mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
4490 lines
232 KiB
Python
4490 lines
232 KiB
Python
#!/usr/bin/env python3
|
|
#-*- coding: utf-8 -*-
|
|
|
|
# KoboldCpp is an easy-to-use AI text-generation software for GGML models.
|
|
# It's a single self contained distributable from Concedo, that builds off llama.cpp,
|
|
# and adds a versatile Kobold API endpoint, additional format support,
|
|
# backward compatibility, as well as a fancy UI with persistent stories,
|
|
# editing tools, save formats, memory, world info, author's note, characters,
|
|
# scenarios and everything Kobold and KoboldAI Lite have to offer.
|
|
|
|
import ctypes
|
|
import os, math, re
|
|
import argparse
|
|
import platform
|
|
import base64
|
|
import json, sys, http.server, time, asyncio, socket, threading
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from datetime import datetime, timezone
|
|
|
|
# constants
|
|
sampler_order_max = 7
|
|
stop_token_max = 24
|
|
ban_token_max = 16
|
|
ban_phrase_max = 16
|
|
tensor_split_max = 16
|
|
logit_bias_max = 24
|
|
dry_seq_break_max = 24
|
|
images_max = 4
|
|
bias_min_value = -100.0
|
|
bias_max_value = 100.0
|
|
|
|
# global vars
|
|
handle = None
|
|
friendlymodelname = "inactive"
|
|
friendlysdmodelname = "inactive"
|
|
fullsdmodelpath = "" #if empty, it's not initialized
|
|
mmprojpath = "" #if empty, it's not initialized
|
|
password = "" #if empty, no auth key required
|
|
fullwhispermodelpath = "" #if empty, it's not initialized
|
|
maxctx = 4096
|
|
maxhordectx = 4096
|
|
maxhordelen = 400
|
|
modelbusy = threading.Lock()
|
|
requestsinqueue = 0
|
|
defaultport = 5001
|
|
KcppVersion = "1.76"
|
|
showdebug = True
|
|
guimode = False
|
|
showsamplerwarning = True
|
|
showmaxctxwarning = True
|
|
showusedmemwarning = True
|
|
session_kudos_earned = 0
|
|
session_jobs = 0
|
|
session_starttime = None
|
|
exitcounter = -1
|
|
punishcounter = 0 #causes a timeout if too many errors
|
|
rewardcounter = 0 #reduces error counts for successful jobs
|
|
totalgens = 0
|
|
currentusergenkey = "" #store a special key so polled streaming works even in multiuser
|
|
pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later
|
|
args = None #global args
|
|
runmode_untouched = True
|
|
modelfile_extracted_meta = None
|
|
importvars_in_progress = False
|
|
preloaded_story = None
|
|
chatcompl_adapter = None
|
|
embedded_kailite = None
|
|
embedded_kcpp_docs = None
|
|
embedded_kcpp_sdui = None
|
|
sslvalid = False
|
|
nocertify = False
|
|
start_time = time.time()
|
|
last_req_time = time.time()
|
|
last_non_horde_req_time = time.time()
|
|
currfinishreason = "null"
|
|
using_gui_launcher = False
|
|
using_outdated_flags = False
|
|
|
|
saved_stdout = None
|
|
saved_stderr = None
|
|
saved_stdout_py = None
|
|
saved_stderr_py = None
|
|
stdout_nullfile = None
|
|
stdout_nullfile_py = None
|
|
|
|
CLDevices = ["1","2","3","4"]
|
|
CUDevices = ["1","2","3","4","All"]
|
|
CLDevicesNames = ["","","",""]
|
|
CUDevicesNames = ["","","","",""]
|
|
VKDevicesNames = ["","","",""]
|
|
VKIsDGPU = [0,0,0,0]
|
|
MaxMemory = [0]
|
|
MaxFreeMemory = [0]
|
|
|
|
class logit_bias(ctypes.Structure):
|
|
_fields_ = [("token_id", ctypes.c_int32),
|
|
("bias", ctypes.c_float)]
|
|
|
|
class token_count_outputs(ctypes.Structure):
|
|
_fields_ = [("count", ctypes.c_int),
|
|
("ids", ctypes.POINTER(ctypes.c_int))]
|
|
|
|
class load_model_inputs(ctypes.Structure):
|
|
_fields_ = [("threads", ctypes.c_int),
|
|
("blasthreads", ctypes.c_int),
|
|
("max_context_length", ctypes.c_int),
|
|
("low_vram", ctypes.c_bool),
|
|
("use_mmq", ctypes.c_bool),
|
|
("use_rowsplit", ctypes.c_bool),
|
|
("executable_path", ctypes.c_char_p),
|
|
("model_filename", ctypes.c_char_p),
|
|
("lora_filename", ctypes.c_char_p),
|
|
("lora_base", ctypes.c_char_p),
|
|
("mmproj_filename", ctypes.c_char_p),
|
|
("use_mmap", ctypes.c_bool),
|
|
("use_mlock", ctypes.c_bool),
|
|
("use_smartcontext", ctypes.c_bool),
|
|
("use_contextshift", ctypes.c_bool),
|
|
("clblast_info", ctypes.c_int),
|
|
("cublas_info", ctypes.c_int),
|
|
("vulkan_info", ctypes.c_char_p),
|
|
("blasbatchsize", ctypes.c_int),
|
|
("debugmode", ctypes.c_int),
|
|
("forceversion", ctypes.c_int),
|
|
("gpulayers", ctypes.c_int),
|
|
("rope_freq_scale", ctypes.c_float),
|
|
("rope_freq_base", ctypes.c_float),
|
|
("flash_attention", ctypes.c_bool),
|
|
("tensor_split", ctypes.c_float * tensor_split_max),
|
|
("quant_k", ctypes.c_int),
|
|
("quant_v", ctypes.c_int)]
|
|
|
|
class generation_inputs(ctypes.Structure):
|
|
_fields_ = [("seed", ctypes.c_int),
|
|
("prompt", ctypes.c_char_p),
|
|
("memory", ctypes.c_char_p),
|
|
("images", ctypes.c_char_p * images_max),
|
|
("max_context_length", ctypes.c_int),
|
|
("max_length", ctypes.c_int),
|
|
("temperature", ctypes.c_float),
|
|
("top_k", ctypes.c_int),
|
|
("top_a", ctypes.c_float),
|
|
("top_p", ctypes.c_float),
|
|
("min_p", ctypes.c_float),
|
|
("typical_p", ctypes.c_float),
|
|
("tfs", ctypes.c_float),
|
|
("rep_pen", ctypes.c_float),
|
|
("rep_pen_range", ctypes.c_int),
|
|
("rep_pen_slope", ctypes.c_float),
|
|
("presence_penalty", ctypes.c_float),
|
|
("mirostat", ctypes.c_int),
|
|
("mirostat_tau", ctypes.c_float),
|
|
("mirostat_eta", ctypes.c_float),
|
|
("dry_multiplier", ctypes.c_float),
|
|
("dry_base", ctypes.c_float),
|
|
("dry_allowed_length", ctypes.c_int),
|
|
("dry_penalty_last_n", ctypes.c_int),
|
|
("dry_sequence_breakers", ctypes.c_char_p * dry_seq_break_max),
|
|
("xtc_threshold", ctypes.c_float),
|
|
("xtc_probability", ctypes.c_float),
|
|
("sampler_order", ctypes.c_int * sampler_order_max),
|
|
("sampler_len", ctypes.c_int),
|
|
("allow_eos_token", ctypes.c_bool),
|
|
("bypass_eos_token", ctypes.c_bool),
|
|
("render_special", ctypes.c_bool),
|
|
("stop_sequence", ctypes.c_char_p * stop_token_max),
|
|
("stream_sse", ctypes.c_bool),
|
|
("grammar", ctypes.c_char_p),
|
|
("grammar_retain_state", ctypes.c_bool),
|
|
("quiet", ctypes.c_bool),
|
|
("dynatemp_range", ctypes.c_float),
|
|
("dynatemp_exponent", ctypes.c_float),
|
|
("smoothing_factor", ctypes.c_float),
|
|
("logit_biases", logit_bias * logit_bias_max),
|
|
("banned_tokens", ctypes.c_char_p * ban_token_max),
|
|
("banned_phrases", ctypes.c_char_p * ban_phrase_max)]
|
|
|
|
class generation_outputs(ctypes.Structure):
|
|
_fields_ = [("status", ctypes.c_int),
|
|
("stopreason", ctypes.c_int),
|
|
("text", ctypes.c_char_p)]
|
|
|
|
class sd_load_model_inputs(ctypes.Structure):
|
|
_fields_ = [("model_filename", ctypes.c_char_p),
|
|
("executable_path", ctypes.c_char_p),
|
|
("clblast_info", ctypes.c_int),
|
|
("cublas_info", ctypes.c_int),
|
|
("vulkan_info", ctypes.c_char_p),
|
|
("threads", ctypes.c_int),
|
|
("quant", ctypes.c_int),
|
|
("taesd", ctypes.c_bool),
|
|
("vae_filename", ctypes.c_char_p),
|
|
("lora_filename", ctypes.c_char_p),
|
|
("lora_multiplier", ctypes.c_float),
|
|
("debugmode", ctypes.c_int)]
|
|
|
|
class sd_generation_inputs(ctypes.Structure):
|
|
_fields_ = [("prompt", ctypes.c_char_p),
|
|
("negative_prompt", ctypes.c_char_p),
|
|
("init_images", ctypes.c_char_p),
|
|
("denoising_strength", ctypes.c_float),
|
|
("cfg_scale", ctypes.c_float),
|
|
("sample_steps", ctypes.c_int),
|
|
("width", ctypes.c_int),
|
|
("height", ctypes.c_int),
|
|
("seed", ctypes.c_int),
|
|
("sample_method", ctypes.c_char_p),
|
|
("clip_skip", ctypes.c_int),
|
|
("quiet", ctypes.c_bool)]
|
|
|
|
class sd_generation_outputs(ctypes.Structure):
|
|
_fields_ = [("status", ctypes.c_int),
|
|
("data", ctypes.c_char_p)]
|
|
|
|
class whisper_load_model_inputs(ctypes.Structure):
|
|
_fields_ = [("model_filename", ctypes.c_char_p),
|
|
("executable_path", ctypes.c_char_p),
|
|
("clblast_info", ctypes.c_int),
|
|
("cublas_info", ctypes.c_int),
|
|
("vulkan_info", ctypes.c_char_p),
|
|
("debugmode", ctypes.c_int)]
|
|
|
|
class whisper_generation_inputs(ctypes.Structure):
|
|
_fields_ = [("prompt", ctypes.c_char_p),
|
|
("audio_data", ctypes.c_char_p),
|
|
("quiet", ctypes.c_bool)]
|
|
|
|
class whisper_generation_outputs(ctypes.Structure):
|
|
_fields_ = [("status", ctypes.c_int),
|
|
("data", ctypes.c_char_p)]
|
|
|
|
def getdirpath():
|
|
return os.path.dirname(os.path.realpath(__file__))
|
|
def getabspath():
|
|
return os.path.dirname(os.path.abspath(__file__))
|
|
def file_exists(filename):
|
|
return os.path.exists(os.path.join(getdirpath(), filename))
|
|
|
|
def suppress_stdout():
|
|
global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py
|
|
if not saved_stdout and not saved_stderr and not saved_stdout_py and not saved_stderr_py and not stdout_nullfile and not stdout_nullfile_py:
|
|
sys.stdout.flush()
|
|
sys.stderr.flush()
|
|
saved_stdout = os.dup(sys.stdout.fileno())
|
|
saved_stderr = os.dup(sys.stderr.fileno())
|
|
saved_stderr_py = sys.stderr
|
|
saved_stdout_py = sys.stdout
|
|
stdout_nullfile = os.open(os.devnull, os.O_WRONLY)
|
|
stdout_nullfile_py = open(os.devnull, 'w')
|
|
os.dup2(stdout_nullfile, sys.stdout.fileno())
|
|
os.dup2(stdout_nullfile, sys.stderr.fileno())
|
|
sys.stderr = sys.stdout = stdout_nullfile_py
|
|
|
|
def restore_stdout():
|
|
global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py
|
|
if saved_stdout and saved_stderr and saved_stdout_py and saved_stderr_py and stdout_nullfile and stdout_nullfile_py:
|
|
sys.stdout = saved_stdout_py
|
|
sys.stderr = saved_stderr_py
|
|
os.dup2(saved_stdout, sys.stdout.fileno())
|
|
os.dup2(saved_stderr, sys.stderr.fileno())
|
|
os.close(stdout_nullfile)
|
|
stdout_nullfile_py.close()
|
|
os.close(saved_stdout)
|
|
os.close(saved_stderr)
|
|
saved_stdout = saved_stderr = saved_stdout_py = saved_stderr_py = stdout_nullfile = stdout_nullfile_py = None
|
|
|
|
def get_default_threads():
|
|
physical_core_limit = 1
|
|
if os.cpu_count()!=None and os.cpu_count()>1:
|
|
physical_core_limit = os.cpu_count() // 2
|
|
default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1))
|
|
processor = platform.processor()
|
|
if 'Intel' in processor:
|
|
default_threads = (8 if default_threads > 8 else default_threads) #this helps avoid e-cores.
