koboldcpp/ggml/src/ggml-cpu/ops.cpp
2025-07-02 15:48:33 +03:00

9787 lines
324 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "ops.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "binary-ops.h"
#include "ggml.h"
#include "unary-ops.h"
#include "vec.h"
#include <float.h>
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == dst->type);
const size_t nb0 = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by blocks
const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
const int dr = (nk + nth - 1) / nth;
const int k0 = dr * ith;
const int k1 = MIN(k0 + dr, nk);
if (k0 < k1) {
memcpy(
((char *) dst->data + k0*nb0),
((char *) src0->data + k0*nb0),
(k1 - k0) * nb0);
}
}
static void ggml_compute_forward_dup_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
if (nb00 == sizeof(ggml_fp16_t)) {
if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
static void ggml_compute_forward_dup_bf16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
if (nb00 == sizeof(ggml_bf16_t)) {
if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_BF16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
static void ggml_compute_forward_dup_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_TENSOR_UNARY_OP_LOCALS
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
// TODO: simplify
if (nb00 == sizeof(float)) {
if (ggml_get_type_traits_cpu(dst->type)->from_float) {
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
from_float(src0_ptr, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_BF16) {
size_t id = 0;
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(float));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_BF16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ABORT("fatal error"); // TODO: implement
}
}
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
static void ggml_compute_forward_dup_bytes(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(src0->type == dst->type);
GGML_TENSOR_UNARY_OP_LOCALS;
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
ggml_compute_forward_dup_same_cont(params, dst);
return;
}
const size_t type_size = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ggml_are_same_shape(src0, dst) &&
nb00 == type_size && nb0 == type_size) {
// copy by rows
const size_t rs = ggml_row_size(src0->type, ne00);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
size_t id = 0;
char * dst_ptr = (char *) dst->data;
const size_t rs = ne00 * type_size;
if (nb00 == type_size) {
// src0 is contigous on first dimension, copy by rows
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, type_size);
id += type_size;
}
}
id += rs * (ne01 - ir1);
}
}
}
return;
}
// dst counters
int64_t k10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
// number of blocks in a row
const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
k10 += nk00 * ir0;
while (k10 >= nk0) {
k10 -= nk0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t k00 = 0; k00 < nk00; k00++) {
const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, type_size);
if (++k10 == nk0) {
k10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
k10 += nk00 * (ne01 - ir1);
while (k10 >= nk0) {
k10 -= nk0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
}
static void ggml_compute_forward_dup_q(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
size_t qk = ggml_blck_size(type);
const int64_t nr = ggml_nelements(src1) / qk;
// destination must be contiguous in the first dimension
GGML_ASSERT(nb10 == ggml_type_size(dst->type));
// must either have first dimension large enough to hold a row, or fully contiguous
GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
const int ith = params->ith;
const int nth = params->nth;
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t ir = ir0; ir < ir1; ++ir) {
uint32_t i = ir * qk;
const int64_t i03 = i/(ne00 * ne01 * ne02);
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int64_t i13 = i/(ne10 * ne11 * ne12);
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
dequantize_row_q(
(const void *) ((char *) src0->data + x_offset),
(float *) ((char *) dst->data + dst_offset), qk);
}
}
void ggml_compute_forward_dup(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (src0->type == dst->type) {
ggml_compute_forward_dup_bytes(params, dst);
return;
}
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_dup_f16(params, dst);
} break;
case GGML_TYPE_BF16:
{
ggml_compute_forward_dup_bf16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_dup_f32(params, dst);
} break;
default:
{
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
ggml_compute_forward_dup_q(params, dst);
break;
}
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_add
static void ggml_compute_forward_add_q_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const ggml_type type = src0->type;
const ggml_type dtype = dst->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
// src1 and dst are same shape as src0 => same indices
const int i13 = i03;
const int i12 = i02;
const int i11 = i01;
const int i3 = i03;
const int i2 = i02;
const int i1 = i01;
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
assert(ne00 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne00);
// add src1
ggml_vec_acc_f32(ne00, wdata, src1_row);
// quantize row to dst
if (quantize_row_q != NULL) {
quantize_row_q(wdata, dst_row, ne00);
} else {
memcpy(dst_row, wdata, ne0*nb0);
}
}
}
void ggml_compute_forward_add(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
{
ggml_compute_forward_add_non_quantized(params, dst);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add_q_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
GGML_UNUSED(ggml_vec_add1_f32);
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) src1->data), 0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_add1_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
*(float *) src1->data);
#endif
}
}
static void ggml_compute_forward_add1_f16_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_f16_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
// scalar to add
const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_q_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
const ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
// we don't support permuted src0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
assert(ne0 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne0);
// add src1
ggml_vec_acc1_f32(ne0, wdata, v);
// quantize row to dst
quantize_row_q(wdata, dst_row, ne0);
}
}
static void ggml_compute_forward_add1_bf16_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_bf16_bf16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
// scalar to add
const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(src0->type == GGML_TYPE_BF16);
GGML_ASSERT(src1->type == GGML_TYPE_BF16);
GGML_ASSERT(dst->type == GGML_TYPE_BF16);
GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
}
}
}
void ggml_compute_forward_add1(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add1_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add1_f16_f16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_f16_f32(params, dst);
}
else {
GGML_ABORT("fatal error");
}
} break;
case GGML_TYPE_BF16:
{
if (src1->type == GGML_TYPE_BF16) {
ggml_compute_forward_add1_bf16_bf16(params, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_bf16_f32(params, dst);
}
else {
GGML_ABORT("fatal error");
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_add1_q_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_acc
static void ggml_compute_forward_acc_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during acc
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
if (params->ith == 0) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during acc
const size_t nb0 = ggml_element_size(src0);
const size_t nb00 = nb0;
const size_t nb01 = nb1;
const size_t nb02 = nb2;
const size_t nb03 = nb3;
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
#else
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
}
}
void ggml_compute_forward_acc(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_acc_f32(params, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_sum
static void ggml_compute_forward_sum_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
ggml_float sum = 0;
ggml_float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32_ggf(ne00,
&row_sum,
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
sum += row_sum;
}
}
}
((float *) dst->data)[0] = sum;
}
static void ggml_compute_forward_sum_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(ggml_fp16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f16_ggf(ne00,
&row_sum,
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
}
static void ggml_compute_forward_sum_bf16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(ggml_bf16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_bf16_ggf(ne00,
&row_sum,
(ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
}
void ggml_compute_forward_sum(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_sum_f16(params, dst);
} break;
case GGML_TYPE_BF16:
{
ggml_compute_forward_sum_bf16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_sum_rows
static void ggml_compute_forward_sum_rows_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(dst->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne0 == 1);
GGML_ASSERT(ne1 == ne01);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
for (int64_t i3 = 0; i3 < ne03; i3++) {
for (int64_t i2 = 0; i2 < ne02; i2++) {
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
ggml_vec_sum_f32(ne00, &row_sum, src_row);
dst_row[0] = row_sum;
}
}
}
}
void ggml_compute_forward_sum_rows(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_rows_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_mean
static void ggml_compute_forward_mean_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
assert(ne0 == 1);
assert(ne1 == ne01);
assert(ne2 == ne02);
assert(ne3 == ne03);
GGML_UNUSED(ne0);
GGML_UNUSED(ne1);
GGML_UNUSED(ne2);
GGML_UNUSED(ne3);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32(ne00,
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
}
}
}
}
void ggml_compute_forward_mean(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mean_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_argmax
static void ggml_compute_forward_argmax_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(src0->nb[0] == sizeof(float));
assert(dst->nb[0] == sizeof(float));
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src = (float *) ((char *) src0->data + i1*nb01);
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
int v = 0;
ggml_vec_argmax_f32(ne00, &v, src);
dst_[0] = v;
}
}
void ggml_compute_forward_argmax(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argmax_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_count_equal
static void ggml_compute_forward_count_equal_i32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_I32);
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_are_same_shape(src0, src1));
GGML_ASSERT(ggml_is_scalar(dst));
GGML_ASSERT(dst->type == GGML_TYPE_I64);
const int64_t nr = ggml_nrows(src0);
const int ith = params->ith;
const int nth = params->nth;
int64_t * sums = (int64_t *) params->wdata;
int64_t sum_thread = 0;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
for (int64_t ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir / (ne02*ne01);
const int64_t i02 = (ir - i03*ne03) / ne01;
const int64_t i01 = ir - i03*ne03 - i02*ne02;
const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
for (int64_t i00 = 0; i00 < ne00; ++i00) {
const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
sum_thread += val0 == val1;
}
}
if (ith != 0) {
sums[ith] = sum_thread;
}
ggml_barrier(params->threadpool);
if (ith != 0) {
return;
}
for (int ith_other = 1; ith_other < nth; ++ith_other) {
sum_thread += sums[ith_other];
}
*((int64_t *) dst->data) = sum_thread;
}
void ggml_compute_forward_count_equal(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_I32:
{
ggml_compute_forward_count_equal_i32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_repeat
static void ggml_compute_forward_repeat_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
GGML_ASSERT(ggml_can_repeat(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_cpy_f32(ne00,
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
GGML_ASSERT(ggml_can_repeat(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
// ggml_vec_cpy_f16(ne00, y, x)
for (int i = 0; i < ne00; ++i) {
y[i] = x[i];
}
}
}
}
}
}
}
}
}
void ggml_compute_forward_repeat(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_I16:
{
ggml_compute_forward_repeat_f16(params, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_repeat_f32(params, dst);
} break;
// TODO: templateify the implemenation and support for I64
// ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
//case GGML_TYPE_I64:
// {
// ggml_compute_forward_repeat_i64(params, dst);
// } break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_repeat_back
static void ggml_compute_forward_repeat_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
GGML_ASSERT(ggml_can_repeat(dst, src0));
GGML_TENSOR_UNARY_OP_LOCALS
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne00/ne0);
const int nr1 = (int)(ne01/ne1);
const int nr2 = (int)(ne02/ne2);
const int nr3 = (int)(ne03/ne3);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (ggml_is_contiguous(dst)) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
} else {
for (int k3 = 0; k3 < ne3; k3++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int k1 = 0; k1 < ne1; k1++) {
ggml_vec_set_f32(ne0,
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
0);
}
}
}
}
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne3; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne1; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_acc_f32(ne0,
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
}
}
}
}
}
}
}
}
void ggml_compute_forward_repeat_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_repeat_back_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_concat
static void ggml_compute_forward_concat_any(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const size_t len = ggml_type_size(src0->type);
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const char * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
