract_lane(v_sum, 3);
|
|
|
|
*s = sumf;
|
|
|
|
#else
|
|
// scalar version
|
|
// This function is written like this so the compiler can manage to vectorize most of it
|
|
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
|
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
|
// The ideal situation would be if we could just write the code once, and the compiler would
|
|
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
|
// write vectorized versions for AVX, ARM_NEON, etc.
|
|
|
|
int8_t aux8[QK_K];
|
|
int16_t aux16[8];
|
|
float sums [8];
|
|
int32_t aux32[8];
|
|
memset(sums, 0, 8*sizeof(float));
|
|
|
|
uint32_t auxs[4];
|
|
const int8_t * scales = (const int8_t*)auxs;
|
|
|
|
float sumf = 0;
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
|
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
memset(aux32, 0, 8*sizeof(int32_t));
|
|
int8_t * GGML_RESTRICT a = aux8;
|
|
uint8_t m = 1;
|
|
for (int j = 0; j < QK_K; j += 128) {
|
|
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
|
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
|
a += 32; m <<= 1;
|
|
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
|
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
|
a += 32; m <<= 1;
|
|
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
|
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
|
a += 32; m <<= 1;
|
|
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
|
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
|
a += 32; m <<= 1;
|
|
q3 += 32;
|
|
}
|
|
a = aux8;
|
|
|
|
memcpy(auxs, x[i].scales, 12);
|
|
uint32_t tmp = auxs[2];
|
|
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
|
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
|
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
|
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
|
for (int j = 0; j < QK_K/16; ++j) {
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
|
q8 += 8; a += 8;
|
|
}
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
|
}
|
|
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
|
*s = sumf;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
assert(n % QK_K == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q4_K * GGML_RESTRICT x = vx;
|
|
const block_q8_K * GGML_RESTRICT y = vy;
|
|
|
|
const int nb = n / QK_K;
|
|
|
|
static const uint32_t kmask1 = 0x3f3f3f3f;
|
|
static const uint32_t kmask2 = 0x0f0f0f0f;
|
|
static const uint32_t kmask3 = 0x03030303;
|
|
|
|
uint32_t utmp[4];
|
|
|
|
#if defined __wasm_simd128__
|
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
|
float sumf = 0;
|
|
|
|
for (int i = 0; i < nb; ++i) {
|
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
|
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); // Corrected sign
|
|
|
|
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
|
|
// Process scales and mins
|
|
memcpy(utmp, x[i].scales, 12);
|
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
|
const uint32_t uaux = utmp[1] & kmask1;
|
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
|
utmp[2] = uaux;
|
|
utmp[0] &= kmask1;
|
|
|
|
// Sum mins * q8sums
|
|
int32_t sumi = 0;
|
|
const int16_t * GGML_RESTRICT q8sums = y[i].bsums;
|
|
const uint8_t * m = (const uint8_t *)&utmp[2];
|
|
for (int j = 0; j < 16; j += 2) {
|
|
sumi += (q8sums[j] + q8sums[j+1]) * m[j/2];
|
|
}
|
|
sumf -= dmin * sumi;
|
|
|
|
int32_t sumi1 = 0;
|
|
