mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 17:14:36 +00:00
296 lines
9.7 KiB
C++
296 lines
9.7 KiB
C++
#include "model_adapter.h"
|
|
#include "otherarch/utils.h"
|
|
|
|
#include "common.h"
|
|
#include "sampling.h"
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <regex>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "src/llama-context.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static llama_context * embeddings_ctx = nullptr; //text to codes ctx
|
|
static std::string ttsplatformenv, ttsdeviceenv, ttsvulkandeviceenv;
|
|
bool embeddings_debug = false;
|
|
static int max_batchsize = 512;
|
|
static std::string last_output = "";
|
|
|
|
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
|
size_t n_tokens = tokens.size();
|
|
for (size_t i = 0; i < n_tokens; i++) {
|
|
common_batch_add(batch, tokens[i], i, { seq_id }, true);
|
|
}
|
|
}
|
|
|
|
static void batch_encode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
|
|
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
|
const struct llama_model * model = llama_get_model(ctx);
|
|
|
|
// clear previous kv_cache values (irrelevant for embeddings)
|
|
llama_kv_self_clear(ctx);
|
|
|
|
// run model
|
|
if(embeddings_debug)
|
|
{
|
|
printf("\n%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
|
}
|
|
|
|
// run model
|
|
if (llama_encode(ctx, batch) < 0) {
|
|
printf("%s : failed to process\n", __func__);
|
|
}
|
|
|
|
for (int i = 0; i < batch.n_tokens; i++) {
|
|
if (!batch.logits[i]) {
|
|
continue;
|
|
}
|
|
const float * embd = nullptr;
|
|
int embd_pos = 0;
|
|
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
|
// try to get token embeddings
|
|
embd = llama_get_embeddings_ith(ctx, i);
|
|
embd_pos = i;
|
|
if(embd == NULL)
|
|
{
|
|
printf("\nfailed to get token embeddings\n");
|
|
}
|
|
} else {
|
|
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
|
embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
|
embd_pos = batch.seq_id[i][0];
|
|
if(embd == NULL)
|
|
{
|
|
printf("\nfailed to get sequence embeddings\n");
|
|
}
|
|
}
|
|
float * out = output + embd_pos * n_embd;
|
|
common_embd_normalize(embd, out, n_embd, embd_norm);
|
|
}
|
|
}
|
|
|
|
bool embeddingstype_load_model(const embeddings_load_model_inputs inputs)
|
|
{
|
|
//duplicated from expose.cpp
|
|
int cl_parseinfo = inputs.clblast_info; //first digit is whether configured, second is platform, third is devices
|
|
std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0);
|
|
putenv((char*)usingclblast.c_str());
|
|
cl_parseinfo = cl_parseinfo%100; //keep last 2 digits
|
|
int platform = cl_parseinfo/10;
|
|
int devices = cl_parseinfo%10;
|
|
ttsplatformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform);
|
|
ttsdeviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices);
|
|
putenv((char*)ttsplatformenv.c_str());
|
|
putenv((char*)ttsdeviceenv.c_str());
|
|
std::string vulkan_info_raw = inputs.vulkan_info;
|
|
std::string vulkan_info_str = "";
|
|
for (size_t i = 0; i < vulkan_info_raw.length(); ++i) {
|
|
vulkan_info_str += vulkan_info_raw[i];
|
|
if (i < vulkan_info_raw.length() - 1) {
|
|
vulkan_info_str += ",";
|
|
}
|
|
}
|
|
if(vulkan_info_str!="")
|
|
{
|
|
ttsvulkandeviceenv = "GGML_VK_VISIBLE_DEVICES="+vulkan_info_str;
|
|
putenv((char*)ttsvulkandeviceenv.c_str());
|
|
}
|
|
|
|
llama_backend_init();
|
|
|
|
std::string modelfile = inputs.model_filename;
|
|
printf("\nLoading Embeddings Model: %s \n",modelfile.c_str());
|
|
|
|
embeddings_debug = (inputs.debugmode>0);
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
const int nthreads = inputs.threads;
|
|
model_params.use_mmap = false;
|
|
model_params.use_mlock = false;
|
|
model_params.n_gpu_layers = inputs.gpulayers; //offload if possible
|
|
model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER;
|
|
|
|
llama_model * embeddingsmodel = llama_model_load_from_file(modelfile.c_str(), model_params);
|
|
const int n_ctx_train = llama_model_n_ctx_train(embeddingsmodel);
|
|
|
|
max_batchsize = n_ctx_train;
|
|
ctx_params.embeddings = true;
|
|
ctx_params.n_ubatch = ctx_params.n_ubatch = max_batchsize; //max size, must fit
|
|
ctx_params.n_ctx = max_batchsize;
|
|
ctx_params.offload_kqv = false;
|
|
ctx_params.n_threads = nthreads;
|
|
ctx_params.n_threads_batch = nthreads;
|
|
ctx_params.flash_attn = inputs.flash_attention;
|
|
|
|
embeddings_ctx = llama_init_from_model(embeddingsmodel, ctx_params);
|
|
|
|
if (embeddings_ctx == nullptr) {
|
|
printf("\nEmbeddings Model Load Error: Failed to initialize context!\n");
|
|
return false;
|
|
}
|
|
|
|
std::vector<int> tmp = {1, 2, 3, 4};