} else {
x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
}
char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
memcpy(y, x, len);
}
}
}
}
}
static void ggml_compute_forward_concat_i8(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const int8_t * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_concat_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const ggml_fp16_t * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_concat_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const float * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
void ggml_compute_forward_concat(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_I16:
{
ggml_compute_forward_concat_f16(params, dst);
} break;
case GGML_TYPE_I8:
{
ggml_compute_forward_concat_i8(params, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_concat_f32(params, dst);
} break;
default:
{
ggml_compute_forward_concat_any(params, dst);
}
}
}
// ggml_compute_forward_gelu
static void ggml_compute_forward_gelu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_CPU_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_gelu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_gelu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_gelu_erf
static void ggml_compute_forward_gelu_erf_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_erf_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu_erf_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_erf_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_CPU_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_gelu_erf(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_erf_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_gelu_erf_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_gelu_quick
static void ggml_compute_forward_gelu_quick_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_quick_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu_quick_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_quick_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_CPU_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_gelu_quick(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_quick_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_gelu_quick_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_silu
static void ggml_compute_forward_silu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
const float v = GGML_CPU_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_silu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_silu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_leaky_relu
static void ggml_compute_forward_leaky_relu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_leaky_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
}
}
static void ggml_compute_forward_leaky_relu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
assert(dst->nb[0] == sizeof(ggml_fp16_t));
assert(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_leaky_relu_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
}
}
void ggml_compute_forward_leaky_relu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_leaky_relu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_leaky_relu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_silu_back
static void ggml_compute_forward_silu_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * grad = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
assert(ggml_is_contiguous_1(grad));
assert(ggml_is_contiguous_1(src1));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src1, dst));
assert(ggml_are_same_shape(src1, grad));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1->ne[0];
const int nr = ggml_nrows(src1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src1->data + i1*(src1->nb[1])),
(float *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu_back_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * grad = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
assert(ggml_is_contiguous_1(grad));
assert(ggml_is_contiguous_1(src1));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src1, dst));
assert(ggml_are_same_shape(src1, grad));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1->ne[0];
const int nr = ggml_nrows(src1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f16(nc,
(ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
(ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
(ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_CPU_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
void ggml_compute_forward_silu_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_back_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_silu_back_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_reglu
static void ggml_compute_forward_reglu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_reglu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_reglu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_reglu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_reglu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_geglu
static void ggml_compute_forward_geglu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_geglu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_geglu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_geglu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_geglu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_swiglu
static void ggml_compute_forward_swiglu_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_swiglu_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
const float v = GGML_FP16_TO_FP32(x);
GGML_UNUSED(v);
assert(!isnan(v));
assert(!isinf(v));
}
#endif
}
}
static void ggml_compute_forward_swiglu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_swiglu_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_swiglu_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_float sum2 = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v*v);
}
float variance = sum2/ne00;
const float scale = 1.0f/sqrtf(variance + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
void ggml_compute_forward_norm(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_norm_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_group_rms_norm
static void ggml_compute_forward_rms_norm_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
}
const float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
// for (int i00 = 0; i00 < ne00; i00++) {
// y[i00] = x[i00];
// }
const float scale = 1.0f/sqrtf(mean + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
void ggml_compute_forward_rms_norm(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_compute_forward_rms_norm_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
// src1 is same shape as src0 => same indices
const int64_t i11 = i01;
const int64_t i12 = i02;
const int64_t i13 = i03;
const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
ggml_float sum_xx = 0.0;
ggml_float sum_xdz = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum_xx += (ggml_float)(x[i00] * x[i00]);
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
}
//const float mean = (float)(sum_xx)/ne00;
const float mean_eps = (float)(sum_xx)/ne00 + eps;
const float sum_eps = (float)(sum_xx) + eps*ne00;
//const float mean_xdz = (float)(sum_xdz)/ne00;
// we could cache rms from forward pass to improve performance.
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
//const float rms = sqrtf(mean_eps);
const float rrms = 1.0f / sqrtf(mean_eps);
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
{
// z = rms_norm(x)
//
// rms_norm(src1) =
// scale(
// src1,
// div(
// 1,
// sqrt(
// add(
// scale(
// sum(
// sqr(
// src1)),
// (1.0/N)),
// eps))));
// postorder:
// ## op args grad
// 00 param src1 grad[#00]
// 01 const 1
// 02 sqr (#00) grad[#02]
// 03 sum (#02) grad[#03]
// 04 const 1/N
// 05 scale (#03, #04) grad[#05]
// 06 const eps
// 07 add (#05, #06) grad[#07]
// 08 sqrt (#07) grad[#08]
// 09 div (#01,#08) grad[#09]
// 10 scale (#00,#09) grad[#10]
//
// backward pass, given grad[#10]
// #10: scale
// grad[#00] += scale(grad[#10],#09)
// grad[#09] += sum(mul(grad[#10],#00))
// #09: div
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
// #08: sqrt
// grad[#07] += mul(grad[#08], div(0.5, #08))
// #07: add
// grad[#05] += grad[#07]
// #05: scale
// grad[#03] += scale(grad[#05],#04)
// #03: sum
// grad[#02] += repeat(grad[#03], #02)
// #02:
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
//
// substitute and simplify:
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#02] = repeat(grad[#03], #02)
// grad[#02] = repeat(scale(grad[#05],#04), #02)
// grad[#02] = repeat(scale(grad[#07],#04), #02)
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
// a = b*c + d*e
// a = b*c*f/f + d*e*f/f
// a = (b*c*f + d*e*f)*(1/f)
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
// a = (b + d*e/c)*c
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
}
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// post-order:
// dx := x
// dx := scale(dx,-mean_xdz/mean_eps)
// dx := add(dx, dz)
// dx := scale(dx, rrms)
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
// dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
ggml_vec_cpy_f32 (ne00, dx, x);
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
ggml_vec_acc_f32 (ne00, dx, dz);
ggml_vec_scale_f32(ne00, dx, rrms);
}
}
}
}
void ggml_compute_forward_rms_norm_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_back_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_group_norm
static void ggml_compute_forward_group_norm_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
// TODO: optimize
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
int n_channels = src0->ne[2];
int n_groups = dst->op_params[0];
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
for (int i = ith; i < n_groups; i += nth) {
int start = i * n_channels_per_group;
int end = start + n_channels_per_group;
if (end > n_channels) {
end = n_channels;
}
int step = end - start;
for (int64_t i03 = 0; i03 < ne03; i03++) {
ggml_float sum = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sumr += (ggml_float)x[i00];
}
sum += sumr;
}
}
const float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_float sumr = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sumr += (ggml_float)(v * v);
}
sum2 += sumr;
}
}
const float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
}
void ggml_compute_forward_group_norm(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_group_norm_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_l2_norm
static void ggml_compute_forward_l2_norm_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
}
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
void ggml_compute_forward_l2_norm(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_l2_norm_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_out_prod
static void ggml_compute_forward_out_prod_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne2 % ne02 == 0);
GGML_ASSERT(ne3 % ne03 == 0);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
if (ith == 0) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
}
ggml_barrier(params->threadpool);
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
// parallelize by last three dimensions
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
// block-tiling attempt
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
const int64_t blck_1 = 16;
// dps == dst per src0, used for group query attention
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
const int64_t bir1 = MIN(bir + blck_1, ir1);
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
const int64_t bne01 = MIN(bi01 + blck_0, ne01);
for (int64_t ir = bir; ir < bir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2 / dps2;
const int64_t i03 = i3 / dps3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
#if GGML_VEC_MAD_UNROLL > 2
const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
}
for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#else
for (int64_t i01 = bi01; i01 < bne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}
#endif
}
}
}
}
static void ggml_compute_forward_out_prod_q_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 dim0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst dim0 cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
if (ith == 0) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
}
ggml_barrier(params->threadpool);
// parallelize by last three dimensions
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int64_t ir = ir0; ir < ir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
dequantize_row_q(s0, wdata, ne0);
ggml_vec_mad_f32(ne0, d, wdata, *s1);
}
}
}
void ggml_compute_forward_out_prod(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_out_prod_q_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
GGML_ABORT("fatal error"); // todo
// ggml_compute_forward_out_prod_f16_f32(params, dst);
}
case GGML_TYPE_F32:
{
ggml_compute_forward_out_prod_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_scale
static void ggml_compute_forward_scale_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const size_t nb01 = src0->nb[1];
const size_t nb1 = dst->nb[1];
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
}
}
void ggml_compute_forward_scale(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_scale_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_set
static void ggml_compute_forward_set_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during set
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
if (params->ith == 0) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during set
const size_t nb0 = ggml_element_size(src0);
const int im0 = (ne10 == 0 ? 0 : ne10-1);
const int im1 = (ne11 == 0 ? 0 : ne11-1);
const int im2 = (ne12 == 0 ? 0 : ne12-1);
const int im3 = (ne13 == 0 ? 0 : ne13-1);
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
}
}
static void ggml_compute_forward_set_i32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during set
// nb0 is implicitly element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace) {
if (params->ith == 0) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
// src0 and dst as viewed during set
const size_t nb0 = ggml_element_size(src0);
const int im0 = (ne10 == 0 ? 0 : ne10-1);