int32_t sumi2 = 0;
|
|
|
|
for (int j = 0; j < QK_K/64; ++j) {
|
|
// Load 64 4-bit weights (32 bytes)
|
|
const v128_t q4x0 = wasm_v128_load(q4);
|
|
const v128_t q4x1 = wasm_v128_load(q4 + 16);
|
|
q4 += 32;
|
|
|
|
// Split into low/high nibbles
|
|
const v128_t q4l0 = wasm_v128_and(q4x0, wasm_i8x16_splat(0x0F));
|
|
const v128_t q4h0 = wasm_u8x16_shr(q4x0, 4);
|
|
const v128_t q4l1 = wasm_v128_and(q4x1, wasm_i8x16_splat(0x0F));
|
|
const v128_t q4h1 = wasm_u8x16_shr(q4x1, 4);
|
|
|
|
// Load 64 8-bit values (64 bytes)
|
|
const v128_t q8x0 = wasm_v128_load(q8);
|
|
const v128_t q8x1 = wasm_v128_load(q8 + 16);
|
|
const v128_t q8x2 = wasm_v128_load(q8 + 32);
|
|
const v128_t q8x3 = wasm_v128_load(q8 + 48);
|
|
q8 += 64;
|
|
|
|
// Low nibble products
|
|
v128_t vacc1 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q4l0),
|
|
wasm_i16x8_extend_low_i8x16(q8x0)
|
|
);
|
|
vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q4l0),
|
|
wasm_i16x8_extend_high_i8x16(q8x0)
|
|
));
|
|
vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q4l1),
|
|
wasm_i16x8_extend_low_i8x16(q8x1)
|
|
));
|
|
vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q4l1),
|
|
wasm_i16x8_extend_high_i8x16(q8x1)
|
|
));
|
|
|
|
// High nibble products
|
|
v128_t vacc2 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q4h0),
|
|
wasm_i16x8_extend_low_i8x16(q8x2)
|
|
);
|
|
vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q4h0),
|
|
wasm_i16x8_extend_high_i8x16(q8x2)
|
|
));
|
|
vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q4h1),
|
|
wasm_i16x8_extend_low_i8x16(q8x3)
|
|
));
|
|
vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q4h1),
|
|
wasm_i16x8_extend_high_i8x16(q8x3)
|
|
));
|
|
|
|
// Accumulate scaled results
|
|
int32_t vacc1_sum = wasm_i32x4_extract_lane(vacc1, 0) + wasm_i32x4_extract_lane(vacc1, 1) +
|
|
wasm_i32x4_extract_lane(vacc1, 2) + wasm_i32x4_extract_lane(vacc1, 3);
|
|
sumi1 += vacc1_sum * scales[2*j];
|
|
|
|
int32_t vacc2_sum = wasm_i32x4_extract_lane(vacc2, 0) + wasm_i32x4_extract_lane(vacc2, 1) +
|
|
wasm_i32x4_extract_lane(vacc2, 2) + wasm_i32x4_extract_lane(vacc2, 3);
|
|
sumi2 += vacc2_sum * scales[2*j+1];
|
|
}
|
|
|
|
sumf += d * (sumi1 + sumi2);
|
|
}
|
|
|
|
*s = sumf;
|
|
|
|
#else
|
|
|
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
|
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
|
|
|
int8_t aux8[QK_K];
|
|
int16_t aux16[8];
|
|
float sums [8];
|
|
int32_t aux32[8];
|
|
memset(sums, 0, 8*sizeof(float));
|
|
|
|
float sumf = 0;
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
memset(aux32, 0, 8*sizeof(int32_t));
|
|
int8_t * GGML_RESTRICT a = aux8;
|
|
for (int j = 0; j < QK_K/64; ++j) {
|
|
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
|
a += 32;
|
|
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
|
a += 32; q4 += 32;
|
|
}
|
|
memcpy(utmp, x[i].scales, 12);
|
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
|
const uint32_t uaux = utmp[1] & kmask1;
|
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
|
utmp[2] = uaux;
|
|
utmp[0] &= kmask1;
|
|
|
|
int sumi = 0;
|
|
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
|
a = aux8;
|
|
int is = 0;
|
|
for (int j = 0; j < QK_K/32; ++j) {
|
|
int32_t scale = scales[is++];
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
}
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
|
