koboldcpp/ggml_blas_adapter.c

309 lines
12 KiB
C

//this is a drop-in for all CLBlast related code, to keep the main ggml.c unmodified
// we will imitate the function definition from OpenBLAS instead, replaced as necessary.
//windows binaries for clblast obtained from https://github.com/CNugteren/CLBlast (apache license)
//windows binaries for opencl obtained from https://github.com/KhronosGroup/OpenCL-SDK (apache license)
#if GGML_USE_OPENBLAS
#include <cblas.h>
#include <stdio.h>
#include <stdlib.h>
#if GGML_USE_CLBLAST
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast_c.h>
#include <ggml_clblast_dequant.cl>
#define CL_CHECK(err, name) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
cl_platform_id platform;
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_program program;
cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q4_3;
bool cl_initialized = false;
size_t cl_size_a = 0, cl_size_b = 0, cl_size_qb = 0, cl_size_c = 0;
cl_mem cl_buffer_a, cl_buffer_b, cl_buffer_qb, cl_buffer_c;
// Function taken from https://github.com/rsnemmen/OpenCL-examples/blob/master/add_numbers/add_numbers.c
cl_program build_program(cl_context ctx, cl_device_id dev, const char* filename) {
cl_program program;
FILE *program_handle;
char *program_buffer, *program_log;
size_t program_size, log_size;
int err;
program_handle = fopen(filename, "r");
if(program_handle == NULL) {
perror("OpenCL kernel file not found");
exit(1);
}
fseek(program_handle, 0, SEEK_END);
program_size = ftell(program_handle);
rewind(program_handle);
program_buffer = (char*)malloc(program_size + 1);
program_buffer[program_size] = '\0';
fread(program_buffer, sizeof(char), program_size, program_handle);
fclose(program_handle);
program = clCreateProgramWithSource(ctx, 1,
(const char**)&program_buffer, &program_size, &err);
if(err < 0) {
perror("OpenCL error creating program");
exit(1);
}
free(program_buffer);
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return program;
}
cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program program;
char *program_log;
size_t program_size, log_size;
int err;
program_size = strlen(program_buffer);
program = clCreateProgramWithSource(ctx, 1,
(const char**)&program_buffer, &program_size, &err);
if(err < 0) {
perror("OpenCL error creating program");
exit(1);
}
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return program;
}
static void ggml_cl_sgemm_wrapper(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE trans_a, const enum CBLAS_TRANSPOSE trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype) {
cl_int err = 0;
cl_event events[4];
events[0] = NULL;
events[1] = NULL;
events[2] = NULL;
events[3] = NULL;
if (!cl_initialized) {
char * KCPP_CLBLAST_PLATFORM = getenv("KCPP_CLBLAST_PLATFORM");
char * KCPP_CLBLAST_DEVICES = getenv("KCPP_CLBLAST_DEVICES");
int plat_num = (KCPP_CLBLAST_PLATFORM == NULL ? 0 : atoi(KCPP_CLBLAST_PLATFORM));
int dev_num = (KCPP_CLBLAST_DEVICES == NULL ? 0 : atoi(KCPP_CLBLAST_DEVICES));
printf("\nInitializing CLBlast (First Run)...");
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
cl_uint num_platforms;
clGetPlatformIDs(0, NULL, &num_platforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
clGetPlatformIDs(num_platforms, platforms, NULL);
platform = platforms[plat_num];
char platform_buffer[1024];
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
device = devices[dev_num];
char device_buffer[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
CL_CHECK(err, "clCreateContext");
queue = clCreateCommandQueue(context, device, 0, &err);
CL_CHECK(err, "clCreateCommandQueue");
free(platforms);
free(devices);
program = build_program_from_source(context, device, clblast_dequant);
// Prepare dequantize kernels
kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
CL_CHECK(err, "clCreateKernel 1");
kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
CL_CHECK(err, "clCreateKernel 2");
kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err);