const int im1 = (ne11 == 0 ? 0 : ne11-1);
const int im2 = (ne12 == 0 ? 0 : ne12-1);
const int im3 = (ne13 == 0 ? 0 : ne13-1);
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
GGML_ASSERT(nb10 == sizeof(int32_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
ggml_vec_cpy_i32(nc,
(int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
}
}
void ggml_compute_forward_set(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_set_f32(params, dst);
} break;
case GGML_TYPE_I32:
{
ggml_compute_forward_set_i32(params, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_cpy
void ggml_compute_forward_cpy(
const ggml_compute_params * params,
ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
}
// ggml_compute_forward_cont
void ggml_compute_forward_cont(
const ggml_compute_params * params,
ggml_tensor * dst) {
ggml_compute_forward_dup(params, dst);
}
// ggml_compute_forward_reshape
void ggml_compute_forward_reshape(
const ggml_compute_params * params,
ggml_tensor * dst) {
// NOP
GGML_UNUSED(params);
GGML_UNUSED(dst);
}
// ggml_compute_forward_view
void ggml_compute_forward_view(
const ggml_compute_params * params,
ggml_tensor * dst) {
// NOP
GGML_UNUSED(params);
GGML_UNUSED(dst);
}
// ggml_compute_forward_permute
void ggml_compute_forward_permute(
const ggml_compute_params * params,
ggml_tensor * dst) {
// NOP
GGML_UNUSED(params);
GGML_UNUSED(dst);
}
// ggml_compute_forward_transpose
void ggml_compute_forward_transpose(
const ggml_compute_params * params,
ggml_tensor * dst) {
// NOP
GGML_UNUSED(params);
GGML_UNUSED(dst);
}
// ggml_compute_forward_get_rows
static void ggml_compute_forward_get_rows_q(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
const ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == ggml_type_size(type));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
GGML_ASSERT(i01 >= 0 && i01 < ne01);
dequantize_row_q(
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
static void ggml_compute_forward_get_rows_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_fp16_t));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
GGML_ASSERT(i01 >= 0 && i01 < ne01);
ggml_cpu_fp16_to_fp32(
(const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
static void ggml_compute_forward_get_rows_bf16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(ggml_bf16_t));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
GGML_ASSERT(i01 >= 0 && i01 < ne01);
ggml_cpu_bf16_to_fp32(
(const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
}
}
static void ggml_compute_forward_get_rows_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
assert(ne0 == nc);
assert(ne02 == ne11);
assert(nb00 == sizeof(float));
assert(ggml_nrows(dst) == nr);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i/(ne11*ne10);
const int64_t i11 = (i - i12*ne11*ne10)/ne10;
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
GGML_ASSERT(i01 >= 0 && i01 < ne01);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
}
}
void ggml_compute_forward_get_rows(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
{
ggml_compute_forward_get_rows_q(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, dst);
} break;
case GGML_TYPE_BF16:
{
ggml_compute_forward_get_rows_bf16(params, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
ggml_compute_forward_get_rows_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
static void ggml_compute_forward_set_rows_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t nc = ne00;
const int64_t nr = ne01;
assert(ne0 == nc);
assert(ne2 == ne02);
assert(ne3 == ne03);
assert(src0->type == GGML_TYPE_F32);
assert(ne02 % ne11 == 0);
assert(ne03 % ne12 == 0);
const int ith = params->ith;
const int nth = params->nth;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = std::min(ir0 + dr, nr);
ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
for (int64_t i03 = 0; i03 < ne03; ++i03) {
for (int64_t i02 = 0; i02 < ne02; ++i02) {
for (int64_t i = ir0; i < ir1; ++i) {
const int64_t i12 = i03%ne12;
const int64_t i11 = i02%ne11;
const int64_t i10 = i;
const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
GGML_ASSERT(i1 >= 0 && i1 < ne1);
from_float(
(const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
}
}
}
}
void ggml_compute_forward_set_rows(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_set_rows_f32(params, dst);
} break;
default:
{
GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
}
}
}
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back_f32_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
if (params->ith != 0) {
return;
}
GGML_ASSERT(ggml_is_contiguous(dst));
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
memset(dst->data, 0, ggml_nbytes(dst));
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
if (params->ith != 0) {
return;
}
GGML_ASSERT(ggml_is_contiguous(dst));
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
memset(dst->data, 0, ggml_nbytes(dst));
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) src0->data + i*src0->nb[1]));
}
}
void ggml_compute_forward_get_rows_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_back_f32_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_back_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_diag
static void ggml_compute_forward_diag_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
if (params->ith != 0) {
return;
}
// TODO: handle transposed/permuted matrices
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(ne00 == ne0);
GGML_ASSERT(ne00 == ne1);
GGML_ASSERT(ne01 == 1);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne3);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = 0; i2 < ne2; i2++) {
for (int i1 = 0; i1 < ne1; i1++) {
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
for (int i0 = 0; i0 < i1; i0++) {
d[i0] = 0;
}
d[i1] = s[i1];
for (int i0 = i1+1; i0 < ne0; i0++) {
d[i0] = 0;
}
}
}
}
}
void ggml_compute_forward_diag(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_diag_mask_inf
static void ggml_compute_forward_diag_mask_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const float value) {
const ggml_tensor * src0 = dst->src[0];
const int ith = params->ith;
const int nth = params->nth;
const int n_past = ((int32_t *) dst->op_params)[0];
const bool inplace = src0->data == dst->data;
GGML_ASSERT(n_past >= 0);
if (!inplace) {
if (ith == 0) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
}
// TODO: handle transposed/permuted matrices
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const int nr = src0->ne[1];
const int nz = n/nr;
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int k = 0; k < nz; k++) {
for (int j = ith; j < nr; j += nth) {
for (int i = n_past; i < nc; i++) {
if (i > n_past + j) {
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
}
}
}
}
}
void ggml_compute_forward_diag_mask_inf(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
void ggml_compute_forward_diag_mask_zero(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, dst, 0);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_soft_max
static void ggml_compute_forward_soft_max_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int64_t nb11 = src1 ? src1->nb[1] : 1;
const int64_t nb12 = src1 ? src1->nb[2] : 1;
const int64_t nb13 = src1 ? src1->nb[3] : 1;
const int64_t ne12 = src1 ? src1->ne[2] : 1;
const int64_t ne13 = src1 ? src1->ne[3] : 1;
// TODO: is this supposed to be ceil instead of floor?
// https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
const uint32_t n_head = ne02;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const int64_t i11 = i01;
const int64_t i12 = i02%ne12;
const int64_t i13 = i03%ne13;
// ALiBi
const uint32_t h = i02; // head
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
// broadcast the mask across rows
ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
ggml_vec_cpy_f32 (ne00, wp, sp);
ggml_vec_scale_f32(ne00, wp, scale);
if (mp_f32) {
if (use_f16) {
for (int i = 0; i < ne00; ++i) {
wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
}
} else {
for (int i = 0; i < ne00; ++i) {
wp[i] += slope*mp_f32[i];
}
}
}
#ifndef NDEBUG
for (int i = 0; i < ne00; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(wp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(ne00, &max, wp);
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(ne00, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < ne00; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
}
}
void ggml_compute_forward_soft_max(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_soft_max_ext_back
static void ggml_compute_forward_soft_max_ext_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src1, dst));
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
GGML_ASSERT(max_bias == 0.0f);
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(dy[i]));
assert(!isnan(y[i]));
}
#endif
// Jii = yi - yi*yi
// Jij = -yi*yj
// J = diag(y)-y.T*y
// dx = J * dy
// dxk = sum_i(Jki * dyi)
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
// dxk = -yk * dot(y, dy) + yk*dyk
// dxk = yk * (- dot(y, dy) + dyk)
// dxk = yk * (dyk - dot(y, dy))
//
// post-order:
// dot_y_dy := dot(y, dy)
// dx := dy
// dx := dx - dot_y_dy
// dx := dx * y
// linear runtime, no additional memory
float dot_y_dy = 0;
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
ggml_vec_scale_f32(nc, dx, scale);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dx[i]));
assert(!isinf(dx[i]));
}
#endif
}
}
void ggml_compute_forward_soft_max_ext_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_ext_back_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_clamp
static void ggml_compute_forward_clamp_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
float min;
float max;
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
for (int j = ith; j < n; j += nth) {
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
}
}
}
static void ggml_compute_forward_clamp_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
float min;
float max;
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
for (int j = ith; j < n; j += nth) {
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
}
}
}
void ggml_compute_forward_clamp(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_clamp_f32(params, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_clamp_f16(params, dst);
} break;
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_Q8_K:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_I64:
case GGML_TYPE_F64:
case GGML_TYPE_COUNT:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_rope
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
return 1 - MIN(1, MAX(0, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
*cos_theta = cosf(theta) * mscale;
*sin_theta = sinf(theta) * mscale;
}
static void ggml_rope_cache_init(
float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale) {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
float theta = theta_base;
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
rope_yarn(
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
);
cache[i0 + 1] *= sin_sign;
theta *= theta_scale;
}
}
static void ggml_mrope_cache_init(
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
float * cache, float sin_sign, float theta_scale) {
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
float theta_t = theta_base_t;
float theta_h = theta_base_h;
float theta_w = theta_base_w;
float theta_e = theta_base_e; // extra position id for vision encoder
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
int sec_w = sections[1] + sections[0];
int sec_e = sections[2] + sec_w;
GGML_ASSERT(sect_dims <= ne0);
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
int sector = (i0 / 2) % sect_dims;
if (indep_sects) {
// compute theta independently for each dim sections
// (i.e. reset corresponding theta when `i0` go from one section to another)
if (sector == 0) {
theta_t = theta_base_t;
}
else if (sector == sections[0]) {
theta_h = theta_base_h;;
}
else if (sector == sec_w) {
theta_w = theta_base_w;
}
else if (sector == sec_e) {
theta_e = theta_base_e;
}
}
float theta = theta_t;
if (sector >= sections[0] && sector < sec_w) {
theta = theta_h;
}
else if (sector >= sec_w && sector < sec_w + sections[2]) {
theta = theta_w;
}
else if (sector >= sec_w + sections[2]) {
theta = theta_e;
}
rope_yarn(
theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
);
cache[i0 + 1] *= sin_sign;
theta_t *= theta_scale;
theta_w *= theta_scale;
theta_h *= theta_scale;
theta_e *= theta_scale;
}
}
static void ggml_compute_forward_rope_f32(
const ggml_compute_params * params,
ggml_tensor * dst,
const bool forward) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
int sections[4];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
GGML_TENSOR_UNARY_OP_LOCALS
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb00 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne0/2);
}
const float * freq_factors = NULL;
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_mrope) {
const int64_t p = pos[i2];
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
else {
const int64_t p_t = pos[i2];
const int64_t p_h = pos[i2 + ne2];
const int64_t p_w = pos[i2 + ne2 * 2];
const int64_t p_e = pos[i2 + ne2 * 3];
ggml_mrope_cache_init(
p_t, p_h, p_w, p_e, sections, is_vision,
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
if (ir++ < ir0) continue;
if (ir > ir1) break;
if (is_neox || is_mrope) {
if (is_vision){
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
}
} else {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
}
}
} else {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
}
if (is_vision) {
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
}
} else {
// fill the remain channels with data from src tensor
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
}
}
// TODO: deduplicate f16/f32 code
static void ggml_compute_forward_rope_f16(
const ggml_compute_params * params,
ggml_tensor * dst,
const bool forward) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
int sections[4];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
GGML_TENSOR_UNARY_OP_LOCALS
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne0/2);
}
const float * freq_factors = NULL;
if (src2 != NULL) {
GGML_ASSERT(src2->type == GGML_TYPE_F32);
GGML_ASSERT(src2->ne[0] >= n_dims / 2);
freq_factors = (const float *) src2->data;
}
// backward process uses inverse rotation by cos and sin.