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
|
sumf -= dmin * sumi;
|
|
}
|
|
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
assert(n % QK_K == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q5_K * GGML_RESTRICT x = vx;
|
|
const block_q8_K * GGML_RESTRICT y = vy;
|
|
|
|
const int nb = n / QK_K;
|
|
|
|
static const uint32_t kmask1 = 0x3f3f3f3f;
|
|
static const uint32_t kmask2 = 0x0f0f0f0f;
|
|
static const uint32_t kmask3 = 0x03030303;
|
|
|
|
uint32_t utmp[4];
|
|
|
|
#if defined __wasm_simd128__
|
|
//const uint8_t * scales = (const uint8_t*)&utmp[0];
|
|
float sumf = 0;
|
|
|
|
for (int i = 0; i < nb; ++i) {
|
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
|
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); // Fixed sign
|
|
|
|
const uint8_t * GGML_RESTRICT q5 = x[i].qs;
|
|
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
|
|
// Process scales and mins
|
|
memcpy(utmp, x[i].scales, 12);
|
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
|
const uint32_t uaux = utmp[1] & kmask1;
|
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
|
utmp[2] = uaux;
|
|
utmp[0] &= kmask1;
|
|
|
|
// Sum mins * q8sums
|
|
int32_t sumi_mins = 0;
|
|
const int16_t * GGML_RESTRICT q8sums = y[i].bsums;
|
|
const uint8_t * m = (const uint8_t *)&utmp[2];
|
|
for (int j = 0; j < 16; j += 2) {
|
|
sumi_mins += (q8sums[j] + q8sums[j+1]) * m[j/2];
|
|
}
|
|
sumf -= dmin * sumi_mins; // Correct subtraction
|
|
|
|
v128_t qh0 = wasm_v128_load(qh);
|
|
v128_t qh1 = wasm_v128_load(qh + 16);
|
|
const uint8_t * sc = (const uint8_t *)utmp;
|
|
|
|
int32_t sumi = 0;
|
|
|
|
for (int j = 0; j < QK_K/64; ++j) {
|
|
const int shift = j * 2;
|
|
v128_t qh_shift0 = wasm_u8x16_shr(qh0, shift);
|
|
v128_t qh_shift1 = wasm_u8x16_shr(qh1, shift);
|
|
|
|
v128_t qh_low0 = wasm_i8x16_shl(wasm_v128_and(qh_shift0, wasm_i8x16_splat(0x01)), 4);
|
|
v128_t qh_high0 = wasm_i8x16_shl(wasm_v128_and(qh_shift0, wasm_i8x16_splat(0x02)), 3);
|
|
v128_t qh_low1 = wasm_i8x16_shl(wasm_v128_and(qh_shift1, wasm_i8x16_splat(0x01)), 4);
|
|
v128_t qh_high1 = wasm_i8x16_shl(wasm_v128_and(qh_shift1, wasm_i8x16_splat(0x02)), 3);
|
|
|
|
v128_t q5_0 = wasm_v128_load(q5);
|
|
v128_t q5_1 = wasm_v128_load(q5 + 16);
|
|
q5 += 32;
|
|
|
|
v128_t q5l_0 = wasm_v128_or(wasm_v128_and(q5_0, wasm_i8x16_splat(0x0F)), qh_low0);
|
|
v128_t q5h_0 = wasm_v128_or(wasm_u8x16_shr(q5_0, 4), qh_high0);
|
|
v128_t q5l_1 = wasm_v128_or(wasm_v128_and(q5_1, wasm_i8x16_splat(0x0F)), qh_low1);
|
|
v128_t q5h_1 = wasm_v128_or(wasm_u8x16_shr(q5_1, 4), qh_high1);
|
|
|
|
v128_t q8_0 = wasm_v128_load(q8);
|
|
v128_t q8_1 = wasm_v128_load(q8 + 16);
|
|
v128_t q8_2 = wasm_v128_load(q8 + 32);
|
|
v128_t q8_3 = wasm_v128_load(q8 + 48);
|
|
q8 += 64;
|
|
|
|
// Process low quants
|
|
v128_t pl0 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q5l_0),
|
|
wasm_i16x8_extend_low_i8x16(q8_0)
|
|
);
|
|
pl0 = wasm_i32x4_add(pl0, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q5l_0),
|
|
wasm_i16x8_extend_high_i8x16(q8_0)
|
|
));
|
|
v128_t pl1 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q5l_1),
|
|
wasm_i16x8_extend_low_i8x16(q8_1)
|
|
);
|
|
pl1 = wasm_i32x4_add(pl1, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q5l_1),
|
|
wasm_i16x8_extend_high_i8x16(q8_1)
|
|
));
|
|
v128_t sum_low = wasm_i32x4_add(pl0, pl1);
|
|
|
|
// Process high quants
|
|