|
|
return default_threads
|
|
|
|
def pick_existant_file(ntoption,nonntoption):
|
|
precompiled_prefix = "precompiled_"
|
|
ntexist = file_exists(ntoption)
|
|
nonntexist = file_exists(nonntoption)
|
|
precompiled_ntexist = file_exists(precompiled_prefix+ntoption)
|
|
precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption)
|
|
if os.name == 'nt':
|
|
if not ntexist and precompiled_ntexist:
|
|
return (precompiled_prefix+ntoption)
|
|
if nonntexist and not ntexist:
|
|
return nonntoption
|
|
return ntoption
|
|
else:
|
|
if not nonntexist and precompiled_nonntexist:
|
|
return (precompiled_prefix+nonntoption)
|
|
if ntexist and not nonntexist:
|
|
return ntoption
|
|
return nonntoption
|
|
|
|
lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so")
|
|
lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so")
|
|
lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so")
|
|
lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so")
|
|
lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so")
|
|
lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so")
|
|
lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so")
|
|
lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so")
|
|
lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so")
|
|
libname = ""
|
|
lib_option_pairs = [
|
|
(lib_default, "Use CPU"),
|
|
(lib_clblast, "Use CLBlast"),
|
|
(lib_cublas, "Use CuBLAS"),
|
|
(lib_hipblas, "Use hipBLAS (ROCm)"),
|
|
(lib_vulkan, "Use Vulkan"),
|
|
(lib_noavx2, "Use CPU (Old CPU)"),
|
|
(lib_clblast_noavx2, "Use CLBlast (Old CPU)"),
|
|
(lib_vulkan_noavx2, "Use Vulkan (Old CPU)"),
|
|
(lib_failsafe, "Failsafe Mode (Old CPU)")]
|
|
default_option, clblast_option, cublas_option, hipblas_option, vulkan_option, noavx2_option, clblast_noavx2_option, vulkan_noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs)
|
|
runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)]
|
|
|
|
def init_library():
|
|
global handle, args, libname
|
|
global lib_default,lib_failsafe,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2
|
|
|
|
libname = ""
|
|
use_clblast = False #uses CLBlast instead
|
|
use_cublas = False #uses cublas instead
|
|
use_hipblas = False #uses hipblas instead
|
|
use_noavx2 = False #uses no avx2 instructions
|
|
use_failsafe = False #uses no intrinsics, failsafe mode
|
|
use_vulkan = False #uses vulkan (needs avx2)
|
|
|
|
if args.noavx2:
|
|
use_noavx2 = True
|
|
if args.useclblast:
|
|
if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")):
|
|
print("Warning: NoAVX2 CLBlast library file not found. CPU library will be used.")
|
|
else:
|
|
print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
|
|
use_clblast = True
|
|
elif (args.usevulkan is not None):
|
|
if not file_exists(lib_vulkan_noavx2):
|
|
print("Warning: NoAVX2 Vulkan library file not found. CPU library will be used.")
|
|
else:
|
|
print("Attempting to use NoAVX2 Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
|
|
use_vulkan = True
|
|
else:
|
|
if not file_exists(lib_noavx2):
|
|
print("Warning: NoAVX2 library file not found. Failsafe library will be used.")
|
|
elif (args.usecpu and args.nommap):
|
|
use_failsafe = True
|
|
print("!!! Attempting to use FAILSAFE MODE !!!")
|
|
else:
|
|
print("Attempting to use non-avx2 compatibility library.")
|
|
elif (args.usecublas is not None):
|
|
if not file_exists(lib_cublas) and not file_exists(lib_hipblas):
|
|
print("Warning: CuBLAS library file not found. CPU library will be used.")
|
|
else:
|
|
if file_exists(lib_cublas):
|
|
print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.")
|
|
use_cublas = True
|
|
elif file_exists(lib_hipblas):
|
|
print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.")
|
|
use_hipblas = True
|
|
elif (args.usevulkan is not None):
|
|
if not file_exists(lib_vulkan):
|
|
print("Warning: Vulkan library file not found. CPU library will be used.")
|
|
else:
|
|
print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
|
|
use_vulkan = True
|
|
elif args.useclblast:
|
|
if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")):
|
|
print("Warning: CLBlast library file not found. CPU library will be used.")
|
|
else:
|
|
print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
|
|
use_clblast = True
|
|
else:
|
|
print("Attempting to use CPU library.")
|
|
|
|
if use_noavx2:
|
|
if use_failsafe:
|
|
libname = lib_failsafe
|
|
elif use_clblast:
|
|
libname = lib_clblast_noavx2
|
|
elif use_vulkan:
|
|
libname = lib_vulkan_noavx2
|
|
else:
|
|
libname = lib_noavx2
|
|
else:
|
|
if use_clblast:
|
|
libname = lib_clblast
|
|
elif use_cublas:
|
|
libname = lib_cublas
|
|
elif use_hipblas:
|
|
libname = lib_hipblas
|
|
elif use_vulkan:
|
|
libname = lib_vulkan
|
|
else:
|
|
libname = lib_default
|
|
|
|
print("Initializing dynamic library: " + libname)
|
|
dir_path = getdirpath()
|
|
abs_path = getabspath()
|
|
|
|
#add all potential paths
|
|
if os.name=='nt':
|
|
os.add_dll_directory(dir_path)
|
|
os.add_dll_directory(abs_path)
|
|
os.add_dll_directory(os.getcwd())
|
|
if libname == lib_cublas and "CUDA_PATH" in os.environ:
|
|
newpath = os.path.join(os.environ["CUDA_PATH"], "bin")
|
|
if os.path.exists(newpath):
|
|
os.add_dll_directory(newpath)
|
|
if libname == lib_hipblas and "HIP_PATH" in os.environ:
|
|
newpath = os.path.join(os.environ["HIP_PATH"], "bin")
|
|
if os.path.exists(newpath):
|
|
os.add_dll_directory(newpath)
|
|
|
|
handle = ctypes.CDLL(os.path.join(dir_path, libname))
|
|
|
|
handle.load_model.argtypes = [load_model_inputs]
|
|
handle.load_model.restype = ctypes.c_bool
|
|
handle.generate.argtypes = [generation_inputs]
|
|
handle.generate.restype = generation_outputs
|
|
handle.new_token.restype = ctypes.c_char_p
|
|
handle.new_token.argtypes = [ctypes.c_int]
|
|
handle.get_stream_count.restype = ctypes.c_int
|
|
handle.has_finished.restype = ctypes.c_bool
|
|
handle.get_last_eval_time.restype = ctypes.c_float
|
|
handle.get_last_process_time.restype = ctypes.c_float
|
|
handle.get_last_token_count.restype = ctypes.c_int
|
|
handle.get_last_seed.restype = ctypes.c_int
|
|
handle.get_total_gens.restype = ctypes.c_int
|
|
handle.get_last_stop_reason.restype = ctypes.c_int
|
|
handle.abort_generate.restype = ctypes.c_bool
|
|
handle.token_count.restype = token_count_outputs
|
|
handle.get_pending_output.restype = ctypes.c_char_p
|
|
handle.sd_load_model.argtypes = [sd_load_model_inputs]
|
|
handle.sd_load_model.restype = ctypes.c_bool
|
|
handle.sd_generate.argtypes = [sd_generation_inputs]
|
|
handle.sd_generate.restype = sd_generation_outputs
|
|
handle.whisper_load_model.argtypes = [whisper_load_model_inputs]
|
|
handle.whisper_load_model.restype = ctypes.c_bool
|
|
handle.whisper_generate.argtypes = [whisper_generation_inputs]
|
|
handle.whisper_generate.restype = whisper_generation_outputs
|
|
|
|
def set_backend_props(inputs):
|
|
clblastids = 0
|
|
if args.useclblast:
|
|
clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1])
|
|
inputs.clblast_info = clblastids
|
|
|
|
# we must force an explicit tensor split
|
|
# otherwise the default will divide equally and multigpu crap will slow it down badly
|
|
inputs.cublas_info = 0
|
|
|
|
if not args.tensor_split:
|
|
if (args.usecublas and "0" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
os.environ["HIP_VISIBLE_DEVICES"] = "0"
|
|
elif (args.usecublas and "1" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
|
os.environ["HIP_VISIBLE_DEVICES"] = "1"
|
|
elif (args.usecublas and "2" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
|
|
os.environ["HIP_VISIBLE_DEVICES"] = "2"
|
|
elif (args.usecublas and "3" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
|
os.environ["HIP_VISIBLE_DEVICES"] = "3"
|
|
else:
|
|
if (args.usecublas and "0" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
inputs.cublas_info = 0
|
|
elif (args.usecublas and "1" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
inputs.cublas_info = 1
|
|
elif (args.usecublas and "2" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
inputs.cublas_info = 2
|
|
elif (args.usecublas and "3" in args.usecublas):
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
inputs.cublas_info = 3
|
|
|
|
if args.usevulkan: #is an empty array if using vulkan without defined gpu
|
|
s = ""
|
|
for l in range(0,len(args.usevulkan)):
|
|
s += str(args.usevulkan[l])
|
|
inputs.vulkan_info = s.encode("UTF-8")
|
|
else:
|
|
inputs.vulkan_info = "".encode("UTF-8")
|
|
return inputs
|
|
|
|
def end_trim_to_sentence(input_text):
|
|
enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '…']
|
|
last = -1
|
|
for ender in enders:
|
|
last = max(last, input_text.rfind(ender))
|
|
nl = input_text.rfind("\n")
|
|
last = max(last, nl)
|
|
if last > 0:
|
|
return input_text[:last + 1].strip()
|
|
return input_text.strip()
|
|
|
|
def tryparseint(value):
|
|
try:
|
|
return int(value)
|
|
except ValueError:
|
|
return value
|
|
|
|
def unpack_to_dir(destpath = ""):
|
|
import shutil
|
|
srcpath = os.path.abspath(os.path.dirname(__file__))
|
|
cliunpack = False if destpath == "" else True
|
|
print("Attempt to unpack KoboldCpp into directory...")
|
|
|
|
if not cliunpack:
|
|
from tkinter.filedialog import askdirectory
|
|
from tkinter import messagebox
|
|
destpath = askdirectory(title='Select an empty folder to unpack KoboldCpp')
|
|
if not destpath:
|
|
return
|
|
|
|
if os.path.isdir(srcpath) and os.path.isdir(destpath) and not os.listdir(destpath):
|
|
try:
|
|
if cliunpack:
|
|
print(f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
|
|
else:
|
|
messagebox.showinfo("Unpack Starting", f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
|
|
for item in os.listdir(srcpath):
|
|
s = os.path.join(srcpath, item)
|
|
d = os.path.join(destpath, item)
|
|
if item.endswith('.pyd'): # Skip .pyd files
|
|
continue
|
|
if os.path.isdir(s):
|
|
shutil.copytree(s, d, False, None)
|
|
else:
|
|
shutil.copy2(s, d)
|
|
if cliunpack:
|
|
print(f"KoboldCpp successfully extracted to {destpath}")
|
|
else:
|
|
messagebox.showinfo("KoboldCpp Unpack Success", f"KoboldCpp successfully extracted to {destpath}")
|
|
except Exception as e:
|
|
if cliunpack:
|
|
print(f"An error occurred while unpacking: {e}")
|
|
else:
|
|
messagebox.showerror("Error", f"An error occurred while unpacking: {e}")
|
|
else:
|
|
if cliunpack:
|
|
print(f"The target folder is not empty or invalid. Please select an empty folder.")
|
|
else:
|
|
messagebox.showwarning("Invalid Selection", "The target folder is not empty or invalid. Please select an empty folder.")