// cos and sin build a rotation matrix, where the inverse is the transpose.
// this essentially just switches the sign of sin.
const float sin_sign = forward ? 1.0f : -1.0f;
const int32_t * pos = (const int32_t *) src1->data;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
if (!is_mrope) {
const int64_t p = pos[i2];
ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
else {
const int64_t p_t = pos[i2];
const int64_t p_h = pos[i2 + ne2];
const int64_t p_w = pos[i2 + ne2 * 2];
const int64_t p_e = pos[i2 + ne2 * 3];
ggml_mrope_cache_init(
p_t, p_h, p_w, p_e, sections, is_vision,
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
}
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
if (is_neox || is_mrope) {
if (is_vision) {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
}
} else {
for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
}
if (is_vision) {
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const int64_t ic = i0/2;
const float cos_theta = cache[i0 + 0];
const float sin_theta = cache[i0 + 1];
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
}
}
}
void ggml_compute_forward_rope(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, true);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, true);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_rope_back
void ggml_compute_forward_rope_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, dst, false);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, dst, false);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_conv_transpose_1d
static void ggml_compute_forward_conv_transpose_1d_f16_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (ith == 0) {
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
// permute source data (src1) from (L x Cin) to (Cin x L)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
ggml_fp16_t * dst_data = wdata;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
// total rows in dst
const int nr = ne1;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne02, &v, 0,
(ggml_fp16_t *) wdata_src + i1n, 0,
(ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
}
}
}
}
static void ggml_compute_forward_conv_transpose_1d_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02;
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (ith == 0) {
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
{
float * const wdata = (float *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
float * dst_data = wdata + i01*ne00*ne02;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ne02 + i02] = src[i00];
}
}
}
}
// prepare source data (src1)
{
float * const wdata = (float *) params->wdata + nk;
float * dst_data = wdata;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne11 + i11] = src[i10];
}
}
}
// need to zero dst since we are accumulating into it
memset(dst->data, 0, ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
// total rows in dst
const int nr = ne1;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * const wdata = (float *) params->wdata + 0;
float * const wdata_src = wdata + nk;
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
float * wdata_kernel = wdata + i1*ne02*ne00;
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i10*ne11;
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f32(ne02, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i00*ne02, 0, 1);
dst_data[i10*s0 + i00] += v;
}
}
}
}
void ggml_compute_forward_conv_transpose_1d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_transpose_1d_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_im2col_f32
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
}
}
}
}
}
}
}
}
}
// ggml_compute_forward_im2col_f16
// src0: kernel [OC, IC, KH, KW]
// src1: image [N, IC, IH, IW]
// dst: result [N, OH, OW, IC*KH*KW]
static void ggml_compute_forward_im2col_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne13 : ne12;
const int64_t IC = is_2D ? ne12 : ne11;
const int64_t IH = is_2D ? ne11 : 1;
const int64_t IW = ne10;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;
int ofs0 = is_2D ? nb13 : nb12;
int ofs1 = is_2D ? nb12 : nb11;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
for (int64_t iow = 0; iow < OW; iow++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
// micro kernel
ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
for (int64_t ikw = 0; ikw < KW; ikw++) {
const int64_t iiw = iow*s0 + ikw*d0 - p0;
const int64_t iih = ioh*s1 + ikh*d1 - p1;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
} else {
dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
}
}
}
}
}
}
}
}
}
void ggml_compute_forward_im2col(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_im2col_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_im2col_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_im2col_back_f32
void ggml_compute_forward_im2col_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
const ggml_tensor * src1 = dst->src[1]; // convolution kernel
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int ith = params->ith;
const int nth = params->nth;
const int64_t N = is_2D ? ne3 : ne2;
const int64_t IC = is_2D ? ne2 : ne1;
const int64_t IH = is_2D ? ne1 : 1;
const int64_t IW = ne0;
const int64_t KH = is_2D ? ne11 : 1;
const int64_t KW = ne10;
const int64_t OH = is_2D ? ne02 : 1;
const int64_t OW = ne01;
int ofs0 = is_2D ? nb3 : nb2;
int ofs1 = is_2D ? nb2 : nb1;
GGML_ASSERT(nb0 == sizeof(float));
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
{
float * const wdata = (float *) dst->data;
for (int64_t in = 0; in < N; in++) {
for (int64_t iic = ith; iic < IC; iic += nth) {
for (int64_t iih = 0; iih < IH; iih++) {
for (int64_t iiw = 0; iiw < IW; iiw++) {
// micro kernel
float grad = 0.0f;
for (int64_t ikh = 0; ikh < KH; ikh++) {
for (int64_t ikw = 0; ikw < KW; ikw++) {
// For s0 > 1 some values were skipped over in the forward pass.
// These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
const int64_t tmpw = (iiw + p0 - ikw*d0);
if (tmpw % s0 != 0) {
continue;
}
const int64_t iow = tmpw / s0;
// Equivalent logic as above except for s1.
int64_t ioh;
if (is_2D) {
const int64_t tmph = iih + p1 - ikh*d1;
if (tmph % s1 != 0) {
continue;
}
ioh = tmph / s1;
} else {
ioh = 0;
}
if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
continue;
}
const float * const grad_in = (const float *) src0->data
+ (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
}
}
float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
dst_data[iih*IW + iiw] = grad;
}
}
}
}
}
}
static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
void * a, void * b, float * c) {
const ggml_type_traits * traits = ggml_get_type_traits(type);
struct ggml_tensor src1 = {};
src1.type = type;
src1.ne[0] = k;
src1.ne[1] = m;
src1.ne[2] = 1;
src1.ne[3] = 1;
src1.nb[0] = traits->type_size;
src1.nb[1] = k * traits->type_size;
src1.nb[2] = src1.nb[1];
src1.nb[3] = src1.nb[2];
src1.data = a;
struct ggml_tensor src0 = {};
src0.type = type;
src0.ne[0] = k;
src0.ne[1] = n;
src0.ne[2] = 1;
src0.ne[3] = 1;
src0.nb[0] = traits->type_size;
src0.nb[1] = k * traits->type_size;
src0.nb[2] = src0.nb[1];
src0.nb[3] = src0.nb[2];
src0.data = b;
struct ggml_tensor dst = {};
dst.ne[0] = n;
dst.ne[1] = m;
dst.ne[2] = 1;
dst.ne[3] = 1;
dst.nb[0] = sizeof(float);
dst.nb[1] = n * sizeof(float);
dst.nb[2] = dst.nb[1];
dst.nb[3] = dst.nb[2];
dst.data = c;
dst.src[0] = &src0;
dst.src[1] = &src1;
ggml_compute_forward_mul_mat(params, &dst);
}
// ggml_compute_forward_conv_2d
static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
const ggml_tensor * kernel, // [KW, KH, IC, OC]
const ggml_tensor * src, // [W, H, C, N]
ggml_tensor * dst, // [OW, OH, OC, N]
ggml_type kernel_type) {
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
GGML_ASSERT(kernel->type == kernel_type);
const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
const int32_t stride_x = dst->op_params[0];
const int32_t stride_y = dst->op_params[1];
const int32_t pad_x = dst->op_params[2];
const int32_t pad_y = dst->op_params[3];
const int32_t dilation_x = dst->op_params[4];
const int32_t dilation_y = dst->op_params[5];
const int64_t c_in = src->ne[2];
const int64_t c_out = kernel->ne[3];
GGML_ASSERT(c_in == kernel->ne[2]);
const int64_t src_w = src->ne[0];
const int64_t src_h = src->ne[1];
const int64_t knl_w = kernel->ne[0];
const int64_t knl_h = kernel->ne[1];
const int64_t dst_w = dst->ne[0];
const int64_t dst_h = dst->ne[1];
const float * src_data = (float *) src->data;
void * knl_data = kernel->data;
float * dst_data = (float *) dst->data;
const int64_t knl_n = knl_w * knl_h * c_in;
const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
const int64_t batch_size = params->wsize / space_per_patch;
const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
void * tmp = params->wdata;
for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
const int64_t patch_start_batch = batch_i * patches_per_batch;
const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
patch_total);
const int64_t patch_n = patch_end_batch - patch_start_batch;
const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
//im2col for a patch
for (int64_t p = patch_start; p < patch_end; ++p) {
const int64_t batch_n = p / (dst_w * dst_h);
const int64_t src_x = (p / dst_w) % dst_h;
const int64_t src_y = p % dst_w;
const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
for (int64_t ic = 0; ic < c_in; ++ic) {
for (int64_t ky = 0; ky < knl_h; ++ky) {
for (int64_t kx = 0; kx < knl_w; ++kx) {
const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
float src_val;
if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
src_val = 0.0f;
} else {
const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
src_val = *src_ptr;
}
char * element_ptr = dst_row + dst_idx * traits->type_size;
if (kernel_type == GGML_TYPE_F32) {