v128_t ph0 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q5h_0),
|
|
wasm_i16x8_extend_low_i8x16(q8_2)
|
|
);
|
|
ph0 = wasm_i32x4_add(ph0, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q5h_0),
|
|
wasm_i16x8_extend_high_i8x16(q8_2)
|
|
));
|
|
v128_t ph1 = wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_low_i8x16(q5h_1),
|
|
wasm_i16x8_extend_low_i8x16(q8_3)
|
|
);
|
|
ph1 = wasm_i32x4_add(ph1, wasm_i32x4_dot_i16x8(
|
|
wasm_i16x8_extend_high_i8x16(q5h_1),
|
|
wasm_i16x8_extend_high_i8x16(q8_3)
|
|
));
|
|
v128_t sum_high = wasm_i32x4_add(ph0, ph1);
|
|
|
|
// Accumulate with scale factors
|
|
int32_t sl = wasm_i32x4_extract_lane(sum_low, 0) + wasm_i32x4_extract_lane(sum_low, 1) +
|
|
wasm_i32x4_extract_lane(sum_low, 2) + wasm_i32x4_extract_lane(sum_low, 3);
|
|
int32_t sh = wasm_i32x4_extract_lane(sum_high, 0) + wasm_i32x4_extract_lane(sum_high, 1) +
|
|
wasm_i32x4_extract_lane(sum_high, 2) + wasm_i32x4_extract_lane(sum_high, 3);
|
|
|
|
sumi += sl * sc[2*j] + sh * sc[2*j+1];
|
|
}
|
|
|
|
sumf += d * sumi;
|
|
}
|
|
|
|
*s = sumf;
|
|
|
|
#else
|
|
|
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
|
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
|
|
|
int8_t aux8[QK_K];
|
|
int16_t aux16[8];
|
|
float sums [8];
|
|
int32_t aux32[8];
|
|
memset(sums, 0, 8*sizeof(float));
|
|
|
|
float sumf = 0;
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
|
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
memset(aux32, 0, 8*sizeof(int32_t));
|
|
int8_t * GGML_RESTRICT a = aux8;
|
|
uint8_t m = 1;
|
|
for (int j = 0; j < QK_K/64; ++j) {
|
|
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
|
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
|
a += 32; m <<= 1;
|
|
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
|
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
|
a += 32; m <<= 1;
|
|
q4 += 32;
|
|
}
|
|
memcpy(utmp, x[i].scales, 12);
|
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
|
const uint32_t uaux = utmp[1] & kmask1;
|
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
|
utmp[2] = uaux;
|
|
utmp[0] &= kmask1;
|
|
|
|
int sumi = 0;
|
|
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
|
a = aux8;
|
|
int is = 0;
|
|
for (int j = 0; j < QK_K/32; ++j) {
|
|
int32_t scale = scales[is++];
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
}
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
|
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
|
sumf -= dmin * sumi;
|
|
}
|
|
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|
|
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
|
assert(n % QK_K == 0);
|
|
assert(nrc == 1);
|
|
UNUSED(nrc);
|
|
UNUSED(bx);
|
|
UNUSED(by);
|
|
UNUSED(bs);
|
|
|
|
const block_q6_K * GGML_RESTRICT x = vx;
|
|
const block_q8_K * GGML_RESTRICT y = vy;
|
|
|
|
const int nb = n / QK_K;
|
|
|
|
#if defined __wasm_simd128__
|
|
int8_t aux8[QK_K] __attribute__((aligned(16)));
|
|
int32_t aux32[8] __attribute__((aligned(16))) = {0};
|
|
float sums[8] __attribute__((aligned(16))) = {0};
|
|
|
|
for (int i = 0; i < nb; ++i) {
|
|
// Unpack 6-bit quantized data into aux8 (unchanged)
|
|
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
|
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
|
int8_t * a = aux8;
|
|
for (int j = 0; j < QK_K; j += 128) {
|
|
for (int l = 0; l < 32; ++l) {
|
|
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