CL_CHECK(err, "clCreateKernel 3");
kernel_q4_3 = clCreateKernel(program, "dequantize_row_q4_3", &err);
CL_CHECK(err, "clCreateKernel 4");
size_t defaultBufSize = 32*1024*1024;
cl_size_a = defaultBufSize;
cl_size_b = defaultBufSize;
cl_size_qb = defaultBufSize;
cl_size_c = defaultBufSize;
// Prepare buffers
cl_buffer_a = clCreateBuffer(context, CL_MEM_READ_ONLY, cl_size_a, NULL, &err);
CL_CHECK(err, "clCreateBuffer A");
cl_buffer_b = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_b, NULL, &err);
CL_CHECK(err, "clCreateBuffer B");
cl_buffer_qb = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_qb, NULL, &err);
CL_CHECK(err, "clCreateBuffer qB");
cl_buffer_c = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_c, NULL, &err);
CL_CHECK(err, "clCreateBuffer C");
cl_initialized = true;
}
bool dequant = (btype >= 2 && btype < 6);
cl_kernel kernel;
size_t global = n * k, local = 16, qb_size;
if (dequant)
{
switch (btype)
{
case 2:
kernel = kernel_q4_0;
local = 16;
qb_size = global * (sizeof(float) + local) / 32;
break;
case 3:
kernel = kernel_q4_1;
local = 16;
qb_size = global * (sizeof(float) * 2 + local) / 32;
break;
case 4:
kernel = kernel_q4_2;
local = 8;
qb_size = global * (sizeof(short) + local) / 16;
break;
case 5:
kernel = kernel_q4_3;
local = 8;
qb_size = global * (sizeof(short) * 2 + local) / 16;
break;
}
}
// Prepare buffers
if(m*k*sizeof(float) > cl_size_a)
{
cl_size_a = m*k*sizeof(float);
clReleaseMemObject(cl_buffer_a);
cl_buffer_a = clCreateBuffer(context, CL_MEM_READ_ONLY, cl_size_a, NULL, &err);
CL_CHECK(err, "clReallocBuffer A");
}
if (dequant)
{
if(qb_size > cl_size_qb)
{
cl_size_qb = qb_size;
clReleaseMemObject(cl_buffer_qb);
cl_buffer_qb = clCreateBuffer(context, CL_MEM_READ_ONLY, qb_size, NULL, &err);
CL_CHECK(err, "clReallocBuffer qB");
}
}
if(n*k*sizeof(float) > cl_size_b)
{
cl_size_b = n*k*sizeof(float);
clReleaseMemObject(cl_buffer_b);
cl_buffer_b = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_b, NULL, &err);
CL_CHECK(err, "clReallocBuffer B");
}
if(m*n*sizeof(float) > cl_size_c)
{
cl_size_c = m*n*sizeof(float);
clReleaseMemObject(cl_buffer_c);
cl_buffer_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, cl_size_c, NULL, &err);
CL_CHECK(err, "clReallocBuffer C");
}
if (dequant) {
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
CL_CHECK(err, "clSetKernelArg");
clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, qb_size, host_b, 0, NULL, events + 1);
} else {
clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, n*k*sizeof(float), host_b, 0, NULL, events + 1);
}
clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, m*k*sizeof(float), host_a, 0, NULL, events);
//clEnqueueWriteBuffer(queue, cl_buffer_c, CL_FALSE, 0, m*n*sizeof(float), host_c, 0, NULL, events + 2);
if (dequant) {
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, events + 1, events + 2);
CL_CHECK(err, "clEnqueueNDRangeKernel");
}
clWaitForEvents(dequant ? 3 : 2, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
//clReleaseEvent(events[2]);
if (dequant) {
clReleaseEvent(events[2]);
}
// Call the SGEMM routine.
CLBlastStatusCode status = CLBlastSgemm(order,
trans_a, trans_b,
m, n, k,
alpha,
cl_buffer_a, 0, lda,
cl_buffer_b, 0, ldb,
beta,
cl_buffer_c, 0, ldc,
&queue, events);
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, m*n*sizeof(float), host_c, 1, events, events + 1);
// Wait for completion
if (status == CLBlastSuccess) {
clWaitForEvents(2, events);
clReleaseEvent(events[0]);
clReleaseEvent(events[1]);
}
}
#endif
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
#if GGML_USE_CLBLAST
#define do_blas_sgemm(Order, TransA, TransB,M, N, K,alpha, A, lda, B, ldb, beta, C, ldc, btype) ({\
ggml_cl_sgemm_wrapper(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc, btype);\
})
#else
#define do_blas_sgemm(Order, TransA, TransB,M, N, K,alpha, A, lda, B, ldb, beta, C, ldc, btype) ({\
cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);\
})
#endif
#endif