*(float *) element_ptr = src_val;
} else if (kernel_type == GGML_TYPE_F16) {
*(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
}
}
}
}
} // patches handled by this thread
ggml_barrier(params->threadpool);
float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
// GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
ggml_barrier(params->threadpool);
//permute back [OC, N, OH, OW] to [N, OC, OH, OW]
const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
const int64_t permute_start = params->ith * permute_per_thread;
const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
for (int64_t i = permute_start; i < permute_end; ++i) {
const int64_t p = patch_start_batch + i;
const int64_t batch_n = p / (dst_w * dst_h);
const int64_t dst_y = (p / dst_w) % dst_h;
const int64_t dst_x = p % dst_w;
for (int64_t oc = 0; oc < c_out; ++oc) {
const float value = gemm_output[i * c_out + oc];
float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
*dst_ptr = value;
}
}
}
}
void ggml_compute_forward_conv_2d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
}
// ggml_compute_forward_conv_transpose_2d
void ggml_compute_forward_conv_transpose_2d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02*ne03;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (ith == 0) {
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
}
}
}
}
}
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
for (int i12 = 0; i12 < ne12; i12++) {
for (int i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
for (int i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
}
}
}
}
memset(dst->data, 0, ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
const int32_t stride = ggml_get_op_params_i32(dst, 0);
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
float * dst_data = (float *)((char *) dst->data + i2*nb2);
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
for (int i11 = 0; i11 < ne11; i11++) {
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i11*ne10*ne12 + i10*ne12;
for (int i01 = 0; i01 < ne01; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne03, &v, 0,
wdata_src + i1n, 0,
wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
}
}
}
}
}
}
// ggml_compute_forward_conv_2d_dw
struct ggml_conv_2d_dw_params {
int64_t channels;
int64_t batch;
int64_t src_w;
int64_t src_h;
int64_t dst_w;
int64_t dst_h;
int64_t knl_w;
int64_t knl_h;
int stride_x;
int stride_y;
int pad_x;
int pad_y;
int dilation_x;
int dilation_y;
};
static void ggml_compute_forward_conv_2d_dw_cwhn(
const ggml_compute_params * params,
const ggml_tensor * src,
const ggml_tensor * kernel,
ggml_tensor * dst,
const ggml_conv_2d_dw_params & p) {
const int64_t c = p.channels;
const float * knl_data = (const float *)kernel->data;
const int64_t rows_total = p.dst_h * p.batch;
const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
const int64_t row_start = params->ith * rows_per_thread;
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
#ifdef GGML_SIMD
const int64_t pkg_size = GGML_F32_EPR;
const int64_t pkg_count = c / pkg_size;
const int64_t c_pkg_end = pkg_count * pkg_size;
#else
const int64_t c_pkg_end = 0;
#endif
for (int64_t row = row_start; row < row_end; ++row) {
const int64_t dst_y = row % p.dst_h;
const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
#ifdef GGML_SIMD
// Vectorized loop
for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
sum = GGML_F32_VEC_FMA(sum, k, s);
}
}
GGML_F32_VEC_STORE(dst_data + c_i, sum);
}
#endif
// Scalar loop
for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
float sum = 0.0f;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = src_y_base + knl_y * p.dilation_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = src_x_base + knl_x * p.dilation_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
* src_data[(src_y * p.src_w + src_x) * c + c_i];
}
}
dst_data[c_i] = sum;
}
}
}
}
static void ggml_compute_forward_conv_2d_dw_whcn(
const ggml_compute_params * params,
const ggml_tensor * src,
const ggml_tensor * kernel,
ggml_tensor * dst,
const ggml_conv_2d_dw_params & p) {
const int64_t n = p.channels * p.batch;
const int64_t per_thread = (n + params->nth - 1) / params->nth;
const int64_t start = params->ith * per_thread;
const int64_t end = MIN(start + per_thread, n);
for (int64_t i = start; i < end; ++i) {
const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
float sum = 0.0f;
for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y < 0 || src_y >= p.src_h) {
continue;
}
for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x < 0 || src_x >= p.src_w) {
continue;
}
sum += knl_data[knl_y * p.knl_w + knl_x]
* src_data[src_y * p.src_w + src_x];
}
}
dst_data[dst_y * p.dst_w + dst_x] = sum;
}
}
}
}
void ggml_compute_forward_conv_2d_dw(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * src = dst->src[1];
ggml_conv_2d_dw_params p;
p.channels = src->ne[2];
p.batch = src->ne[3];
p.src_w = src->ne[0];
p.src_h = src->ne[1];
p.dst_w = dst->ne[0];
p.dst_h = dst->ne[1];
p.knl_w = kernel->ne[0];
p.knl_h = kernel->ne[1];
p.stride_x = dst->op_params[0];
p.stride_y = dst->op_params[1];
p.pad_x = dst->op_params[2];
p.pad_y = dst->op_params[3];
p.dilation_x = dst->op_params[4];
p.dilation_y = dst->op_params[5];
GGML_ASSERT(kernel->ne[3] == p.channels);
GGML_ASSERT(dst->ne[3] == p.batch);
if (ggml_is_contiguous(src)) {
ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
} else if (ggml_is_contiguous_channels(src)) {
// kernel should also have channels most contiguous in memory
GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
} else {
GGML_ABORT("non-contiguous memory layout not supported");
}
}
// ggml_compute_forward_pool_1d_sk_p0
static void ggml_compute_forward_pool_1d_sk_p0(
const ggml_compute_params * params,
const ggml_op_pool op,
const int k,
ggml_tensor * dst) {
const ggml_tensor * src = dst->src[0];
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
if (params->ith != 0) {
return;
}
const char * cdata = (const char *)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
float * drow = (float *)dst->data;
const int64_t rs = dst->ne[0];
while (cdata < data_end) {
const void * srow = (const void *)cdata;
int j = 0;
for (int64_t i = 0; i < rs; ++i) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] = 0; break;
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
for (int ki = 0; ki < k; ++ki) {
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
switch (op) {
case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
++j;
}
switch (op) {
case GGML_OP_POOL_AVG: drow[i] /= k; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
}
cdata += src->nb[1];
drow += rs;
}
}
// ggml_compute_forward_pool_1d
void ggml_compute_forward_pool_1d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const int32_t * opts = (const int32_t *)dst->op_params;
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
const int k0 = opts[1];
const int s0 = opts[2];
const int p0 = opts[3];
GGML_ASSERT(p0 == 0); // padding not supported
GGML_ASSERT(k0 == s0); // only s = k supported
ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
}
// ggml_compute_forward_pool_2d
void ggml_compute_forward_pool_2d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src = dst->src[0];
assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
if (params->ith != 0) {
return;
}
const int32_t * opts = (const int32_t *)dst->op_params;
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
const char * cdata = (const char*)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
const int64_t px = dst->ne[0];
const int64_t py = dst->ne[1];
const int64_t pa = px * py;
float * dplane = (float *)dst->data;
const int ka = k0 * k1;
const int offset0 = -p0;
const int offset1 = -p1;
while (cdata < data_end) {
for (int oy = 0; oy < py; ++oy) {
float * const drow = dplane + oy * px;
for (int ox = 0; ox < px; ++ox) {
float * const out = drow + ox;
switch (op) {
case GGML_OP_POOL_AVG: *out = 0; break;
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
const int ix = offset0 + ox * s0;
const int iy = offset1 + oy * s1;
for (int ky = 0; ky < k1; ++ky) {
if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
if (j < 0 || j >= src->ne[0]) continue;
const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
switch (op) {
case GGML_OP_POOL_AVG: *out += srow_j; break;
case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
}
}
switch (op) {
case GGML_OP_POOL_AVG: *out /= ka; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
}
}
}
cdata += src->nb[2];
dplane += pa;
}
}
// ggml_compute_forward_pool_2d_back
void ggml_compute_forward_pool_2d_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src = dst->src[0];
const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
if (params->ith != 0) {
return;
}
const int32_t * opts = (const int32_t *)dst->op_params;
ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
char * cdata = (char *) dst->data;
const char * cdataf = (const char *) dstf->data;
const char * const data_end = cdata + ggml_nbytes(dst);
GGML_ASSERT(params->ith == 0);
memset(cdata, 0, ggml_nbytes(dst));
const int64_t px = src->ne[0];
const int64_t py = src->ne[1];
const int64_t pa = px * py;
const float * splane = (const float *) src->data;
const int ka = k0 * k1;
const int offset0 = -p0;
const int offset1 = -p1;
while (cdata < data_end) {
for (int oy = 0; oy < py; ++oy) {
const float * const srow = splane + oy * px;
for (int ox = 0; ox < px; ++ox) {
const float grad0 = srow[ox];
const int ix = offset0 + ox * s0;
const int iy = offset1 + oy * s1;
if (op == GGML_OP_POOL_MAX) {
float maxval = -FLT_MAX;
int kxmax = -1;
int kymax = -1;
for (int ky = 0; ky < k1; ++ky) {
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
continue;
}
const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
if (j < 0 || j >= dst->ne[0]) {
continue;
}
const float val = dst->type == GGML_TYPE_F32 ?