|
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
|
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
|
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
|
}
|
|
a += 128;
|
|
q4 += 64;
|
|
qh += 32;
|
|
}
|
|
|
|
const int8_t * GGML_RESTRICT a_ptr = aux8;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
v128_t acc0 = wasm_i32x4_splat(0);
|
|
v128_t acc1 = wasm_i32x4_splat(0);
|
|
|
|
for (int j = 0; j < QK_K/16; ++j) {
|
|
const int scale = x[i].scales[j];
|
|
const v128_t vscale = wasm_i32x4_splat(scale);
|
|
|
|
// Load 16 elements from a and q8
|
|
const v128_t a_vec = wasm_v128_load(a_ptr);
|
|
const v128_t q8_vec = wasm_v128_load(q8);
|
|
|
|
// Process low 8 elements
|
|
v128_t a_low = wasm_i16x8_extend_low_i8x16(a_vec);
|
|
v128_t q8_low = wasm_i16x8_extend_low_i8x16(q8_vec);
|
|
v128_t prod_low = wasm_i16x8_mul(a_low, q8_low);
|
|
v128_t prod_lo_lo = wasm_i32x4_extend_low_i16x8(prod_low);
|
|
v128_t prod_lo_hi = wasm_i32x4_extend_high_i16x8(prod_low);
|
|
|
|
// Process high 8 elements
|
|
v128_t a_high = wasm_i16x8_extend_high_i8x16(a_vec);
|
|
v128_t q8_high = wasm_i16x8_extend_high_i8x16(q8_vec);
|
|
v128_t prod_high = wasm_i16x8_mul(a_high, q8_high);
|
|
v128_t prod_hi_lo = wasm_i32x4_extend_low_i16x8(prod_high);
|
|
v128_t prod_hi_hi = wasm_i32x4_extend_high_i16x8(prod_high);
|
|
|
|
// Scale and accumulate
|
|
prod_lo_lo = wasm_i32x4_mul(prod_lo_lo, vscale);
|
|
prod_lo_hi = wasm_i32x4_mul(prod_lo_hi, vscale);
|
|
prod_hi_lo = wasm_i32x4_mul(prod_hi_lo, vscale);
|
|
prod_hi_hi = wasm_i32x4_mul(prod_hi_hi, vscale);
|
|
|
|
acc0 = wasm_i32x4_add(acc0, wasm_i32x4_add(prod_lo_lo, prod_hi_lo));
|
|
acc1 = wasm_i32x4_add(acc1, wasm_i32x4_add(prod_lo_hi, prod_hi_hi));
|
|
|
|
a_ptr += 16;
|
|
q8 += 16;
|
|
}
|
|
|
|
// Store accumulated results
|
|
wasm_v128_store(&aux32[0], acc0);
|
|
wasm_v128_store(&aux32[4], acc1);
|
|
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
for (int l = 0; l < 8; ++l) {
|
|
sums[l] += d * aux32[l];
|
|
}
|
|
}
|
|
|
|
// Sum final results
|
|
float sumf = 0;
|
|
for (int l = 0; l < 8; ++l) {
|
|
sumf += sums[l];
|
|
}
|
|
*s = sumf;
|
|
|
|
#else
|
|
|
|
int8_t aux8[QK_K];
|
|
int16_t aux16[8];
|
|
float sums [8];
|
|
int32_t aux32[8];
|
|
memset(sums, 0, 8*sizeof(float));
|
|
|
|
float sumf = 0;
|
|
for (int i = 0; i < nb; ++i) {
|
|
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
|
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
|
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
|
memset(aux32, 0, 8*sizeof(int32_t));
|
|
int8_t * GGML_RESTRICT a = aux8;
|
|
for (int j = 0; j < QK_K; j += 128) {
|
|
for (int l = 0; l < 32; ++l) {
|
|
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
|
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
|
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
|
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
|
}
|
|
a += 128;
|
|
q4 += 64;
|
|
qh += 32;
|
|
}
|
|
a = aux8;
|
|
int is = 0;
|
|
for (int j = 0; j < QK_K/16; ++j) {
|
|
int scale = x[i].scales[is++];
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
|
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
|
q8 += 8; a += 8;
|
|
}
|
|
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
|
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
|
}
|
|
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
|
*s = sumf;
|
|
#endif
|
|
}
|
|
|