|
|
|
|
def exit_with_error(code, message, title="Error"):
|
|
global guimode
|
|
print("")
|
|
time.sleep(1)
|
|
if guimode:
|
|
show_gui_msgbox(title, message)
|
|
else:
|
|
print(message, flush=True)
|
|
time.sleep(2)
|
|
sys.exit(code)
|
|
|
|
def utfprint(str):
|
|
maxlen = 32000
|
|
if args.debugmode >= 1:
|
|
maxlen = 64000
|
|
strlength = len(str)
|
|
if strlength > maxlen: #limit max output len
|
|
str = str[:maxlen] + f"... (+{strlength-maxlen} chars)"
|
|
try:
|
|
print(str)
|
|
except UnicodeEncodeError:
|
|
# Replace or omit the problematic character
|
|
utf_string = str.encode('ascii', 'ignore').decode('ascii',"ignore")
|
|
utf_string = utf_string.replace('\a', '') #remove bell characters
|
|
print(utf_string)
|
|
|
|
def bring_terminal_to_foreground():
|
|
if os.name=='nt':
|
|
ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9)
|
|
ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow())
|
|
|
|
def string_contains_sequence_substring(inputstr,sequences):
|
|
if inputstr.strip()=="":
|
|
return False
|
|
for s in sequences:
|
|
if s.strip()=="":
|
|
continue
|
|
if s.strip() in inputstr.strip() or inputstr.strip() in s.strip():
|
|
return True
|
|
return False
|
|
|
|
import struct
|
|
|
|
def read_gguf_metadata(file_path):
|
|
chunk_size = 8192 # read only first 8kb of file
|
|
try:
|
|
def read_gguf_key(keyname,data,maxval):
|
|
keylen = len(keyname)
|
|
index = data.find(keyname) # Search for the magic number, Read 2 chunks of 4 byte numbers
|
|
if index != -1 and index + keylen + 8 <= chunk_size:
|
|
start_index = index + keylen
|
|
first_value_bytes = data[start_index:start_index + 4]
|
|
second_value_bytes = data[start_index + 4:start_index + 8]
|
|
# Unpack each 4 bytes as an unsigned int32 in little-endian format
|
|
value1 = struct.unpack('<I', first_value_bytes)[0] #4 means its a uint32
|
|
value2 = struct.unpack('<I', second_value_bytes)[0]
|
|
if value1 == 4 and value2 > 0 and value2 <= maxval:
|
|
return value2 #contains the desired value
|
|
return 0
|
|
else:
|
|
return 0 #not found
|
|
|
|
fsize = os.path.getsize(file_path)
|
|
if fsize < 10000: #ignore files under 10kb
|
|
return None
|
|
with open(file_path, 'rb') as f:
|
|
file_header = f.read(4)
|
|
if file_header != b'GGUF': #file is not GGUF
|
|
return None
|
|
data = f.read(chunk_size)
|
|
layercount = read_gguf_key(b'.block_count',data,512)
|
|
head_count_kv = read_gguf_key(b'.attention.head_count_kv',data,8192)
|
|
key_length = read_gguf_key(b'.attention.key_length',data,8192)
|
|
val_length = read_gguf_key(b'.attention.value_length',data,8192)
|
|
return [layercount,head_count_kv, max(key_length,val_length)]
|
|
except Exception as ex:
|
|
return None
|
|
|
|
def extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath):
|
|
global modelfile_extracted_meta
|
|
modelfile_extracted_meta = None
|
|
sdfsize = 0
|
|
whisperfsize = 0
|
|
mmprojsize = 0
|
|
if sdfilepath and os.path.exists(sdfilepath):
|
|
sdfsize = os.path.getsize(sdfilepath)
|
|
if whisperfilepath and os.path.exists(whisperfilepath):
|
|
whisperfsize = os.path.getsize(whisperfilepath)
|
|
if mmprojfilepath and os.path.exists(mmprojfilepath):
|
|
mmprojsize = os.path.getsize(mmprojfilepath)
|
|
if filepath and os.path.exists(filepath):
|
|
try:
|
|
fsize = os.path.getsize(filepath)
|
|
if fsize>10000000: #dont bother with models < 10mb as they are probably bad
|
|
ggufmeta = read_gguf_metadata(filepath)
|
|
modelfile_extracted_meta = [ggufmeta,fsize,sdfsize,whisperfsize,mmprojsize] #extract done. note that meta may be null
|
|
except Exception as ex:
|
|
modelfile_extracted_meta = None
|
|
|
|
def autoset_gpu_layers(ctxsize,sdquanted,bbs): #shitty algo to determine how many layers to use
|
|
global showusedmemwarning, modelfile_extracted_meta # reference cached values instead
|
|
gpumem = MaxMemory[0]
|
|
usedmem = 0
|
|
if MaxFreeMemory[0]>0:
|
|
usedmem = MaxMemory[0]-MaxFreeMemory[0]
|
|
if showusedmemwarning and usedmem > (2.5*1024*1024*1024):
|
|
showusedmemwarning = False
|
|
print(f"Note: KoboldCpp has detected that a significant amount of GPU VRAM ({usedmem/1024/1024} MB) is currently used by another application.\nFor best results, you may wish to close that application and then restart KoboldCpp.\n***")
|
|
reservedmem = max(1.5*1024*1024*1024,(0.5*1024*1024*1024 + usedmem)) # determine vram overhead
|
|
try:
|
|
if not modelfile_extracted_meta:
|
|
return 0
|
|
layerlimit = 0
|
|
fsize = modelfile_extracted_meta[1]
|
|
if fsize>10000000: #dont bother with models < 10mb
|
|
cs = ctxsize
|
|
mem = gpumem
|
|
if modelfile_extracted_meta[2] > 1024*1024*1024*5: #sdxl tax
|
|
mem -= 1024*1024*1024*(6 if sdquanted else 9)
|
|
elif modelfile_extracted_meta[2] > 1024*1024*512: #normal sd tax
|
|
mem -= 1024*1024*1024*(3.25 if sdquanted else 4.25)
|
|
if modelfile_extracted_meta[3] > 1024*1024*10: #whisper tax
|
|
mem -= 350*1024*1024
|
|
if modelfile_extracted_meta[4] > 1024*1024*10: #mmproj tax
|
|
mem -= 350*1024*1024
|
|
|
|
csmul = 1.0
|
|
if cs:
|
|
csmul = (cs/4096) if cs >= 8192 else 1.8 if cs > 4096 else 1.2 if cs > 2048 else 1.0
|
|
ggufmeta = modelfile_extracted_meta[0]
|
|
if not ggufmeta or ggufmeta[0]==0: #fail to read or no layers
|
|
sizeperlayer = fsize*csmul*0.052
|
|
layerlimit = int(min(200,(mem-usedmem)/sizeperlayer))
|
|
else:
|
|
layers = ggufmeta[0]
|
|
headcount = ggufmeta[1]
|
|
headkvlen = (ggufmeta[2] if ggufmeta[2] > 0 else 128)
|
|
ratio = (mem-usedmem)/(fsize*csmul*1.55)
|
|
computemem = layers*(4 if bbs <= 512 else (bbs/128))*headkvlen*cs*4*1.5 # apply blasbatchsize calculations if over 512
|
|
contextmem = layers*headcount*headkvlen*cs*4*1.1
|
|
if headcount > 0:
|
|
ratio = max(ratio, (mem - reservedmem - computemem) / (fsize + contextmem))
|
|
layerlimit = min(int(ratio*layers), (layers + 3))
|
|
layerlimit = (0 if layerlimit<=2 else layerlimit)
|
|
return layerlimit
|
|
except Exception as ex:
|
|
return 0
|
|
|
|
def fetch_gpu_properties(testCL,testCU,testVK):
|
|
import subprocess
|
|
|
|
if testCU:
|
|
FetchedCUdevices = []
|
|
FetchedCUdeviceMem = []
|
|
FetchedCUfreeMem = []
|
|
AMDgpu = None
|
|
try: # Get NVIDIA GPU names
|
|
output = subprocess.run(['nvidia-smi','--query-gpu=name,memory.total,memory.free','--format=csv,noheader'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
|
|
FetchedCUdevices = [line.split(",")[0].strip() for line in output.splitlines()]
|
|
FetchedCUdeviceMem = [line.split(",")[1].strip().split(" ")[0].strip() for line in output.splitlines()]
|
|
FetchedCUfreeMem = [line.split(",")[2].strip().split(" ")[0].strip() for line in output.splitlines()]
|
|
except Exception as e:
|
|
pass
|
|
if len(FetchedCUdevices)==0:
|
|
try: # Get AMD ROCm GPU names
|
|
output = subprocess.run(['rocminfo'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
|
|
device_name = None
|
|
for line in output.splitlines(): # read through the output line by line
|
|
line = line.strip()
|
|
if line.startswith("Marketing Name:"): device_name = line.split(":", 1)[1].strip() # if we find a named device, temporarily save the name
|
|
elif line.startswith("Device Type:") and "GPU" in line and device_name is not None: # if the following Device Type is a GPU (not a CPU) then add it to devices list
|
|
FetchedCUdevices.append(device_name)
|
|
AMDgpu = True
|
|
elif line.startswith("Device Type:") and "GPU" not in line: device_name = None
|
|
if FetchedCUdevices:
|
|
getamdvram = subprocess.run(['rocm-smi', '--showmeminfo', 'vram', '--csv'], capture_output=True, text=True, check=True, encoding='utf-8').stdout # fetch VRAM of devices
|
|
if getamdvram:
|
|
FetchedCUdeviceMem = [line.split(",")[1].strip() for line in getamdvram.splitlines()[1:] if line.strip()]
|
|
except Exception as e:
|
|
pass
|
|
lowestcumem = 0
|
|
lowestfreecumem = 0
|
|
for idx in range(0,4):
|
|
if(len(FetchedCUdevices)>idx):
|
|
CUDevicesNames[idx] = FetchedCUdevices[idx]
|
|
if len(FetchedCUdeviceMem)>idx:
|
|
dmem = int(FetchedCUdeviceMem[idx]) if AMDgpu else (int(FetchedCUdeviceMem[idx])*1024*1024)
|
|
lowestcumem = dmem if lowestcumem==0 else (dmem if dmem<lowestcumem else lowestcumem)
|
|
if len(FetchedCUfreeMem)>idx:
|
|
dmem = (int(FetchedCUfreeMem[idx])*1024*1024)
|
|
lowestfreecumem = dmem if lowestfreecumem==0 else (dmem if dmem<lowestfreecumem else lowestfreecumem)
|
|
|
|
MaxMemory[0] = max(lowestcumem,MaxMemory[0])
|
|
MaxFreeMemory[0] = max(lowestfreecumem,MaxFreeMemory[0])
|
|
|
|
if testVK:
|
|
try: # Get Vulkan names
|
|
output = subprocess.run(['vulkaninfo','--summary'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
|
|
devicelist = [line.split("=")[1].strip() for line in output.splitlines() if "deviceName" in line]
|
|
devicetypes = [line.split("=")[1].strip() for line in output.splitlines() if "deviceType" in line]
|
|
idx = 0
|
|
for dname in devicelist:
|
|
if idx<len(VKDevicesNames):
|
|
VKDevicesNames[idx] = dname
|
|
idx += 1
|
|
if len(devicetypes) == len(devicelist):
|
|
idx = 0
|
|
for dvtype in devicetypes:
|
|
if idx<len(VKIsDGPU):
|
|
VKIsDGPU[idx] = (1 if dvtype=="PHYSICAL_DEVICE_TYPE_DISCRETE_GPU" else 0)
|
|
idx += 1
|
|
except Exception as e:
|
|
pass
|
|
|
|
if testCL:
|
|
try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found.