((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
if (val <= maxval) {
continue;
}
maxval = val;
kxmax = kx;
kymax = ky;
}
}
if (kxmax == -1 || kymax == -1) {
continue;
}
void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
const int j = ix + kxmax;
if (dst->type == GGML_TYPE_F32) {
((float *) drow)[j] += grad0;
} else {
((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
}
} else if (op == GGML_OP_POOL_AVG) {
const float grad = grad0 / ka;
for (int ky = 0; ky < k1; ++ky) {
if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
continue;
}
void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
if (j < 0 || j >= dst->ne[0]) {
continue;
}
if (dst->type == GGML_TYPE_F32) {
((float *) drow)[j] += grad;
} else {
((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
}
}
}
} else {
GGML_ASSERT(false);
}
}
}
cdata += dst->nb[2];
cdataf += dst->nb[2];
splane += pa;
}
}
// ggml_compute_forward_upscale
static void ggml_compute_forward_upscale_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float sf0 = (float)ne0/src0->ne[0];
float sf1 = (float)ne1/src0->ne[1];
float sf2 = (float)ne2/src0->ne[2];
float sf3 = (float)ne3/src0->ne[3];
const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
if (mode == GGML_SCALE_MODE_NEAREST) {
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const int64_t i01 = i1 / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const int64_t i00 = i0 / sf0;
const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
float pixel_offset = 0.5f;
if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
pixel_offset = 0.0f;
sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
}
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
int64_t y0 = (int64_t)floorf(y);
int64_t y1 = y0 + 1;
y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
float dy = y - (float)y0;
dy = std::max(0.0f, std::min(dy, 1.0f));
for (int64_t i0 = 0; i0 < ne0; i0++) {
const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
int64_t x0 = (int64_t)floorf(x);
int64_t x1 = x0 + 1;
x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
float dx = x - (float)x0;
dx = std::max(0.0f, std::min(dx, 1.0f));
// fetch the four surrounding pixel values and interpolate
const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y_dst = val;
}
}
}
}
} else {
GGML_ABORT("unsupported upscale mode");
}
}
void ggml_compute_forward_upscale(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_upscale_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_pad
static void ggml_compute_forward_pad_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
float * dst_ptr = (float *) dst->data;
// TODO: optimize
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
for (int64_t i3 = 0; i3 < ne3; ++i3) {
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
dst_ptr[dst_idx] = *src_ptr;
} else {
dst_ptr[dst_idx] = 0;
}
}
}
}
}
}
void ggml_compute_forward_pad(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_pad_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_pad_reflect_1d
void ggml_compute_forward_pad_reflect_1d(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int ith = params->ith;
const int nth = params->nth;
const int32_t * opts = (const int32_t *) dst->op_params;
const int p0 = opts[0];
const int p1 = opts[1];
GGML_TENSOR_UNARY_OP_LOCALS
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
}
}
}
}
// ggml_compute_forward_roll
static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
if (i < 0) {
return i + ne;
} else if (i >= ne) {
return i - ne;
}
return i;
}
static void ggml_compute_forward_roll_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src_data = (const float *) src0->data;
float * dst_data = (float *) dst->data;
GGML_TENSOR_UNARY_OP_LOCALS
const int s0 = ggml_get_op_params_i32(dst, 0);
const int s1 = ggml_get_op_params_i32(dst, 1);
const int s2 = ggml_get_op_params_i32(dst, 2);
const int s3 = ggml_get_op_params_i32(dst, 3);
const int64_t total = ne1 * ne2 * ne3;
const int64_t per_thread = (total + params->nth) / params->nth;
const int64_t start = params->ith * per_thread;
const int64_t end = std::min(start + per_thread, total);
for (int64_t i = start; i < end; ++i) {
const int64_t i1 = i % ne1;
const int64_t i2 = (i / ne1) % ne2;
const int64_t i3 = i / (ne2 * ne1);
float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
const int64_t s = ggml_wrap_index(-s0, ne00);
const int64_t n = ne00 - s;
ggml_vec_cpy_f32(n, dst_row, src_row + s);
ggml_vec_cpy_f32(s, dst_row + n, src_row);
}
}
void ggml_compute_forward_roll(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_roll_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
GGML_ASSERT(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const float start = ggml_get_op_params_f32(dst, 0);
const float stop = ggml_get_op_params_f32(dst, 1);
const float step = ggml_get_op_params_f32(dst, 2);
const int64_t steps = (int64_t) ceilf((stop - start) / step);
GGML_ASSERT(ggml_nelements(dst) == steps);
for (int64_t i = ith; i < steps; i+= nth) {
float value = start + step * i;
((float *)dst->data)[i] = value;
}
}
void ggml_compute_forward_arange(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_arange_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_compute_forward_timestep_embedding_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS
const int dim = ggml_get_op_params_i32(dst, 0);
const int max_period = ggml_get_op_params_i32(dst, 1);
int half = dim / 2;
for (int64_t i = 0; i < ne00; i++) {
float * embed_data = (float *)((char *) dst->data + i*nb1);
for (int64_t j = ith; j < half; j += nth) {
float timestep = ((float *)src0->data)[i];
float freq = (float)expf(-logf(max_period) * j / half);
float arg = timestep * freq;
embed_data[j] = cosf(arg);
embed_data[j + half] = sinf(arg);
}
if (dim % 2 != 0 && ith == 0) {
embed_data[dim] = 0.f;
}
}
}
void ggml_compute_forward_timestep_embedding(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_timestep_embedding_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_argsort
static void ggml_compute_forward_argsort_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb0 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int64_t nr = ggml_nrows(src0);
ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
for (int64_t i = ith; i < nr; i += nth) {
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
const float * src_data = (float *)((char *) src0->data + i*nb01);
for (int64_t j = 0; j < ne0; j++) {
dst_data[j] = j;
}
// C doesn't have a functional sort, so we do a bubble sort instead
for (int64_t j = 0; j < ne0; j++) {
for (int64_t k = j + 1; k < ne0; k++) {
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
int32_t tmp = dst_data[j];
dst_data[j] = dst_data[k];
dst_data[k] = tmp;
}
}
}
}
}
void ggml_compute_forward_argsort(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argsort_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t DK = nek0;
const int64_t DV = nev0;
const int64_t N = neq1;
GGML_ASSERT(ne0 == DV);
GGML_ASSERT(ne2 == N);
// input tensor rows must be contiguous
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
GGML_ASSERT(neq0 == DK);
GGML_ASSERT(nek0 == DK);
GGML_ASSERT(nev0 == DV);
GGML_ASSERT(neq1 == N);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t rk2 = neq2/nek2;
const int64_t rk3 = neq3/nek3;
const int64_t rv2 = neq2/nev2;
const int64_t rv3 = neq3/nev3;
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
const uint32_t n_head = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
const uint32_t h = iq2; // head index
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
float S = 0.0f; // sum
float M = -INFINITY; // maximum KQ value
float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
if (v->type == GGML_TYPE_F16) {
memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
} else {
memset(VKQ32, 0, DV*sizeof(float));
}
const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq3%mask->ne[2])*mask->nb[2]) : NULL;
// k indices
const int ik3 = iq3 / rk3;
const int ik2 = iq2 / rk2;
// v indices
const int iv3 = iq3 / rv3;
const int iv2 = iq2 / rv2;
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
q_to_vec_dot(pq, Q_q, DK);
// online softmax / attention
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
for (int64_t ic = 0; ic < nek1; ++ic) {
const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
if (mv == -INFINITY) {
continue;
}
float s; // KQ value
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
s = s*scale; // scale KQ value
if (logit_softcap != 0.0f) {
s = logit_softcap*tanhf(s);
}
s += mv; // apply mask
const float Mold = M;
float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
float vs = 1.0f; // post-softmax KQ value, expf(s - M)
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
if (v->type == GGML_TYPE_F16) {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);
// V = V*expf(Mold - M)
ggml_vec_scale_f16(DV, VKQ16, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}
// V += v*expf(s - M)
ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
} else {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);
// V = V*expf(Mold - M)
ggml_vec_scale_f32(DV, VKQ32, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}
// V += v*expf(s - M)
if (v_to_float) {
v_to_float(v_data, V32, DV);
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
} else {
// V is F32
ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
}
}
S = S*ms + vs; // scale and increment sum with partial sum
}
if (v->type == GGML_TYPE_F16) {
for (int64_t d = 0; d < DV; ++d) {
VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
}
}
// V /= S
const float S_inv = 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// original
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
}
}
void ggml_compute_forward_flash_attn_ext(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
switch (dst->op_params[3]) {
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
// uses F32 accumulators
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_flash_attn_back
static void ggml_compute_forward_flash_attn_back_f32(
const ggml_compute_params * params,
const bool masked,
ggml_tensor * dst) {
const ggml_tensor * q = dst->src[0];
const ggml_tensor * k = dst->src[1];
const ggml_tensor * v = dst->src[2];
const ggml_tensor * d = dst->src[3];
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
const int mxDM = MAX(D, Mup);
// GGML_ASSERT(ne0 == D);
// GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned1 == N);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (ith == 0) {
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
}
ggml_barrier(params->threadpool);
const int64_t elem_q = ggml_nelements(q);
const int64_t elem_k = ggml_nelements(k);
ggml_type result_type = dst->type;
GGML_ASSERT(ggml_blck_size(result_type) == 1);
const size_t tsize = ggml_type_size(result_type);
const size_t offs_q = 0;
const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
void * grad_q = (char *) dst->data;
void * grad_k = (char *) dst->data + offs_k;
void * grad_v = (char *) dst->data + offs_v;
const size_t nbgq1 = nb0*neq0;
const size_t nbgq2 = nb0*neq0*neq1;
const size_t nbgq3 = nb0*neq0*neq1*neq2;
const size_t nbgk1 = nb0*nek0;
const size_t nbgk2 = nb0*nek0*nek1;
const size_t nbgk3 = nb0*nek0*nek1*neq2;
const size_t nbgv1 = nb0*nev0;
const size_t nbgv2 = nb0*nev0*nev1;
const size_t nbgv3 = nb0*nev0*nev1*neq2;
// parallelize by k rows using ggml_vec_dot_f32
// total rows in k
const int nr = nek2*nek3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
// how often k2 (and v2) is repeated in q2
int nrep = neq2/nek2;
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int ik3 = ir/(nek2);
const int ik2 = ir - ik3*nek2;
const int iq3 = ik3;
const int id3 = ik3;
const int iv3 = ik3;
const int iv2 = ik2;
for (int irep = 0; irep < nrep; ++irep) {
const int iq2 = ik2 + irep*nek2;
const int id2 = iq2;
// (ik2 + irep*nek2) % nek2 == ik2
for (int iq1 = 0; iq1 < neq1; ++iq1) {
const int id1 = iq1;
// not sure about CACHE_LINE_SIZE_F32..