|
|
llama_kv_self_clear(embeddings_ctx);
|
|
auto er = llama_encode(embeddings_ctx, llama_batch_get_one(tmp.data(), tmp.size()));
|
|
if(er!=0)
|
|
{
|
|
printf("\nEmbeddings Model Eval returned nonzero: %d\n",er);
|
|
return false;
|
|
}
|
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(embeddingsmodel);
|
|
|
|
const int n_ctx = llama_n_ctx(embeddings_ctx);
|
|
|
|
if (llama_model_has_encoder(embeddingsmodel) && llama_model_has_decoder(embeddingsmodel)) {
|
|
printf("\n%s: computing embeddings in encoder-decoder models is not supported\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
if (n_ctx > n_ctx_train) {
|
|
printf("\n%s: warning: Embeddings model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
|
}
|
|
|
|
printf("\nEmbeddings Model Load Complete.\n");
|
|
return true;
|
|
}
|
|
|
|
embeddings_generation_outputs embeddingstype_generate(const embeddings_generation_inputs inputs)
|
|
{
|
|
embeddings_generation_outputs output;
|
|
|
|
if(embeddings_ctx==nullptr)
|
|
{
|
|
printf("\nWarning: KCPP Embeddings Model not initialized!\n");
|
|
output.data = "";
|
|
output.status = 0;
|
|
output.count = 0;
|
|
return output;
|
|
}
|
|
|
|
double timetaken = 0;
|
|
timer_start();
|
|
|
|
llama_kv_self_clear(embeddings_ctx);
|
|
std::string prompt = inputs.prompt;
|
|
|
|
// max batch size
|
|
const uint64_t n_batch = max_batchsize;
|
|
|
|
// tokenize the prompts and trim
|
|
std::vector<std::vector<int32_t>> prompt_inputs;
|
|
auto inp = common_tokenize(embeddings_ctx, prompt, true, true);
|
|
if (inp.size() > n_batch) {
|
|
if (inputs.truncate) {
|
|
int oldsize = inp.size();
|
|
//get bos token
|
|
std::vector<int> bos;
|
|
bos = common_tokenize(embeddings_ctx, "", true,true);
|
|
int offset = inp.size() - n_batch + 1;
|
|
inp = std::vector<int>(inp.begin() + offset, inp.end());
|
|
//replace bos into front if exists
|
|
if(bos.size()>0 && inp.size()>0)
|
|
{
|
|
inp[0] = bos[0];
|
|
}
|
|
if(embeddings_debug)
|
|
{
|
|
printf("\n%s: Input too long, truncated from %d to last %d tokens.\n", __func__,oldsize,inp.size());
|
|
}
|
|
} else {
|
|
printf("\n%s: number of tokens in an input (%lld) exceeds embedding size limit for this model (%lld), lower token amount!\n",
|
|
__func__, (long long int) inp.size(), (long long int) n_batch);
|
|
output.data = "";
|
|
output.status = 0;
|
|
output.count = 0;
|
|
return output;
|
|
}
|
|
}
|
|
prompt_inputs.push_back(inp);
|
|
|
|
if(embeddings_debug)
|
|
{
|
|
print_tok_vec(inp);
|
|
}
|
|
printf("\nGenerating Embeddings for %d tokens...",inp.size());
|
|
|
|
// initialize batch
|
|
const int n_prompts = 1;
|
|
const enum llama_pooling_type pooling_type = llama_pooling_type(embeddings_ctx);
|
|
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
|
|
|
// count number of embeddings
|
|
int n_embd_count = 0;
|
|
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
|
for (int k = 0; k < n_prompts; k++) {
|
|
n_embd_count += prompt_inputs[k].size();
|
|
}
|
|
} else {
|
|
n_embd_count = n_prompts;
|
|
}
|
|
|
|
// allocate output
|
|
const llama_model * embeddingsmodel = llama_get_model(embeddings_ctx);
|
|
const int n_embd = llama_model_n_embd(embeddingsmodel);
|
|
std::vector<float> embeddings(n_embd_count * n_embd, 0);
|
|
float * emb = embeddings.data();
|
|
int embd_normalize = 2; //euclidean
|
|
|
|
// break into batches
|
|
int e = 0; // number of embeddings already stored
|
|
int s = 0; // number of prompts in current batch
|
|
for (int k = 0; k < n_prompts; k++) {
|
|
// clamp to n_batch tokens
|
|
auto & inp = prompt_inputs[k];
|
|
const uint64_t n_toks = inp.size();
|
|
// encode if at capacity
|
|
if (batch.n_tokens + n_toks > n_batch) {
|
|
float * out = emb + e * n_embd;
|
|
batch_encode(embeddings_ctx, batch, out, s, n_embd, embd_normalize);
|
|
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
|
|
s = 0;
|
|
common_batch_clear(batch);
|
|
}
|
|
// add to batch
|
|
batch_add_seq(batch, inp, s);
|
|
s += 1;
|
|
}
|
|
|
|
// final batch
|
|
float * out = emb + e * n_embd;
|
|
batch_encode(embeddings_ctx, batch, out, s, n_embd, embd_normalize);
|
|
|
|
std::string outputarray = "[";
|
|
for (int i = 0; i < n_embd; i++) {
|
|
if (i > 0)
|
|
{
|
|
outputarray += ",";
|
|
}
|
|
outputarray += std::to_string(emb[i]);
|
|
}
|
|
outputarray += "]";
|
|
last_output = outputarray;
|
|
|
|
// clean up
|
|
llama_batch_free(batch);
|
|
|
|
timetaken = timer_check();
|
|
printf("\nText Embeddings Generated %d values in %.2fs.\n",(int) n_embd,timetaken);
|
|
|
|
output.data = last_output.c_str();
|
|
output.status = 1;
|
|
output.count = inp.size();
|
|
return output;
|
|
}
|