|
|
basepath = os.path.abspath(os.path.dirname(__file__))
|
|
output = ""
|
|
data = None
|
|
try:
|
|
output = subprocess.run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout
|
|
data = json.loads(output)
|
|
except Exception as e1:
|
|
output = subprocess.run([((os.path.join(basepath, "winclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, creationflags=subprocess.CREATE_NO_WINDOW | subprocess.DETACHED_PROCESS, encoding='utf-8').stdout
|
|
data = json.loads(output)
|
|
plat = 0
|
|
dev = 0
|
|
lowestclmem = 0
|
|
for platform in data["devices"]:
|
|
dev = 0
|
|
for device in platform["online"]:
|
|
dname = device["CL_DEVICE_NAME"]
|
|
dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"])
|
|
idx = plat+dev*2
|
|
if idx<len(CLDevices):
|
|
CLDevicesNames[idx] = dname
|
|
lowestclmem = dmem if lowestclmem==0 else (dmem if dmem<lowestclmem else lowestclmem)
|
|
dev += 1
|
|
plat += 1
|
|
MaxMemory[0] = max(lowestclmem,MaxMemory[0])
|
|
except Exception as e:
|
|
pass
|
|
return
|
|
|
|
def auto_set_backend_cli():
|
|
fetch_gpu_properties(False,True,True)
|
|
found_new_backend = False
|
|
if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and any(CUDevicesNames):
|
|
if "Use CuBLAS" in runopts or "Use hipBLAS (ROCm)" in runopts:
|
|
args.usecublas = ["normal","mmq"]
|
|
print("Auto Selected CUDA Backend...\n")
|
|
found_new_backend = True
|
|
elif exitcounter < 100 and (1 in VKIsDGPU) and "Use Vulkan" in runopts:
|
|
for i in range(0,len(VKIsDGPU)):
|
|
if VKIsDGPU[i]==1:
|
|
args.usevulkan = []
|
|
print("Auto Selected Vulkan Backend...\n")
|
|
found_new_backend = True
|
|
break
|
|
if not found_new_backend:
|
|
print("No GPU Backend found...\n")
|
|
|
|
def load_model(model_filename):
|
|
global args
|
|
inputs = load_model_inputs()
|
|
inputs.model_filename = model_filename.encode("UTF-8")
|
|
inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten
|
|
inputs.threads = args.threads
|
|
inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False)
|
|
inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False)
|
|
inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False)
|
|
inputs.vulkan_info = "0".encode("UTF-8")
|
|
inputs.blasthreads = args.blasthreads
|
|
inputs.use_mmap = (not args.nommap)
|
|
inputs.use_mlock = args.usemlock
|
|
inputs.lora_filename = "".encode("UTF-8")
|
|
inputs.lora_base = "".encode("UTF-8")
|
|
if args.lora:
|
|
inputs.lora_filename = args.lora[0].encode("UTF-8")
|
|
inputs.use_mmap = False
|
|
if len(args.lora) > 1:
|
|
inputs.lora_base = args.lora[1].encode("UTF-8")
|
|
|
|
inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8")
|
|
inputs.use_smartcontext = args.smartcontext
|
|
inputs.use_contextshift = (0 if args.noshift else 1)
|
|
inputs.flash_attention = args.flashattention
|
|
if args.quantkv>0:
|
|
inputs.quant_k = inputs.quant_v = args.quantkv
|
|
inputs.flash_attention = True
|
|
inputs.use_contextshift = 0
|
|
else:
|
|
inputs.quant_k = inputs.quant_v = 0
|
|
inputs.blasbatchsize = args.blasbatchsize
|
|
inputs.forceversion = args.forceversion
|
|
inputs.gpulayers = args.gpulayers
|
|
inputs.rope_freq_scale = args.ropeconfig[0]
|
|
if len(args.ropeconfig)>1:
|
|
inputs.rope_freq_base = args.ropeconfig[1]
|
|
else:
|
|
inputs.rope_freq_base = 10000
|
|
|
|
for n in range(tensor_split_max):
|
|
if args.tensor_split and n < len(args.tensor_split):
|
|
inputs.tensor_split[n] = float(args.tensor_split[n])
|
|
else:
|
|
inputs.tensor_split[n] = 0
|
|
|
|
inputs = set_backend_props(inputs)
|
|
|
|
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
|
inputs.debugmode = args.debugmode
|
|
ret = handle.load_model(inputs)
|
|
return ret
|
|
|
|
def generate(genparams, is_quiet=False, stream_flag=False):
|
|
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
|
|
|
|
prompt = genparams.get('prompt', "")
|
|
memory = genparams.get('memory', "")
|
|
images = genparams.get('images', [])
|
|
max_context_length = genparams.get('max_context_length', maxctx)
|
|
max_length = genparams.get('max_length', 180)
|
|
temperature = genparams.get('temperature', 0.7)
|
|
top_k = genparams.get('top_k', 100)
|
|
top_a = genparams.get('top_a', 0.0)
|
|
top_p = genparams.get('top_p', 0.92)
|
|
min_p = genparams.get('min_p', 0.0)
|
|
typical_p = genparams.get('typical', 1.0)
|
|
tfs = genparams.get('tfs', 1.0)
|
|
rep_pen = genparams.get('rep_pen', 1.0)
|
|
rep_pen_range = genparams.get('rep_pen_range', 320)
|
|
rep_pen_slope = genparams.get('rep_pen_slope', 1.0)
|
|
presence_penalty = genparams.get('presence_penalty', 0.0)
|
|
mirostat = genparams.get('mirostat', 0)
|
|
mirostat_tau = genparams.get('mirostat_tau', 5.0)
|
|
mirostat_eta = genparams.get('mirostat_eta', 0.1)
|
|
dry_multiplier = genparams.get('dry_multiplier', 0.0)
|
|
dry_base = genparams.get('dry_base', 1.75)
|
|
dry_allowed_length = genparams.get('dry_allowed_length', 2)
|
|
dry_penalty_last_n = genparams.get('dry_penalty_last_n', 320)
|
|
dry_sequence_breakers = genparams.get('dry_sequence_breakers', [])
|
|
xtc_threshold = genparams.get('xtc_threshold', 0.2)
|
|
xtc_probability = genparams.get('xtc_probability', 0)
|
|
sampler_order = genparams.get('sampler_order', [6, 0, 1, 3, 4, 2, 5])
|
|
seed = tryparseint(genparams.get('sampler_seed', -1))
|
|
stop_sequence = genparams.get('stop_sequence', [])
|
|
ban_eos_token = genparams.get('ban_eos_token', False)
|
|
stream_sse = stream_flag
|
|
grammar = genparams.get('grammar', '')
|
|
grammar_retain_state = genparams.get('grammar_retain_state', False)
|
|
genkey = genparams.get('genkey', '')
|
|
trimstop = genparams.get('trim_stop', False)
|
|
quiet = is_quiet
|
|
dynatemp_range = genparams.get('dynatemp_range', 0.0)
|
|
dynatemp_exponent = genparams.get('dynatemp_exponent', 1.0)
|
|
smoothing_factor = genparams.get('smoothing_factor', 0.0)
|
|
logit_biases = genparams.get('logit_bias', {})
|
|
render_special = genparams.get('render_special', False)
|
|
banned_tokens = genparams.get('banned_tokens', [])
|
|
banned_phrases = genparams.get('banned_phrases', [])
|
|
bypass_eos_token = genparams.get('bypass_eos', False)
|
|
|
|
inputs = generation_inputs()
|
|
inputs.prompt = prompt.encode("UTF-8")
|
|
inputs.memory = memory.encode("UTF-8")
|
|
for n in range(images_max):
|
|
if not images or n >= len(images):
|
|
inputs.images[n] = "".encode("UTF-8")
|
|
else:
|
|
inputs.images[n] = images[n].encode("UTF-8")
|
|
global showmaxctxwarning
|
|
if max_context_length > maxctx:
|
|
if showmaxctxwarning:
|
|
print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)")
|
|
showmaxctxwarning = False
|
|
max_context_length = maxctx
|
|
min_remain = min(max_context_length-4, 16)
|
|
if max_length >= (max_context_length-min_remain):
|
|
max_length = max_context_length-min_remain
|
|
print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.")
|
|
|
|
inputs.max_context_length = max_context_length # this will resize the context buffer if changed
|
|
inputs.max_length = max_length
|
|
inputs.temperature = temperature
|
|
inputs.top_k = top_k
|
|
inputs.top_a = top_a
|
|
inputs.top_p = top_p
|
|
inputs.min_p = min_p
|
|
inputs.typical_p = typical_p
|
|
inputs.tfs = tfs
|
|
inputs.rep_pen = rep_pen
|
|
inputs.rep_pen_range = rep_pen_range
|
|
inputs.rep_pen_slope = rep_pen_slope
|
|
inputs.presence_penalty = presence_penalty
|
|
inputs.stream_sse = stream_sse
|
|
inputs.quiet = quiet
|
|
inputs.dynatemp_range = dynatemp_range
|
|
inputs.dynatemp_exponent = dynatemp_exponent
|
|
inputs.smoothing_factor = smoothing_factor
|
|
inputs.grammar = grammar.encode("UTF-8")
|
|
inputs.grammar_retain_state = grammar_retain_state
|
|
inputs.allow_eos_token = not ban_eos_token
|
|
inputs.bypass_eos_token = bypass_eos_token
|
|
inputs.render_special = render_special
|
|
if mirostat in (1, 2):
|
|
inputs.mirostat = mirostat
|
|
inputs.mirostat_tau = mirostat_tau
|
|
inputs.mirostat_eta = mirostat_eta
|
|
else:
|
|
inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0
|
|
inputs.dry_multiplier = dry_multiplier
|
|
inputs.dry_base = dry_base
|
|
inputs.xtc_threshold = xtc_threshold
|
|
inputs.xtc_probability = xtc_probability
|
|
inputs.dry_allowed_length = dry_allowed_length
|
|
inputs.dry_penalty_last_n = dry_penalty_last_n
|
|
# Handle dry_sequence_breakers being passed as a json-encoded array of
|
|
# strings, rather than as an array of strings itself. This is to support
|
|
# SillyTavern, which passes sequence breakers to Oobabooga that way.
|
|
if dry_multiplier > 0 and isinstance(dry_sequence_breakers, str):
|
|
try:
|
|
dry_sequence_breakers = json.loads(dry_sequence_breakers)
|
|
except ValueError as e:
|
|
print(f"ERROR: dry_sequence_breakers must be an array of strings or a json encoded array of strings. Could not parse '{dry_sequence_breakers}': " + str(e))
|
|
dry_sequence_breakers = []
|
|
for n in range(dry_seq_break_max):
|
|
if dry_multiplier > 0 and n < len(dry_sequence_breakers):
|
|
inputs.dry_sequence_breakers[n] = dry_sequence_breakers[n].encode("UTF-8")
|
|
else:
|
|
inputs.dry_sequence_breakers[n] = "".encode("UTF-8")
|
|
|
|
if sampler_order and 0 < len(sampler_order) <= sampler_order_max:
|
|
try:
|
|
for i, sampler in enumerate(sampler_order):
|
|
inputs.sampler_order[i] = sampler
|
|
inputs.sampler_len = len(sampler_order)
|
|
global showsamplerwarning
|
|
if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5):
|
|
print("\n(Note: Non-default sampler_order detected. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)")
|
|
showsamplerwarning = False
|
|
except TypeError as e:
|
|
print("ERROR: sampler_order must be a list of integers: " + str(e))
|
|
inputs.seed = seed
|
|
for n in range(stop_token_max):
|
|
if not stop_sequence or n >= len(stop_sequence):
|
|
inputs.stop_sequence[n] = "".encode("UTF-8")
|
|
elif stop_sequence[n]==None:
|
|
inputs.stop_sequence[n] = "".encode("UTF-8")
|
|
else:
|
|
inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8")
|
|
|
|
bias_list = []
|
|
try:
|
|
if logit_biases and len(logit_biases) > 0:
|
|
bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()]
|
|
except Exception as ex:
|
|
print(f"Logit bias dictionary is invalid: {ex}")
|
|
|
|
for n in range(logit_bias_max):
|
|
if n >= len(bias_list):
|
|
inputs.logit_biases[n] = logit_bias(-1, 0.0)
|
|
else:
|
|
try:
|
|
t_id = int(bias_list[n]['key'])
|
|
bias = float(bias_list[n]['value'])
|
|
t_id = -1 if t_id < 0 else t_id
|
|
bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias))
|
|
inputs.logit_biases[n] = logit_bias(t_id, bias)
|
|
except Exception as ex:
|
|
inputs.logit_biases[n] = logit_bias(-1, 0.0)
|
|
print(f"Skipped unparsable logit bias:{ex}")
|
|
|
|
for n in range(ban_token_max):
|
|
if not banned_tokens or n >= len(banned_tokens):
|
|
inputs.banned_tokens[n] = "".encode("UTF-8")
|
|
else:
|
|
inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8")
|
|
|
|
for n in range(ban_phrase_max):
|
|
if not banned_phrases or n >= len(banned_phrases):
|
|
inputs.banned_phrases[n] = "".encode("UTF-8")
|
|
else:
|
|
inputs.banned_phrases[n] = banned_phrases[n].encode("UTF-8")
|
|
|
|
currentusergenkey = genkey
|
|
totalgens += 1
|
|
#early exit if aborted
|
|
|
|
if pendingabortkey!="" and pendingabortkey==genkey:
|
|
print(f"\nDeferred Abort for GenKey: {pendingabortkey}")
|
|
pendingabortkey = ""
|
|
return {"text":"","status":-1,"stopreason":-1}
|
|
else:
|
|
ret = handle.generate(inputs)
|
|
outstr = ""
|
|
if ret.status==1:
|
|
outstr = ret.text.decode("UTF-8","ignore")
|
|
if trimstop:
|
|
for trim_str in stop_sequence:
|
|
sindex = outstr.find(trim_str)
|
|
if sindex != -1 and trim_str!="":
|
|
outstr = outstr[:sindex]
|
|
return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason}
|
|
|
|
|
|
def sd_load_model(model_filename,vae_filename,lora_filename):
|
|
global args
|
|
inputs = sd_load_model_inputs()
|
|
inputs.debugmode = args.debugmode
|
|
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
|
inputs.model_filename = model_filename.encode("UTF-8")
|
|
thds = args.threads
|
|
quant = 0
|
|
|
|
if args.sdthreads and args.sdthreads > 0:
|
|
sdt = int(args.sdthreads)
|
|
if sdt > 0:
|
|
thds = sdt
|
|
if args.sdquant:
|
|
quant = 1
|
|
|
|
inputs.threads = thds
|
|
inputs.quant = quant
|
|
inputs.taesd = True if args.sdvaeauto else False
|
|
inputs.vae_filename = vae_filename.encode("UTF-8")
|
|
inputs.lora_filename = lora_filename.encode("UTF-8")
|
|
inputs.lora_multiplier = args.sdloramult
|
|
inputs = set_backend_props(inputs)
|
|
ret = handle.sd_load_model(inputs)
|
|
return ret
|
|
|
|
def sd_generate(genparams):
|
|
global maxctx, args, currentusergenkey, totalgens, pendingabortkey, chatcompl_adapter
|
|
|
|
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
|
|
adapter_obj = genparams.get('adapter', default_adapter)
|
|
forced_negprompt = adapter_obj.get("add_sd_negative_prompt", "")
|
|
forced_posprompt = adapter_obj.get("add_sd_prompt", "")
|
|
|
|
prompt = genparams.get("prompt", "high quality")
|
|
negative_prompt = genparams.get("negative_prompt", "")
|
|
if forced_negprompt!="":
|
|
if negative_prompt!="":
|
|
negative_prompt += ", " + forced_negprompt
|
|
else:
|
|
negative_prompt = forced_negprompt
|
|
if forced_posprompt!="":
|
|
if prompt!="":
|
|
prompt += ", " + forced_posprompt
|
|
else:
|
|
prompt = forced_posprompt
|
|
init_images_arr = genparams.get("init_images", [])
|
|
init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0])
|
|
denoising_strength = genparams.get("denoising_strength", 0.6)
|
|
cfg_scale = genparams.get("cfg_scale", 5)
|
|
sample_steps = tryparseint(genparams.get("steps", 20))
|
|
width = tryparseint(genparams.get("width", 512))
|
|
height = tryparseint(genparams.get("height", 512))
|
|
seed = tryparseint(genparams.get("seed", -1))
|
|
sample_method = genparams.get("sampler_name", "k_euler_a")
|
|
is_quiet = True if (args.quiet or args.debugmode == -1) else False
|
|
clip_skip = tryparseint(genparams.get("clip_skip", -1))
|
|
|
|
#clean vars
|
|
width = width - (width%64)
|
|
height = height - (height%64)
|
|
cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale))
|
|
sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps))
|
|
reslimit = 1024
|
|
width = (64 if width < 64 else width)
|
|
height = (64 if height < 64 else height)
|
|
|
|
if args.sdclamped:
|
|
sample_steps = (40 if sample_steps > 40 else sample_steps)
|
|
reslimit = int(args.sdclamped)
|
|
reslimit = (512 if reslimit<512 else reslimit)
|
|
print(f"\nImgGen: Clamped Mode (For Shared Use). Step counts and resolution are clamped to {reslimit}x{reslimit}.")