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SM values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
vvexpf(SM, SM, &Mup);
ggml_vec_sum_f32(Mup, &sum, SM);
#else
sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, SM, sum);
}
// step-by-step explanation
{
// forward-process shape grads from backward process
// parallel_for ik2,ik3:
// for irep:
// iq2 = ik2 + irep*nek2
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
// for iq1:
// kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
// vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
// S0 = -Inf [D,1,1,1]
// ~S1[i] = dot(kcur[:D,i], qcur)
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
// ~S5[i] = dot(vcur[:,i], S4)
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
// dst backward-/ grad[dst] = d
//
// output gradients with their dependencies:
//
// grad[kcur] = grad[S1].T @ qcur
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S4] = grad[S5] @ vcur
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[qcur] = grad[S1] @ kcur
// grad[vcur] = grad[S5].T @ S4
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// in post-order:
//
// S1 = qcur @ kcur.T
// S2 = S1 * scale
// S3 = diag_mask_inf(S2, P)
// S4 = softmax(S3)
// grad[S4] = d[:D,id1,id2,id3] @ vcur
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[qcur] = grad[S1] @ kcur
// grad[kcur] = grad[S1].T @ qcur
// grad[vcur] = d[:D,id1,id2,id3].T @ S4
//
// using less variables (SM=S4):
//
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
// SM = softmax(S)
// S = d[:D,iq1,iq2,iq3] @ vcur
// dot_SM_gradSM = dot(SM, S)
// S = SM * (S - dot(SM, S))
// S = diag_mask_zero(S, P) * scale
//
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[k][:D,:M,ik2,ik3] += S.T @ qcur
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
}
// S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
// for ic:
// S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
// exclude known future zero S[..] values from operation
ggml_vec_set_f32(masked_begin, S, 0);
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
S,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
// S = SM * (S - dot(SM, S))
float dot_SM_gradSM = 0;
ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
ggml_vec_mul_f32 (masked_begin, S, S, SM);
// S = diag_mask_zero(S, P) * scale
// already done by above ggml_vec_set_f32
// exclude known zero S[..] values from operation
ggml_vec_scale_f32(masked_begin, S, scale);
// S shape [M,1]
// SM shape [M,1]
// kcur shape [D,M]
// qcur shape [D,1]
// vcur shape [M,D]
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
// for ic:
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
(float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
S[ic]);
}
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
// for ic:
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
// exclude known zero S[..] values from loop
for (int64_t ic = 0; ic < masked_begin; ++ic) {
ggml_vec_mad_f32(D,
(float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
S[ic]);
}
// grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
// for ic:
// grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
// grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
// exclude known zero SM[..] values from mad
for (int64_t ic = 0; ic < D; ++ic) {
ggml_vec_mad_f32(masked_begin,
(float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
SM,
*(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
}
}
}
}
}
void ggml_compute_forward_flash_attn_back(
const ggml_compute_params * params,
const bool masked,
ggml_tensor * dst) {
const ggml_tensor * q = dst->src[0];
switch (q->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_ssm_conv
static void ggml_compute_forward_ssm_conv_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // conv_x
const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1->ne[0]; // d_conv
const int ncs = src0->ne[0]; // d_conv - 1 + n_t
const int nr = src0->ne[1]; // d_inner
const int n_t = dst->ne[1]; // tokens per sequence
const int n_s = dst->ne[2]; // number of sequences in the batch
GGML_ASSERT( dst->ne[0] == nr);
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
// {d_conv - 1 + n_t, d_inner, n_seqs}
// sliding window
const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
// TODO: transpose the output for smaller strides for big batches?
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// rowwise dot product
// NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
float sumf = 0.0f;
// d_conv
for (int i0 = 0; i0 < nc; ++i0) {
sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
}
x[i1] = sumf;
}
}
}
}
void ggml_compute_forward_ssm_conv(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_conv_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_ssm_scan
static void ggml_compute_forward_ssm_scan_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // s
const ggml_tensor * src1 = dst->src[1]; // x
const ggml_tensor * src2 = dst->src[2]; // dt
const ggml_tensor * src3 = dst->src[3]; // A
const ggml_tensor * src4 = dst->src[4]; // B
const ggml_tensor * src5 = dst->src[5]; // C
const int ith = params->ith;
const int nth = params->nth;
const int64_t nc = src0->ne[0]; // d_state
const int64_t nr = src0->ne[1]; // d_inner
const int64_t n_t = src1->ne[1]; // number of tokens per sequence
const int64_t n_s = src0->ne[2]; // number of sequences in the batch
GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
GGML_ASSERT(src2->nb[0] == sizeof(float));
GGML_ASSERT(src3->nb[0] == sizeof(float));
GGML_ASSERT(src4->nb[0] == sizeof(float));
GGML_ASSERT(src5->nb[0] == sizeof(float));
// required for the dot product between s and C
GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
// required for per-sequence offsets for states
GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
// required to get correct offset for state destination (i.e. src1->nb[3])
GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
#ifdef __ARM_FEATURE_SVE
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
t1 = exp_ps_sve(svptrue_b32(), t1);
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
}
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
}
}
}
#else
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
}
y[i1] = sumf;
}
}
}
#endif
}
void ggml_compute_forward_ssm_scan(
const ggml_compute_params * params,
ggml_tensor * dst) {
switch (dst->src[0]->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_ssm_scan_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_win_part
static void ggml_compute_forward_win_part_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
GGML_UNUSED(params);
const ggml_tensor * src0 = dst->src[0];
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
const int32_t w = ((const int32_t *)(dst->op_params))[2];
assert(ne00 == ne0);
assert(ne3 == nep0*nep1);
// TODO: optimize / multi-thread
for (int py = 0; py < nep1; ++py) {
for (int px = 0; px < nep0; ++px) {
const int64_t i3 = py*nep0 + px;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i02 = py*w + i2;
const int64_t i01 = px*w + i1;
const int64_t i00 = i0;
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
((float *) dst->data)[i] = 0.0f;
} else {
((float *) dst->data)[i] = ((float *) src0->data)[j];
}
}
}
}
}
}
}
void ggml_compute_forward_win_part(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_part_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_win_unpart
static void ggml_compute_forward_win_unpart_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
GGML_UNUSED(params);
const ggml_tensor * src0 = dst->src[0];
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
const int32_t w = ((const int32_t *)(dst->op_params))[0];
// padding
const int px = (w - ne1%w)%w;
//const int py = (w - ne2%w)%w;
const int npx = (px + ne1)/w;
//const int npy = (py + ne2)/w;
assert(ne0 == ne00);
// TODO: optimize / multi-thread
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int ip2 = i2/w;
const int ip1 = i1/w;
const int64_t i02 = i2%w;
const int64_t i01 = i1%w;
const int64_t i00 = i0;
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
((float *) dst->data)[j] = ((float *) src0->data)[i];
}
}
}
}
void ggml_compute_forward_win_unpart(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_unpart_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
//gmml_compute_forward_unary
void ggml_compute_forward_unary(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_unary_op op = ggml_get_unary_op(dst);
switch (op) {
case GGML_UNARY_OP_ABS:
{
ggml_compute_forward_abs(params, dst);
} break;
case GGML_UNARY_OP_SGN:
{
ggml_compute_forward_sgn(params, dst);
} break;
case GGML_UNARY_OP_NEG:
{
ggml_compute_forward_neg(params, dst);
} break;
case GGML_UNARY_OP_STEP:
{
ggml_compute_forward_step(params, dst);
} break;
case GGML_UNARY_OP_TANH:
{
ggml_compute_forward_tanh(params, dst);
} break;
case GGML_UNARY_OP_ELU:
{
ggml_compute_forward_elu(params, dst);
} break;
case GGML_UNARY_OP_RELU:
{
ggml_compute_forward_relu(params, dst);
} break;
case GGML_UNARY_OP_SIGMOID:
{
ggml_compute_forward_sigmoid(params, dst);
} break;
case GGML_UNARY_OP_GELU:
{
ggml_compute_forward_gelu(params, dst);
} break;
case GGML_UNARY_OP_GELU_ERF:
{
ggml_compute_forward_gelu_erf(params, dst);
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, dst);
} break;
case GGML_UNARY_OP_SILU:
{
ggml_compute_forward_silu(params, dst);
} break;
case GGML_UNARY_OP_HARDSWISH:
{
ggml_compute_forward_hardswish(params, dst);
} break;
case GGML_UNARY_OP_HARDSIGMOID:
{
ggml_compute_forward_hardsigmoid(params, dst);
} break;
case GGML_UNARY_OP_EXP:
{
ggml_compute_forward_exp(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
//ggml_compute_forward_glu
void ggml_compute_forward_glu(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_glu_op op = ggml_get_glu_op(dst);
switch (op) {
case GGML_GLU_OP_REGLU:
{
ggml_compute_forward_reglu(params, dst);
} break;
case GGML_GLU_OP_GEGLU:
{
ggml_compute_forward_geglu(params, dst);
} break;
case GGML_GLU_OP_SWIGLU:
{
ggml_compute_forward_swiglu(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_get_rel_pos
static void ggml_compute_forward_get_rel_pos_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
GGML_UNUSED(params);
const ggml_tensor * src0 = dst->src[0];
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
GGML_TENSOR_UNARY_OP_LOCALS
const int64_t w = ne1;
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
const int64_t pos = (w - i1 - 1) + i2;
for (int64_t i0 = 0; i0 < ne0; ++i0) {
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
}
}
}
}
void ggml_compute_forward_get_rel_pos(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
{
ggml_compute_forward_get_rel_pos_f16(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_add_rel_pos
static void ggml_compute_forward_add_rel_pos_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
if (!inplace) {
if (params->ith == 0) {
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
}
ggml_barrier(params->threadpool);
}
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
float * src1_data = (float *) src1->data;
float * src2_data = (float *) src2->data;
float * dst_data = (float *) dst->data;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne13;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t jp0 = jp1 + i10;
const float src1_e = src1_data[jp0];
const float src2_e = src2_data[jp0];
const int64_t jdh = jp0 * ne10;
const int64_t jdw = jdh - (ne10 - 1) * i10;
for (int64_t j = 0; j < ne10; ++j) {
dst_data[jdh + j ] += src2_e;
dst_data[jdw + j*ne10] += src1_e;
}
}
}
}
}
}
void ggml_compute_forward_add_rel_pos(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_rel_pos_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_rwkv_wkv6
static void ggml_compute_forward_rwkv_wkv6_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[5]->ne[1];
const int64_t head_size = C / HEADS;
float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;
const int ith = params->ith;
const int nth = params->nth;
if (ith >= HEADS) {
return;
}
const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;
float * k = (float *) dst->src[0]->data;
float * v = (float *) dst->src[1]->data;
float * r = (float *) dst->src[2]->data;
float * time_faaaa = (float *) dst->src[3]->data;
float * time_decay = (float *) dst->src[4]->data;
size_t t_stride = HEADS * head_size; // Same to C
size_t h_stride = C / HEADS;
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
size_t h_stride_2d = head_size * head_size;
if (ith == 0) {
memset(dst_data, 0, T * C * sizeof(float));
}
ggml_barrier(params->threadpool);
#if defined(__AVX__) && !defined(__AVX512F__)
#define GGML_F32X GGML_F32x8
#define GGML_F32X_SET1 GGML_F32x8_SET1
#define GGML_F32X_LOAD GGML_F32x8_LOAD
#define GGML_F32X_STORE GGML_F32x8_STORE
#define GGML_F32X_MUL GGML_F32x8_MUL
#define GGML_F32X_FMA GGML_F32x8_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__AVX512F__)
#define GGML_F32X GGML_F32x16
#define GGML_F32X_SET1 GGML_F32x16_SET1
#define GGML_F32X_LOAD GGML_F32x16_LOAD
#define GGML_F32X_STORE GGML_F32x16_STORE
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
#define GGML_F32X_LOAD GGML_F32x4_LOAD
#define GGML_F32X_STORE GGML_F32x4_STORE
#define GGML_F32X_MUL GGML_F32x4_MUL
#define GGML_F32X_FMA GGML_F32x4_FMA
#define WKV_VECTOR_SIZE 4
#endif
#ifdef WKV_VECTOR_SIZE
int wkv_vector_size;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
wkv_vector_size = WKV_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / wkv_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_i_offset = h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float r_val = r[t_h_i_offset];
float time_faaaa_val = time_faaaa[h_i_offset];
float time_decay_val = time_decay[t_h_i_offset];
// Broadcast scalar values to vectors
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
GGML_F32X r_vec = GGML_F32X_SET1(r_val);
GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * wkv_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
// Load x elements at once
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
// Compute kv = v * k
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
// Compute temp = kv * time_faaaa + prev_state
GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
// Update dst: dst += temp * r
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
// Update state: state = prev_state * time_decay + kv
GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val * time_faaaa_val + prev_state_val;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
}
}
}
}
#else
// basically fused operations:
// dst = r @ (time_faaaa * (k @ v) + state),
// state = time_decay * state + (k @ v),
// recursive through each token
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_i_offset = h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float r_val = r[t_h_i_offset];
float time_faaaa_val = time_faaaa[h_i_offset];
// RWKV v6: different time_decay for each token.
float time_decay_val = time_decay[t_h_i_offset];
for (int64_t j = 0; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val * time_faaaa_val + prev_state_val;
dst_data[t_h_j_offset] += temp_val * r_val;
state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
}
}
}
}
#endif
}
void ggml_compute_forward_rwkv_wkv6(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rwkv_wkv6_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_gla
static void ggml_compute_forward_gla_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[4]->ne[1];
const int64_t head_size = C / HEADS;
const float scale = ggml_get_op_params_f32(dst, 0);
float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;
const int ith = params->ith;
const int nth = params->nth;
if (ith >= HEADS) {
return;
}
const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;
float * k = (float *) dst->src[0]->data;
float * v = (float *) dst->src[1]->data;
float * q = (float *) dst->src[2]->data;
float * g = (float *) dst->src[3]->data;
size_t t_stride = HEADS * head_size; // Same to C
size_t h_stride = C / HEADS;
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
size_t h_stride_2d = head_size * head_size;
if (ith == 0) {
memset(dst_data, 0, T * C * sizeof(float));
}
ggml_barrier(params->threadpool);
#if defined(__AVX__) && !defined(__AVX512F__)
#define GGML_F32X GGML_F32x8
#define GGML_F32X_SET1 GGML_F32x8_SET1
#define GGML_F32X_LOAD GGML_F32x8_LOAD
#define GGML_F32X_STORE GGML_F32x8_STORE
#define GGML_F32X_MUL GGML_F32x8_MUL
#define GGML_F32X_FMA GGML_F32x8_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__AVX512F__)
#define GGML_F32X GGML_F32x16
#define GGML_F32X_SET1 GGML_F32x16_SET1
#define GGML_F32X_LOAD GGML_F32x16_LOAD
#define GGML_F32X_STORE GGML_F32x16_STORE
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
#define GGML_F32X_LOAD GGML_F32x4_LOAD
#define GGML_F32X_STORE GGML_F32x4_STORE
#define GGML_F32X_MUL GGML_F32x4_MUL
#define GGML_F32X_FMA GGML_F32x4_FMA
#define GLA_VECTOR_SIZE 4
#endif
#ifdef GLA_VECTOR_SIZE
int gla_vector_size;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else
gla_vector_size = GLA_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / gla_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float q_val = q[t_h_i_offset] * scale;
float g_val = g[t_h_i_offset];
// Broadcast scalar values to vectors
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
GGML_F32X q_vec = GGML_F32X_SET1(q_val);
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * gla_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
// Load x elements at once
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
// Compute kv = v * k
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
// Compute temp = prev_state * g + kv
GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
// Update dst: dst += temp * q
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
// Update state
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val + prev_state_val * g_val;
dst_data[t_h_j_offset] += temp_val * q_val;
state_cur[h_2d_i_j_offset] = temp_val;
}
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;
float k_val = k[t_h_i_offset];
float q_val = q[t_h_i_offset] * scale;
float g_val = g[t_h_i_offset];
for (int64_t j = 0; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = prev_state_val * g_val + kv_val;
dst_data[t_h_j_offset] += temp_val * q_val;
state_cur[h_2d_i_j_offset] = temp_val;
}
}
}
}
#endif
}
void ggml_compute_forward_gla(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gla_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_rwkv_wkv7
static void ggml_compute_forward_rwkv_wkv7_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[6]->ne[1];
const int64_t head_size = C / HEADS;
float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;
const int ith = params->ith;
const int nth = params->nth;
if (ith >= HEADS) {
return;
}
const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;
float * r = (float *) dst->src[0]->data;
float * w = (float *) dst->src[1]->data;
float * k = (float *) dst->src[2]->data;
float * v = (float *) dst->src[3]->data;
float * a = (float *) dst->src[4]->data;
float * b = (float *) dst->src[5]->data;
int64_t t_stride = HEADS * head_size; // Same to C
int64_t h_stride = C / HEADS;
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
float v_val = v[t_h_i_offset];
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
dst_data[t_h_i_offset] = result;
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
}
#endif
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
float v_val = v[t_h_i_offset];
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
dst_data[t_h_i_offset] = result;
}
}
}
#endif
}
void ggml_compute_forward_rwkv_wkv7(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rwkv_wkv7_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_map_custom1
void ggml_compute_forward_map_custom1(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * a = dst->src[0];
struct ggml_map_custom1_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom2
void ggml_compute_forward_map_custom2(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * a = dst->src[0];
const ggml_tensor * b = dst->src[1];
struct ggml_map_custom2_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_map_custom3
void ggml_compute_forward_map_custom3(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * a = dst->src[0];
const ggml_tensor * b = dst->src[1];
const ggml_tensor * c = dst->src[2];
struct ggml_map_custom3_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_custom
void ggml_compute_forward_custom(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
struct ggml_custom_op_params p;
memcpy(&p, dst->op_params, sizeof(p));
p.fun(dst, params->ith, params->nth, p.userdata);
}
// ggml_compute_forward_cross_entropy_loss
static void ggml_compute_forward_cross_entropy_loss_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
GGML_ASSERT(ggml_is_scalar(dst));
GGML_ASSERT(dst->type == GGML_TYPE_F32);
// TODO: handle transposed/permuted matrices
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
const int ith = params->ith;
const int nth = params->nth;
float * sums = (float *) params->wdata;
float * st = ((float *) params->wdata) + nth + ith*nc;
float sum_thread = 0.0f;
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
for (int64_t i1 = ir0; i1 < ir1; ++i1) {
const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
#ifndef NDEBUG
for (int64_t i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
assert(sum_softmax >= 0.0);
ggml_vec_add1_f32(nc, st, st, -sum_softmax);
ggml_vec_mul_f32(nc, st, st, s1);
float sum_st = 0.0f;
ggml_vec_sum_f32(nc, &sum_st, st);
sum_thread += sum_st;
#ifndef NDEBUG
for (int64_t i = 0; i < nc; ++i) {
assert(!isnan(st[i]));
assert(!isinf(st[i]));
}
#endif
}
sums[ith] = sum_thread;
ggml_barrier(params->threadpool);
if (ith == 0) {
float * dp = (float *) dst->data;
ggml_vec_sum_f32(nth, dp, sums);
dp[0] *= -1.0f / (float) nr;
}
}
void ggml_compute_forward_cross_entropy_loss(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_cross_entropy_loss_back
static void ggml_compute_forward_cross_entropy_loss_back_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0f));
GGML_ASSERT(ggml_is_contiguous(src1f));
GGML_ASSERT(ggml_is_contiguous(grad));
GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
const int64_t ith = params->ith;
const int64_t nth = params->nth;
// TODO: handle transposed/permuted matrices
const int64_t nc = src0f->ne[0];
const int64_t nr = ggml_nrows(src0f);
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
#ifndef NDEBUG
for (int64_t i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
assert(sum > 0.0);
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
// grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d_by_nr);
#ifndef NDEBUG
for (int64_t i = 0; i < nc; ++i) {
assert(!isnan(ds0[i]));
assert(!isinf(ds0[i]));
}
#endif
}
}
void ggml_compute_forward_cross_entropy_loss_back(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static void ggml_compute_forward_opt_step_adamw_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src0_grad = dst->src[1];
const ggml_tensor * src0_grad_m = dst->src[2];
const ggml_tensor * src0_grad_v = dst->src[3];
const ggml_tensor * adamw_params = dst->src[4];
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
GGML_ASSERT(ggml_nelements(adamw_params) == 7);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
const float alpha = adamw_params_ptr[0];
const float beta1 = adamw_params_ptr[1];
const float beta2 = adamw_params_ptr[2];
const float eps = adamw_params_ptr[3];
const float wd = adamw_params_ptr[4];
const float beta1h = adamw_params_ptr[5];
const float beta2h = adamw_params_ptr[6];
for (int ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
float * w = (float *) ((char *) src0->data + offset); // weight
const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
float * m = (float *) ((char *) src0_grad_m->data + offset);
float * v = (float *) ((char *) src0_grad_v->data + offset);
for (int i00 = 0; i00 < ne00; ++i00) {
m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
const float mh = m[i00]*beta1h;
const float vh = sqrtf(v[i00]*beta2h) + eps;
// The weight decay is applied independently of the Adam momenta m and v.
// This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
// See: https://arxiv.org/pdf/1711.05101v3.pdf
w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
}
}
}
void ggml_compute_forward_opt_step_adamw(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_opt_step_adamw_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}