|
|
|
|
biggest = max(width,height)
|
|
if biggest > reslimit:
|
|
scaler = biggest / reslimit
|
|
width = int(width / scaler)
|
|
height = int(height / scaler)
|
|
width = width - (width%64)
|
|
height = height - (height%64)
|
|
|
|
inputs = sd_generation_inputs()
|
|
inputs.prompt = prompt.encode("UTF-8")
|
|
inputs.negative_prompt = negative_prompt.encode("UTF-8")
|
|
inputs.init_images = init_images.encode("UTF-8")
|
|
inputs.cfg_scale = cfg_scale
|
|
inputs.denoising_strength = denoising_strength
|
|
inputs.sample_steps = sample_steps
|
|
inputs.width = width
|
|
inputs.height = height
|
|
inputs.seed = seed
|
|
inputs.sample_method = sample_method.lower().encode("UTF-8")
|
|
inputs.quiet = is_quiet
|
|
inputs.clip_skip = clip_skip
|
|
ret = handle.sd_generate(inputs)
|
|
outstr = ""
|
|
if ret.status==1:
|
|
outstr = ret.data.decode("UTF-8","ignore")
|
|
return outstr
|
|
|
|
|
|
def whisper_load_model(model_filename):
|
|
global args
|
|
inputs = whisper_load_model_inputs()
|
|
inputs.debugmode = args.debugmode
|
|
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
|
|
inputs.model_filename = model_filename.encode("UTF-8")
|
|
inputs = set_backend_props(inputs)
|
|
ret = handle.whisper_load_model(inputs)
|
|
return ret
|
|
|
|
def whisper_generate(genparams):
|
|
global args
|
|
is_quiet = True if (args.quiet or args.debugmode == -1) else False
|
|
prompt = genparams.get("prompt", "")
|
|
audio_data = genparams.get("audio_data", "")
|
|
if audio_data.startswith("data:audio"):
|
|
audio_data = audio_data.split(",", 1)[1]
|
|
inputs = whisper_generation_inputs()
|
|
inputs.prompt = prompt.encode("UTF-8")
|
|
inputs.audio_data = audio_data.encode("UTF-8")
|
|
inputs.quiet = is_quiet
|
|
ret = handle.whisper_generate(inputs)
|
|
outstr = ""
|
|
if ret.status==1:
|
|
outstr = ret.data.decode("UTF-8","ignore")
|
|
return outstr
|
|
|
|
#################################################################
|
|
### A hacky simple HTTP server simulating a kobold api by Concedo
|
|
### we are intentionally NOT using flask, because we want MINIMAL dependencies
|
|
#################################################################
|
|
|
|
# Used to parse json for openai tool calls
|
|
def extract_json_from_string(input_string):
|
|
parsed_json = None
|
|
try: # First check if model exported perfect json
|
|
parsed_json = json.loads(input_string)
|
|
return parsed_json
|
|
except Exception as e:
|
|
pass
|
|
try: # Next check if all we need is to add brackets to make it perfect json
|
|
parsed_json = json.loads(f"[{input_string}]")
|
|
return parsed_json
|
|
except Exception as e:
|
|
pass
|
|
try:
|
|
# Now use regular expression to match JSON objects or arrays in case part is valid json and part is not
|
|
json_pattern = r'(\{.*?\}|\[.*?\])' # was json_pattern = r'(\{.*\}|\[.*\])'
|
|
potential_jsons = re.findall(json_pattern, input_string, re.DOTALL)
|
|
for potential_json in potential_jsons:
|
|
try:
|
|
parsed_json = json.loads(potential_json)
|
|
return parsed_json
|
|
except Exception as e:
|
|
continue
|
|
except Exception as e:
|
|
pass
|
|
return []
|
|
|
|
def transform_genparams(genparams, api_format):
|
|
global chatcompl_adapter
|
|
#api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate
|
|
#alias all nonstandard alternative names for rep pen.
|
|
rp1 = genparams.get('repeat_penalty', 1.0)
|
|
rp2 = genparams.get('repetition_penalty', 1.0)
|
|
rp3 = genparams.get('rep_pen', 1.0)
|
|
rp_max = max(rp1,rp2,rp3)
|
|
genparams["rep_pen"] = rp_max
|
|
if "use_default_badwordsids" in genparams and not ("ban_eos_token" in genparams):
|
|
genparams["ban_eos_token"] = genparams.get('use_default_badwordsids', False)
|
|
|
|
if api_format==1:
|
|
genparams["prompt"] = genparams.get('text', "")
|
|
genparams["top_k"] = int(genparams.get('top_k', 120))
|
|
genparams["max_length"] = genparams.get('max', 180)
|
|
|
|
elif api_format==2:
|
|
pass
|
|
|
|
elif api_format==3 or api_format==4:
|
|
genparams["max_length"] = genparams.get('max_tokens', (400 if api_format==4 else 180))
|
|
presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0))
|
|
genparams["presence_penalty"] = presence_penalty
|
|
# openai allows either a string or a list as a stop sequence
|
|
if isinstance(genparams.get('stop',[]), list):
|
|
genparams["stop_sequence"] = genparams.get('stop', [])
|
|
else:
|
|
genparams["stop_sequence"] = [genparams.get('stop')]
|
|
|
|
genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1))
|
|
genparams["mirostat"] = genparams.get('mirostat_mode', 0)
|
|
|
|
if api_format==4:
|
|
# translate openai chat completion messages format into one big string.
|
|
messages_array = genparams.get('messages', [])
|
|
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
|
|
adapter_obj = genparams.get('adapter', default_adapter)
|
|
messages_string = ""
|
|
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
|
|
system_message_end = adapter_obj.get("system_end", "")
|
|
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
|
|
user_message_end = adapter_obj.get("user_end", "")
|
|
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
|
|
assistant_message_end = adapter_obj.get("assistant_end", "")
|
|
tools_message_start = adapter_obj.get("tools_start", "")
|
|
tools_message_end = adapter_obj.get("tools_end", "")
|
|
images_added = []
|
|
|
|
message_index = 0
|
|
for message in messages_array:
|
|
message_index += 1
|
|
if message['role'] == "system":
|
|
messages_string += system_message_start
|
|
elif message['role'] == "user":
|
|
messages_string += user_message_start
|
|
elif message['role'] == "assistant":
|
|
messages_string += assistant_message_start
|
|
elif message['role'] == "tool":
|
|
messages_string += tools_message_start
|
|
|
|
# content can be a string or an array of objects
|
|
curr_content = message['content']
|
|
if isinstance(curr_content, str):
|
|
messages_string += curr_content
|
|
elif isinstance(curr_content, list): #is an array
|
|
for item in curr_content:
|
|
if item['type']=="text":
|
|
messages_string += item['text']
|
|
elif item['type']=="image_url":
|
|
if item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"):
|
|
images_added.append(item['image_url']['url'].split(",", 1)[1])
|
|
# If last message, add any tools calls after message content and before message end token if any
|
|
if message['role'] == "user" and message_index == len(messages_array):
|
|
# Check if user is passing a openai tools array, if so add to end of prompt before assistant prompt unless tool_choice has been set to None
|
|
tools_array = genparams.get('tools', [])
|
|
if tools_array and len(tools_array) > 0 and genparams.get('tool_choice',None) != None:
|
|
response_array = [{"id": "insert an id for the response", "type": "function", "function": {"name": "insert the name of the function you want to call", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}]
|
|
json_formatting_instruction = " Use this style of JSON object formatting to give your answer if you think the user is asking you to perform an action: " + json.dumps(response_array, indent=0)
|
|
tools_string = json.dumps(tools_array, indent=0)
|
|
messages_string += tools_string
|
|
specified_function = None
|
|
if isinstance(genparams.get('tool_choice'), dict):
|
|
try:
|
|
specified_function = genparams.get('tool_choice').get('function').get('name')
|
|
json_formatting_instruction = f"The user is asking you to use the style of this JSON object formatting to complete the parameters for the specific function named {specified_function} in the following format: " + json.dumps([{"id": "insert an id for the response", "type": "function", "function": {"name": f"{specified_function}", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}], indent=0)
|
|
except Exception as e:
|
|
# In case of any issues, just revert back to no specified function
|
|
pass
|
|
messages_string += json_formatting_instruction
|
|
|
|
# Set temperature low automatically if function calling
|
|
genparams["temperature"] = 0.2
|
|
genparams["using_openai_tools"] = True
|
|
|
|
# Set grammar to llamacpp example grammar to force json response (see https://github.com/ggerganov/llama.cpp/blob/master/grammars/json_arr.gbnf)
|
|
genparams["grammar"] = r"""
|
|
root ::= arr
|
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
|
arr ::=
|
|
"[\n" ws (
|
|
value
|
|
(",\n" ws value)*
|
|
)? "]"
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? "}" ws
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? "]" ws
|
|
string ::=
|
|
"\"" (
|
|
[^"\\\x7F\x00-\x1F] |
|
|
"\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4})
|
|
)* "\"" ws
|
|
number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [1-9] [0-9]{0,15})? ws
|
|
ws ::= | " " | "\n" [ \t]{0,20}
|
|
"""
|
|
if message['role'] == "system":
|
|
messages_string += system_message_end
|
|
elif message['role'] == "user":
|
|
messages_string += user_message_end
|
|
elif message['role'] == "assistant":
|
|
messages_string += assistant_message_end
|
|
elif message['role'] == "tool":
|
|
messages_string += tools_message_end
|
|
|
|
messages_string += assistant_message_start
|
|
genparams["prompt"] = messages_string
|
|
if len(images_added)>0:
|
|
genparams["images"] = images_added
|
|
if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing
|
|
genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()]
|
|
else:
|
|
genparams["stop_sequence"].append(user_message_start.strip())
|
|
genparams["stop_sequence"].append(assistant_message_start.strip())
|
|
genparams["trim_stop"] = True
|
|
|
|
|
|
elif api_format==5:
|
|
firstimg = genparams.get('image', "")
|
|
genparams["images"] = [firstimg]
|
|
genparams["max_length"] = 42
|
|
adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter
|
|
user_message_start = adapter_obj.get("user_start", "### Instruction:")
|
|
assistant_message_start = adapter_obj.get("assistant_start", "### Response:")
|
|
genparams["prompt"] = f"{user_message_start} In one sentence, write a descriptive caption for this image.\n{assistant_message_start}"
|
|
|
|
return genparams
|
|
|
|
class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
|
|
sys_version = ""
|
|
server_version = "ConcedoLlamaForKoboldServer"
|
|
|
|
def __init__(self, addr, port):
|
|
self.addr = addr
|
|
self.port = port
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def log_message(self, format, *args):
|
|
global showdebug
|
|
if showdebug:
|
|
super().log_message(format, *args)
|
|
pass
|
|
|
|
def extract_b64string_from_file_upload(self, body):
|
|
try:
|
|
if 'content-type' in self.headers and self.headers['content-type']:
|
|
boundary = self.headers['content-type'].split("=")[1].encode()
|
|
if boundary:
|
|
fparts = body.split(boundary)
|
|
for fpart in fparts:
|
|
detected_upload_filename = re.findall(r'Content-Disposition.*name="file"; filename="(.*)"', fpart.decode('utf-8',errors='ignore'))
|
|
if detected_upload_filename and len(detected_upload_filename)>0:
|
|
utfprint(f"Detected uploaded file: {detected_upload_filename[0]}")
|
|
file_data = fpart.split(b'\r\n\r\n')[1].rsplit(b'\r\n', 1)[0]
|
|
file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore")
|
|
base64_string = f"data:audio/wav;base64,{file_data_base64}"
|
|
return base64_string
|
|
print("Uploaded file not found.")
|
|
return None
|
|
except Exception as e:
|
|
print(f"File Upload Process Error: {e}")
|
|
return None
|
|
|
|
async def generate_text(self, genparams, api_format, stream_flag):
|
|
global friendlymodelname, chatcompl_adapter, currfinishreason
|
|
is_quiet = args.quiet
|
|
currfinishreason = "null"
|
|
|
|
def run_blocking(): # api format 1=basic,2=kai,3=oai,4=oai-chat
|
|
# flag instance as non-idle for a while
|
|
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
|
|
if not washordereq:
|
|
global last_non_horde_req_time
|
|
last_non_horde_req_time = time.time()
|
|
|
|
return generate(genparams=genparams,is_quiet=is_quiet,stream_flag=stream_flag)
|
|
|
|
genout = {"text": "", "status": -1, "stopreason": -1}
|
|
if stream_flag:
|
|
loop = asyncio.get_event_loop()
|
|
executor = ThreadPoolExecutor()
|
|
genout = await loop.run_in_executor(executor, run_blocking)
|
|
else:
|
|
genout = run_blocking()
|
|
|
|
recvtxt = genout['text']
|
|
currfinishreason = ("length" if (genout['stopreason'] != 1) else "stop")
|
|
|
|
# flag instance as non-idle for a while
|
|
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
|
|
if not washordereq:
|
|
global last_non_horde_req_time
|
|
last_non_horde_req_time = time.time()
|
|
|
|
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
|
|
utfprint("\nOutput: " + recvtxt)
|
|
|
|
if api_format == 1:
|
|
res = {"data": {"seqs": [recvtxt]}}
|
|
elif api_format == 3:
|
|
res = {"id": "cmpl-A1", "object": "text_completion", "created": int(time.time()), "model": friendlymodelname,
|
|
"usage": {"prompt_tokens": 100, "completion_tokens": 100, "total_tokens": 200},
|
|
"choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason}]}
|
|
elif api_format == 4:
|
|
using_openai_tools = genparams.get('using_openai_tools', False)
|
|
tool_calls = []
|
|
if using_openai_tools:
|
|
tool_calls = extract_json_from_string(recvtxt)
|
|
if tool_calls and len(tool_calls)>0:
|
|
recvtxt = None
|
|
res = {"id": "chatcmpl-A1", "object": "chat.completion", "created": int(time.time()), "model": friendlymodelname,
|
|
"usage": {"prompt_tokens": 100, "completion_tokens": 100, "total_tokens": 200},
|
|
"choices": [{"index": 0, "message": {"role": "assistant", "content": recvtxt, "tool_calls": tool_calls}, "finish_reason": currfinishreason}]}
|
|
elif api_format == 5:
|
|
res = {"caption": end_trim_to_sentence(recvtxt)}
|
|
else:
|
|
res = {"results": [{"text": recvtxt, "finish_reason": currfinishreason}]}
|
|
|
|
try:
|
|
return res
|
|
except Exception as e:
|
|
print(f"Generate: Error while generating: {e}")
|
|
|
|
async def send_oai_sse_event(self, data):
|
|
if data=="[DONE]":
|
|
self.wfile.write(f'data: {data}'.encode())
|
|
else:
|
|
self.wfile.write(f'data: {data}\n\n'.encode())
|
|
self.wfile.flush()
|
|
|
|
async def send_kai_sse_event(self, data):
|
|
self.wfile.write(f'event: message\n'.encode())
|
|
self.wfile.write(f'data: {data}\n\n'.encode())
|
|
self.wfile.flush()
|
|
|
|
async def handle_sse_stream(self, genparams, api_format):
|
|
global friendlymodelname, currfinishreason
|
|
self.send_response(200)
|
|
self.send_header("cache-control", "no-cache")
|
|
self.send_header("connection", "keep-alive")
|
|
self.end_headers(content_type='text/event-stream')
|
|
|
|
current_token = 0
|
|
incomplete_token_buffer = bytearray()
|
|
async_sleep_short = 0.02
|
|
await asyncio.sleep(0.35) #anti race condition, prevent check from overtaking generate
|
|
try:
|
|
tokenReserve = "" #keeps fully formed tokens that we cannot send out yet
|
|
while True:
|
|
streamDone = handle.has_finished() #exit next loop on done
|
|
if streamDone:
|
|
sr = handle.get_last_stop_reason()
|
|
currfinishreason = ("length" if (sr!=1) else "stop")
|
|
tokenStr = ""
|
|
streamcount = handle.get_stream_count()
|
|
while current_token < streamcount:
|
|
token = handle.new_token(current_token)
|
|
|
|
if token is None: # Token isnt ready yet, received nullpointer
|
|
break
|
|
|
|
current_token += 1
|
|
newbyte = ctypes.string_at(token)
|
|
incomplete_token_buffer += bytearray(newbyte)
|
|
tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore")
|
|
badFragment = (tokenSeg==" " and len(incomplete_token_buffer)>1) #partial incomplete unicode
|
|
if tokenSeg!="" and not badFragment:
|
|
incomplete_token_buffer.clear()
|
|
tokenStr += tokenSeg
|
|
|
|
if tokenStr!="" or streamDone:
|
|
sseq = genparams.get('stop_sequence', [])
|
|
trimstop = genparams.get('trim_stop', False)
|
|
if trimstop and not streamDone and string_contains_sequence_substring(tokenStr,sseq):
|
|
tokenReserve += tokenStr
|
|
await asyncio.sleep(async_sleep_short) #if a stop sequence could trigger soon, do not send output
|
|
else:
|
|
if tokenStr!="" or tokenReserve!="":
|
|
tokenStr = tokenReserve + tokenStr
|
|
tokenReserve = ""
|
|
|
|
#apply trimming if needed
|
|
if trimstop:
|
|
for trim_str in sseq:
|
|
sindex = tokenStr.find(trim_str)
|
|
if sindex != -1 and trim_str!="":
|
|
tokenStr = tokenStr[:sindex]
|
|
|
|
if tokenStr!="" or streamDone:
|
|
if api_format == 4: # if oai chat, set format to expected openai streaming response
|
|
event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"delta":{'role':'assistant','content':tokenStr}}]})
|
|
await self.send_oai_sse_event(event_str)
|
|
elif api_format == 3: # non chat completions
|
|
event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"text":tokenStr}]})
|
|
await self.send_oai_sse_event(event_str)
|
|
else:
|
|
event_str = json.dumps({"token": tokenStr, "finish_reason":currfinishreason})
|
|
await self.send_kai_sse_event(event_str)
|
|
tokenStr = ""
|
|
else:
|
|
await asyncio.sleep(async_sleep_short)
|
|
else:
|
|
await asyncio.sleep(async_sleep_short) #this should keep things responsive
|
|
|
|
if streamDone:
|
|
if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format
|
|
await self.send_oai_sse_event('[DONE]')
|
|
break
|
|
except Exception as ex:
|
|
print("Token streaming was interrupted or aborted!")
|
|
print(ex)
|
|
handle.abort_generate()
|
|
time.sleep(0.2) #short delay
|
|
|
|
# flush buffers, sleep a bit to make sure all data sent, and then force close the connection
|
|
self.wfile.flush()
|
|
await asyncio.sleep(0.1)
|
|
self.close_connection = True
|
|
await asyncio.sleep(0.05)
|
|
|
|
|
|
async def handle_request(self, raw_genparams, api_format, stream_flag):
|
|
tasks = []
|
|
|
|
genparams = transform_genparams(raw_genparams, api_format)
|
|
|
|
try:
|
|
if stream_flag:
|
|
tasks.append(self.handle_sse_stream(genparams, api_format))
|
|
|
|
generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag))
|
|
tasks.append(generate_task)
|
|
|
|
await asyncio.gather(*tasks)
|
|
generate_result = generate_task.result()
|
|
return generate_result
|
|
except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost
|
|
print("An ongoing connection was aborted or interrupted!")
|
|
print(cae)
|
|
handle.abort_generate()
|
|
time.sleep(0.2) #short delay
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
def secure_endpoint(self): #returns false if auth fails. caller should exit
|
|
#handle password stuff
|
|
if password and password !="":
|
|
auth_header = None
|
|
auth_ok = False
|
|
if 'Authorization' in self.headers:
|
|
auth_header = self.headers['Authorization']
|
|
elif 'authorization' in self.headers:
|
|
auth_header = self.headers['authorization']
|
|
if auth_header != None and auth_header.startswith('Bearer '):
|
|
token = auth_header[len('Bearer '):].strip()
|
|
if token==password:
|
|
auth_ok = True
|
|
if auth_ok==False:
|
|
self.send_response(401)
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(json.dumps({"detail": {
|
|
"error": "Unauthorized",
|
|
"msg": "Authentication key is missing or invalid.",
|
|
"type": "unauthorized",
|
|
}}).encode())
|
|
return False
|
|
return True
|
|
|
|
def noscript_webui(self):
|
|
global modelbusy, sslvalid
|
|
import html
|
|
import urllib.parse as urlparse
|
|
parsed_url = urlparse.urlparse(self.path)
|
|
parsed_dict = urlparse.parse_qs(parsed_url.query)
|
|
reply = ""
|
|
status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate"
|
|
prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else ""
|
|
max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100
|
|
temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.7
|
|
top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100
|
|
top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9
|
|
rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0
|
|
ban_eos_token = int(parsed_dict['ban_eos_token'][0]) if 'ban_eos_token' in parsed_dict else 0
|
|
gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate"
|
|
|
|
if modelbusy.locked():
|
|
status = "Model is currently busy, try again later."
|
|
elif gencommand:
|
|
if prompt=="" or max_length<=0:
|
|
status = "Need a valid prompt and length to generate."
|
|
else:
|
|
if max_length>512:
|
|
max_length = 512
|
|
httpsaffix = ("https" if sslvalid else "http")
|
|
epurl = f"{httpsaffix}://localhost:{args.port}"
|
|
if args.host!="":
|
|
epurl = f"{httpsaffix}://{args.host}:{args.port}"
|
|
gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"prompt": prompt,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"ban_eos_token":ban_eos_token}
|
|
respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload)
|
|
reply = html.escape(respjson["results"][0]["text"])
|
|
status = "Generation Completed"
|
|
|
|
if "generate" in parsed_dict:
|
|
del parsed_dict["generate"]
|
|
parsed_dict["prompt"] = prompt + reply
|
|
parsed_dict["status"] = status
|
|
updated_query_string = urlparse.urlencode(parsed_dict, doseq=True)
|
|
updated_path = parsed_url._replace(query=updated_query_string).geturl()
|
|
self.path = updated_path
|
|
self.send_response(302)
|
|
self.send_header("location", self.path)
|
|
self.end_headers(content_type='text/html')
|
|
return
|
|
|
|
finalhtml = f'''<!doctype html>
|
|
<html lang="en"><head>
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
<title>KoboldCpp NoScript Mode</title></head><body>
|
|
<h2>KoboldCpp NoScript Mode</h2>
|
|
<div>
|
|
<p>KoboldCpp can be used without Javascript enabled, however this is not recommended.
|
|
<br>If you have Javascript, please use <a href="/">KoboldAI Lite WebUI</a> instead.</p><hr>
|
|
<form action="/noscript">
|
|
Enter Prompt:<br>
|
|
<textarea name="prompt" cols="60" rows="8" wrap="soft" placeholder="Enter Prompt Here">{prompt}</textarea>
|
|
<hr>
|
|
<b>{status}</b><br>
|
|
<hr>
|
|
<label>Gen. Amount</label> <input type="text" size="4" value="{max_length}" name="max_length"><br>
|
|
<label>Temperature</label> <input type="text" size="4" value="{temperature}" name="temperature"><br>
|
|
<label>Top-K</label> <input type="text" size="4" value="{top_k}" name="top_k"><br>
|
|
<label>Top-P</label> <input type="text" size="4" value="{top_p}" name="top_p"><br>
|
|
<label>Rep. Pen</label> <input type="text" size="4" value="{rep_pen}" name="rep_pen"><br>
|
|
<label>Prevent EOS</label> <input type="checkbox" name="ban_eos_token" value="1" {"checked" if ban_eos_token else ""}><br>
|
|
<input type="submit" name="generate" value="Generate"> (Please be patient)
|
|
</form>
|
|
<form action="/noscript">
|
|
<input type="submit" value="Reset">
|
|
</form>
|
|
</div>
|
|
</body></html>'''
|
|
finalhtml = finalhtml.encode('utf-8')
|
|
self.send_response(200)
|
|
self.send_header('content-length', str(len(finalhtml)))
|
|
self.end_headers(content_type='text/html')
|
|
self.wfile.write(finalhtml)
|
|
|
|
def do_GET(self):
|
|
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
|
|
global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath
|
|
self.path = self.path.rstrip('/')
|
|
response_body = None
|
|
content_type = 'application/json'
|
|
|
|
if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
|
|
content_type = 'text/html'
|
|
if embedded_kailite is None:
|
|
response_body = (f"Embedded KoboldAI Lite is not found.<br>You will have to connect via the main KoboldAI client, or <a href='https://lite.koboldai.net?local=1&port={self.port}'>use this URL</a> to connect.").encode()
|
|
else:
|
|
response_body = embedded_kailite
|
|
|
|
elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without /
|
|
self.noscript_webui()
|
|
return
|
|
|
|
elif self.path.endswith(('/manifest.json')):
|
|
response_body = (json.dumps({"name":"KoboldAI Lite","short_name":"KoboldAI Lite","description":"Progressive Web App for KoboldAI Lite","start_url":"./","scope":".","display":"standalone","background_color":"#303030","theme_color":"#337ab7","orientation":"portrait-primary","icons":[{"src":"","type":"image/png","sizes":"150x150"}]}).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/model', '/api/latest/model')):
|
|
auth_ok = True
|
|
if password and password !="":
|
|
auth_header = None
|
|
auth_ok = False
|
|
if 'Authorization' in self.headers:
|
|
auth_header = self.headers['Authorization']
|
|
elif 'authorization' in self.headers:
|
|
auth_header = self.headers['authorization']
|
|
if auth_header != None and auth_header.startswith('Bearer '):
|
|
token = auth_header[len('Bearer '):].strip()
|
|
if token==password:
|
|
auth_ok = True
|
|
response_body = (json.dumps({'result': (friendlymodelname if auth_ok else "koboldcpp/protected-model") }).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')):
|
|
response_body = (json.dumps({"value": maxhordelen}).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')):
|
|
response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')):
|
|
response_body = (json.dumps({"value":""}).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')):
|
|
response_body = (json.dumps({"values": []}).encode())
|
|
|
|
elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')):
|
|
response_body = (json.dumps({"result":"1.2.5"}).encode())
|
|
|
|
elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde
|
|
response_body = (json.dumps({"value": maxctx}).encode())
|
|
|
|
elif self.path.endswith(('/api/extra/version')):
|
|
has_txt2img = not (friendlysdmodelname=="inactive" or fullsdmodelpath=="")
|
|
has_vision = (mmprojpath!="")
|
|
has_password = (password!="")
|
|
has_whisper = (fullwhispermodelpath!="")
|
|
response_body = (json.dumps({"result":"KoboldCpp","version":KcppVersion, "protected":has_password ,"txt2img":has_txt2img,"vision":has_vision,"transcribe":has_whisper}).encode())
|
|
|
|
elif self.path.endswith(('/api/extra/perf')):
|
|
global last_req_time, start_time
|
|
lastp = handle.get_last_process_time()
|
|
laste = handle.get_last_eval_time()
|
|
lastc = handle.get_last_token_count()
|
|
totalgens = handle.get_total_gens()
|
|
totalimggens = handle.get_total_img_gens()
|
|
stopreason = handle.get_last_stop_reason()
|
|
lastseed = handle.get_last_seed()
|
|
uptime = time.time() - start_time
|
|
idletime = time.time() - last_req_time
|
|
is_quiet = True if (args.quiet and args.debugmode != 1) else False
|
|
response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "total_gens":totalgens, "stop_reason":stopreason, "total_img_gens":totalimggens, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime, "idletime":idletime, "quiet":is_quiet}).encode())
|
|
|
|
elif self.path.endswith('/api/extra/generate/check'):
|
|
if not self.secure_endpoint():
|
|
return
|
|
pendtxtStr = ""
|
|
if requestsinqueue==0 and totalgens>0 and currentusergenkey=="":
|
|
pendtxt = handle.get_pending_output()
|
|
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
|
|
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
|
|
|
|
elif self.path.endswith('/v1/models'):
|
|
response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":int(time.time()),"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
|
|
|
|
elif self.path.endswith('/sdapi/v1/sd-models'):
|
|
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
|
|
response_body = (json.dumps([]).encode())
|
|
else:
|
|
response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode())
|
|
elif self.path.endswith('/sdapi/v1/options'):
|
|
response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode())
|
|
elif self.path.endswith('/sdapi/v1/samplers'):
|
|
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
|
|
response_body = (json.dumps([]).encode())
|
|
else:
|
|
response_body = (json.dumps([{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode())
|
|
elif self.path.endswith('/sdapi/v1/latent-upscale-modes'):
|
|
response_body = (json.dumps([]).encode())
|
|
elif self.path.endswith('/sdapi/v1/upscalers'):
|
|
response_body = (json.dumps([]).encode())
|
|
|
|
elif self.path.endswith(('/api/tags')): #ollama compatible
|
|
response_body = (json.dumps({"models":[{"name":"koboldcpp","model":friendlymodelname,"modified_at":"2024-07-19T15:26:55.6122841+08:00","size":394998579,"digest":"b5dc5e784f2a3ee1582373093acf69a2f4e2ac1710b253a001712b86a61f88bb","details":{"parent_model":"","format":"gguf","family":"koboldcpp","families":["koboldcpp"],"parameter_size":"128M","quantization_level":"Q4_0"}}]}).encode())
|
|
|
|
elif self.path=="/api" or self.path=="/docs" or self.path.startswith(('/api/?json=','/api?json=','/docs/?json=','/docs?json=')):
|
|
content_type = 'text/html'
|
|
if embedded_kcpp_docs is None:
|
|
response_body = (f"KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode()
|
|
else:
|
|
response_body = embedded_kcpp_docs
|
|
|
|
elif self.path.startswith(("/sdui")):
|
|
content_type = 'text/html'
|
|
if embedded_kcpp_sdui is None:
|
|
response_body = (f"KoboldCpp API is running, but KCPP SDUI is not loaded").encode()
|
|
else:
|
|
response_body = embedded_kcpp_sdui
|
|
|
|
elif self.path=="/v1":
|
|
content_type = 'text/html'
|
|
response_body = (f"KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode()
|
|
|
|
elif self.path=="/api/extra/preloadstory":
|
|
if preloaded_story is None:
|
|
response_body = (json.dumps({}).encode())
|
|
else:
|
|
response_body = preloaded_story
|
|
elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
|
|
self.path = "/api"
|
|
self.send_response(302)
|
|
self.send_header("location", self.path)
|
|
self.end_headers(content_type='text/html')
|
|
return None
|
|
|
|
if response_body is None:
|
|
self.send_response(404)
|
|
self.end_headers(content_type='text/html')
|
|
rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.'
|
|
self.wfile.write(rp.encode())
|
|
else:
|
|
self.send_response(200)
|
|
self.send_header('content-length', str(len(response_body)))
|
|
self.end_headers(content_type=content_type)
|
|
self.wfile.write(response_body)
|
|
return
|
|
|
|
def do_POST(self):
|
|
global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey
|
|
contlenstr = self.headers['content-length']
|
|
content_length = 0
|
|
body = None
|
|
if contlenstr:
|
|
content_length = int(contlenstr)
|
|
if content_length > (1024*1024*32): #32mb payload limit
|
|
self.send_response(500)
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(json.dumps({"detail": {
|
|
"msg": "Payload is too big. Max payload size is 32MB.",
|
|
"type": "bad_input",
|
|
}}).encode())
|
|
return
|
|
body = self.rfile.read(content_length)
|
|
|
|
self.path = self.path.rstrip('/')
|
|
response_body = None
|
|
response_code = 200
|
|
|
|
if self.path.endswith(('/api/extra/tokencount')):
|
|
if not self.secure_endpoint():
|
|
return
|
|
try:
|
|
genparams = json.loads(body)
|
|
countprompt = genparams.get('prompt', "")
|
|
tcaddspecial = genparams.get('special', True)
|
|
rawcountdata = handle.token_count(countprompt.encode("UTF-8"),tcaddspecial)
|
|
countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0
|
|
# the above protects the server in case the count limit got corrupted
|
|
countdata = [rawcountdata.ids[i] for i in range(countlimit)]
|
|
response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode())
|
|
|
|
except Exception as e:
|
|
utfprint("Count Tokens - Body Error: " + str(e))
|
|
response_code = 400
|
|
response_body = (json.dumps({"value": -1}).encode())
|
|
|
|
elif self.path.endswith('/api/extra/abort'):
|
|
if not self.secure_endpoint():
|
|
return
|
|
multiuserkey = ""
|
|
try:
|
|
tempbody = json.loads(body)
|
|
if isinstance(tempbody, dict):
|
|
multiuserkey = tempbody.get('genkey', "")
|
|
except Exception as e:
|
|
multiuserkey = ""
|
|
pass
|
|
if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey):
|
|
ag = handle.abort_generate()
|
|
time.sleep(0.1) #short delay before replying
|
|
response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode())
|
|
print("\nGeneration Aborted")
|
|
elif (multiuserkey!="" and requestsinqueue>0):
|
|
pendingabortkey = multiuserkey
|
|
response_body = (json.dumps({"success": "true", "done":"false"}).encode())
|
|
else:
|
|
response_body = (json.dumps({"success": "false", "done":"false"}).encode())
|
|
|
|
elif self.path.endswith('/api/extra/generate/check'):
|
|
if not self.secure_endpoint():
|
|
return
|
|
pendtxtStr = ""
|
|
multiuserkey = ""
|
|
try:
|
|
tempbody = json.loads(body)
|
|
if isinstance(tempbody, dict):
|
|
multiuserkey = tempbody.get('genkey', "")
|
|
except Exception as e:
|
|
multiuserkey = ""
|
|
|
|
if totalgens>0:
|
|
if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser
|
|
pendtxt = handle.get_pending_output()
|
|
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
|
|
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
|
|
|
|
if response_body is not None:
|
|
self.send_response(response_code)
|
|
self.send_header('content-length', str(len(response_body)))
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(response_body)
|
|
return
|
|
|
|
reqblocking = False
|
|
muint = int(args.multiuser)
|
|
multiuserlimit = ((muint-1) if muint > 1 else 6)
|
|
#backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1
|
|
if muint > 0 and requestsinqueue < multiuserlimit:
|
|
reqblocking = True
|
|
requestsinqueue += 1
|
|
if not modelbusy.acquire(blocking=reqblocking):
|
|
self.send_response(503)
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(json.dumps({"detail": {
|
|
"msg": "Server is busy; please try again later.",
|
|
"type": "service_unavailable",
|
|
}}).encode())
|
|
return
|
|
if reqblocking:
|
|
requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0
|
|
|
|
try:
|
|
sse_stream_flag = False
|
|
|
|
api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat,5=interrogate
|
|
is_imggen = False
|
|
is_transcribe = False
|
|
|
|
if self.path.endswith('/request'):
|
|
api_format = 1
|
|
|
|
if self.path.endswith(('/api/v1/generate', '/api/latest/generate')):
|
|
api_format = 2
|
|
|
|
if self.path.endswith('/api/extra/generate/stream'):
|
|
api_format = 2
|
|
sse_stream_flag = True
|
|
|
|
if self.path.endswith('/v1/completions') or self.path.endswith('/v1/completion'):
|
|
api_format = 3
|
|
|
|
if self.path.endswith('/v1/chat/completions'):
|
|
api_format = 4
|
|
|
|
if self.path.endswith('/sdapi/v1/interrogate'):
|
|
has_vision = (mmprojpath!="")
|
|
if not has_vision:
|
|
self.send_response(503)
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(json.dumps({"detail": {
|
|
"msg": "No LLaVA model loaded",
|
|
"type": "service_unavailable",
|
|
}}).encode())
|
|
return
|
|
api_format = 5
|
|
|
|
if self.path.endswith('/sdapi/v1/txt2img') or self.path.endswith('/sdapi/v1/img2img'):
|
|
is_imggen = True
|
|
|
|
if self.path.endswith('/api/extra/transcribe') or self.path.endswith('/v1/audio/transcriptions'):
|
|
is_transcribe = True
|
|
|
|
if is_imggen or is_transcribe or api_format > 0:
|
|
global last_req_time
|
|
last_req_time = time.time()
|
|
|
|
if not is_imggen and not is_transcribe and api_format<5:
|
|
if not self.secure_endpoint():
|
|
return
|
|
|
|
genparams = None
|
|
try:
|
|
genparams = json.loads(body)
|
|
except Exception as e:
|
|
genparams = None
|
|
if is_transcribe: #fallback handling of file uploads
|
|
b64wav = self.extract_b64string_from_file_upload(body)
|
|
if b64wav:
|
|
genparams = {"audio_data":b64wav}
|
|
|
|
if not genparams:
|
|
utfprint("Body Err: " + str(body))
|
|
self.send_response(500)
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(json.dumps({"detail": {
|
|
"msg": "Error parsing input.",
|
|
"type": "bad_input",
|
|
}}).encode())
|
|
return
|
|
|
|
is_quiet = args.quiet
|
|
utfprint(f"\n{datetime.now().strftime('[%H:%M:%S] Input Received')}")
|
|
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
|
|
utfprint(f"Input: " + json.dumps(genparams))
|
|
|
|
if args.foreground:
|
|
bring_terminal_to_foreground()
|
|
|
|
if api_format > 0:#text gen
|
|
# Check if streaming chat completions, if so, set stream mode to true
|
|
if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]:
|
|
sse_stream_flag = True
|
|
|
|
gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag))
|
|
|
|
try:
|
|
# Headers are already sent when streaming
|
|
if not sse_stream_flag:
|
|
self.send_response(200)
|
|
genresp = (json.dumps(gen).encode())
|
|
self.send_header('content-length', str(len(genresp)))
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(genresp)
|
|
except Exception as ex:
|
|
if args.debugmode:
|
|
print(ex)
|
|
print("Generate: The response could not be sent, maybe connection was terminated?")
|
|
handle.abort_generate()
|
|
time.sleep(0.2) #short delay
|
|
return
|
|
|
|
elif is_imggen: #image gen
|
|
try:
|
|
gen = sd_generate(genparams)
|
|
genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode())
|
|
self.send_response(200)
|
|
self.send_header('content-length', str(len(genresp)))
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(genresp)
|
|
except Exception as ex:
|
|
if args.debugmode:
|
|
print(ex)
|
|
print("Generate Image: The response could not be sent, maybe connection was terminated?")
|
|
time.sleep(0.2) #short delay
|
|
return
|
|
elif is_transcribe:
|
|
try:
|
|
gen = whisper_generate(genparams)
|
|
genresp = (json.dumps({"text":gen}).encode())
|
|
self.send_response(200)
|
|
self.send_header('content-length', str(len(genresp)))
|
|
self.end_headers(content_type='application/json')
|
|
self.wfile.write(genresp)
|
|
except Exception as ex:
|
|
if args.debugmode:
|
|
print(ex)
|
|
print("Transcribe: The response could not be sent, maybe connection was terminated?")
|
|
time.sleep(0.2) #short delay
|
|
return
|
|
|
|
finally:
|
|
time.sleep(0.05)
|
|
modelbusy.release()
|
|
|
|
self.send_response(404)
|
|
self.end_headers(content_type='text/html')
|
|
|
|
|
|
def do_OPTIONS(self):
|
|
self.send_response(200)
|
|
self.end_headers(content_type='text/html')
|
|
|
|
def do_HEAD(self):
|
|
self.send_response(200)
|
|
self.end_headers(content_type='text/html')
|
|
|
|
def end_headers(self, content_type=None):
|
|
self.send_header('access-control-allow-origin', '*')
|
|
self.send_header('access-control-allow-methods', '*')
|
|
self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey')
|
|
self.send_header("cache-control", "no-store")
|
|
if content_type is not None:
|
|
self.send_header('content-type', content_type)
|
|
return super(ServerRequestHandler, self).end_headers()
|
|
|
|
def is_port_in_use(portNum):
|
|
try:
|
|
import socket
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
return s.connect_ex(('localhost', portNum)) == 0
|
|
except Exception as ex:
|
|
return True
|
|
|
|
def is_ipv6_supported():
|
|
try:
|
|
# Attempt to create an IPv6 socket
|
|
sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
|
|
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1)
|
|
sock.close()
|
|
return True
|
|
except Exception as ex:
|
|
return False
|
|
|
|
def RunServerMultiThreaded(addr, port):
|
|
global exitcounter, sslvalid
|
|
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
|
|
if is_port_in_use(port):
|
|
print(f"Warning: Port {port} already appears to be in use by another program.")
|
|
ipv4_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
|
ipv4_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
ipv6_sock = None
|
|
if is_ipv6_supported():
|
|
ipv6_sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
|
|
ipv6_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
|
ipv6_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1)
|
|
|
|
if args.ssl and sslvalid:
|
|
import ssl
|
|
certpath = os.path.abspath(args.ssl[0])
|
|
keypath = os.path.abspath(args.ssl[1])
|
|
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
|
|
context.load_cert_chain(certfile=certpath, keyfile=keypath)
|
|
ipv4_sock = context.wrap_socket(ipv4_sock, server_side=True)
|
|
if ipv6_sock:
|
|
ipv6_sock = context.wrap_socket(ipv6_sock, server_side=True)
|
|
|
|
numThreads = 24
|
|
ipv4_sock.bind((addr, port))
|
|
ipv4_sock.listen(numThreads)
|
|
|
|
if ipv6_sock:
|
|
try:
|
|
ipv6_sock.bind((addr, port))
|
|
ipv6_sock.listen(numThreads)
|
|
except Exception as ex:
|
|
ipv6_sock = None
|
|
print("IPv6 Socket Failed to Bind. IPv6 will be unavailable.")
|
|
|
|
class Thread(threading.Thread):
|
|
def __init__(self, i):
|
|
threading.Thread.__init__(self)
|
|
self.i = i
|
|
self.daemon = True
|
|
self.start()
|
|
|
|
def run(self):
|
|
global exitcounter
|
|
handler = ServerRequestHandler(addr, port)
|
|
with http.server.HTTPServer((addr, port), handler, False) as self.httpd:
|
|
try:
|
|
if ipv6_sock:
|
|
self.httpd.socket = ipv4_sock if self.i < 16 else ipv6_sock
|
|
else:
|
|
self.httpd.socket = ipv4_sock
|
|
|
|
self.httpd.server_bind = self.server_close = lambda self: None
|
|
self.httpd.serve_forever()
|
|
except (KeyboardInterrupt,SystemExit):
|
|
exitcounter = 999
|
|
self.httpd.server_close()
|
|
sys.exit(0)
|
|
finally:
|
|
exitcounter = 999
|
|
self.httpd.server_close()
|
|
os._exit(0)
|
|
def stop(self):
|
|
global exitcounter
|
|
exitcounter = 999
|
|
self.httpd.server_close()
|
|
|
|
threadArr = []
|
|
for i in range(numThreads):
|
|
threadArr.append(Thread(i))
|
|
while 1:
|
|
try:
|
|
time.sleep(10)
|
|
except KeyboardInterrupt:
|
|
global exitcounter
|
|
exitcounter = 999
|
|
for i in range(numThreads):
|
|
threadArr[i].stop()
|
|
sys.exit(0)
|
|
|
|
# note: customtkinter-5.2.0
|
|
def show_gui():
|
|
global guimode
|
|
guimode = True
|
|
from tkinter.filedialog import askopenfilename
|
|
from tkinter.filedialog import asksaveasfile
|
|
|
|
# if args received, launch
|
|
if len(sys.argv) != 1 and not args.showgui:
|
|
import tkinter as tk
|
|
root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar
|
|
root.attributes("-alpha", 0)
|
|
args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config")
|
|
root.withdraw()
|
|
root.quit()
|
|
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt')):
|
|
load_config_cli(args.model_param)
|
|
if not args.model_param and not args.sdmodel and not args.whispermodel and not args.nomodel:
|
|
global exitcounter
|
|
exitcounter = 999
|
|
exit_with_error(2,"No ggml model or kcpps file was selected. Exiting.")
|
|
return
|
|
|
|
#dummy line to get darkdetect imported in pyinstaller
|
|
try:
|
|
import darkdetect as darkdt
|
|
darkdt.isDark()
|
|
pass
|
|
except Exception as e:
|
|
pass
|
|
|
|
import customtkinter as ctk
|
|
nextstate = 0 #0=exit, 1=launch
|
|
original_windowwidth = 550
|
|
original_windowheight = 550
|
|
windowwidth = original_windowwidth
|
|
windowheight = original_windowheight
|
|
ctk.set_appearance_mode("dark")
|
|
root = ctk.CTk()
|
|
root.geometry(str(windowwidth) + "x" + str(windowheight))
|
|
root.title(f"KoboldCpp v{KcppVersion}")
|
|
|
|
gtooltip_box = None
|
|
gtooltip_label = None
|
|
|
|
window_reference_width = None
|
|
window_reference_height = None
|
|
previous_event_width = None
|
|
previous_event_height = None
|
|
def on_resize(event):
|
|
if not event.widget.master:
|
|
nonlocal window_reference_width, window_reference_height, previous_event_width,previous_event_height
|
|
if not window_reference_width and not window_reference_height:
|
|
window_reference_width = event.width
|
|
window_reference_height = event.height
|
|
previous_event_width = window_reference_width
|
|
previous_event_height = window_reference_height
|
|
else:
|
|
new_width = event.width
|
|
new_height = event.height
|
|
incr_w = new_width/window_reference_width
|
|
incr_h = new_height/window_reference_height
|
|
smallratio = min(incr_w,incr_h)
|
|
smallratio = round(smallratio,2)
|
|
if new_width != previous_event_width or new_height!=previous_event_height:
|
|
lastpos = root.geometry()
|
|
lparr = lastpos.split('+', 1)
|
|
lastpos = ("+"+str(lparr[1])) if (len(lparr)==2) else ""
|
|
previous_event_width = new_width
|
|
previous_event_height = new_height
|
|
windowwidth = math.floor(original_windowwidth*smallratio)
|
|
windowwidth = max(256, min(1024, windowwidth))
|
|
windowheight = math.floor(original_windowheight*smallratio)
|
|
windowheight = max(256, min(1024, windowheight))
|
|
root.geometry(str(windowwidth) + "x" + str(windowheight) + str(lastpos))
|
|
ctk.set_widget_scaling(smallratio)
|
|
changerunmode(1,1,1)
|
|
togglerope(1,1,1)
|
|
toggleflashattn(1,1,1)
|
|
togglectxshift(1,1,1)
|
|
togglehorde(1,1,1)
|
|
togglesdquant(1,1,1)
|
|
toggletaesd(1,1,1)
|
|
|
|
if sys.platform=="darwin":
|
|
root.resizable(False,False)
|
|
else:
|
|
root.resizable(True,True)
|
|
root.bind("<Configure>", on_resize)
|
|
global using_gui_launcher
|
|
using_gui_launcher = True
|
|
kcpp_exporting_template = False
|
|
|
|
# trigger empty tooltip then remove it
|
|
def show_tooltip(event, tooltip_text=None):
|
|
nonlocal gtooltip_box, gtooltip_label
|
|
if not gtooltip_box and not gtooltip_label:
|
|
gtooltip_box = ctk.CTkToplevel(root)
|
|
gtooltip_box.configure(fg_color="#ffffe0")
|
|
gtooltip_box.withdraw()
|
|
gtooltip_box.overrideredirect(True)
|
|
gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0")
|
|
gtooltip_label.pack(expand=True, padx=2, pady=1)
|
|
else:
|
|
gtooltip_label.configure(text=tooltip_text)
|
|
|
|
x, y = root.winfo_pointerxy()
|
|
gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}")
|
|
gtooltip_box.deiconify()
|
|
|
|
def hide_tooltip(event):
|
|
nonlocal gtooltip_box
|
|
if gtooltip_box:
|
|
gtooltip_box.withdraw()
|
|
show_tooltip(None,"") #initialize tooltip objects
|
|
hide_tooltip(None)
|
|
|
|
default_threads = get_default_threads()
|
|
|
|
tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50)
|
|
tabs.grid(row=0, stick="nsew")
|
|
tabnames= ["Quick Launch", "Hardware", "Tokens", "Model Files", "Network", "Horde Worker","Image Gen","Audio","Extra"]
|
|
navbuttons = {}
|
|
navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height")))
|
|
navbuttonframe.grid(row=0, column=0, padx=2,pady=2)
|
|
navbuttonframe.grid_propagate(False)
|
|
|
|
tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height")))
|
|
tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2)
|
|
tabcontentframe.grid_propagate(False)
|
|
|
|
tabcontent = {}
|
|
# slider data
|
|
blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"]
|
|
blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"]
|
|
contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536", "98304", "131072"]
|
|
antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if not (opt in runopts)]
|
|
quantkv_text = ["F16 (Off)","8-Bit","4-Bit"]
|
|
|
|
if not any(runopts):
|
|
exitcounter = 999
|
|
exit_with_error(2,"KoboldCPP couldn't locate any backends to use (i.e Default, Vulkan, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.","No Backends Available!")
|
|
|
|
# Vars - should be in scope to be used by multiple widgets
|
|
gpulayers_var = ctk.StringVar(value="-1")
|
|
threads_var = ctk.StringVar(value=str(default_threads))
|
|
runopts_var = ctk.StringVar()
|
|
gpu_choice_var = ctk.StringVar(value="1")
|
|
|
|
launchbrowser = ctk.IntVar(value=1)
|
|
highpriority = ctk.IntVar()
|
|
disablemmap = ctk.IntVar()
|
|
usemlock = ctk.IntVar()
|
|
debugmode = ctk.IntVar()
|
|
keepforeground = ctk.IntVar()
|
|
quietmode = ctk.IntVar(value=0)
|
|
nocertifymode = ctk.IntVar(value=0)
|
|
|
|
lowvram_var = ctk.IntVar()
|
|
mmq_var = ctk.IntVar(value=1)
|
|
quantkv_var = ctk.IntVar(value=0)
|
|
blas_threads_var = ctk.StringVar()
|
|
blas_size_var = ctk.IntVar()
|
|
version_var = ctk.StringVar(value="0")
|
|
tensor_split_str_vars = ctk.StringVar(value="")
|
|
rowsplit_var = ctk.IntVar()
|
|
|
|
contextshift = ctk.IntVar(value=1)
|
|
remotetunnel = ctk.IntVar(value=0)
|
|
smartcontext = ctk.IntVar()
|
|
flashattention = ctk.IntVar(value=0)
|
|
context_var = ctk.IntVar()
|
|
customrope_var = ctk.IntVar()
|
|
customrope_scale = ctk.StringVar(value="1.0")
|
|
customrope_base = ctk.StringVar(value="10000")
|
|
chatcompletionsadapter_var = ctk.StringVar()
|
|
|
|
model_var = ctk.StringVar()
|
|
lora_var = ctk.StringVar()
|
|
lora_base_var = ctk.StringVar()
|
|
preloadstory_var = ctk.StringVar()
|
|
mmproj_var = ctk.StringVar()
|
|
nomodel = ctk.IntVar(value=0)
|
|
|
|
port_var = ctk.StringVar(value=defaultport)
|
|
host_var = ctk.StringVar(value="")
|
|
multiuser_var = ctk.IntVar(value=1)
|
|
horde_name_var = ctk.StringVar(value="koboldcpp")
|
|
horde_gen_var = ctk.StringVar(value=maxhordelen)
|
|
horde_context_var = ctk.StringVar(value=maxhordectx)
|
|
horde_apikey_var = ctk.StringVar(value="")
|
|
horde_workername_var = ctk.StringVar(value="")
|
|
usehorde_var = ctk.IntVar()
|
|
ssl_cert_var = ctk.StringVar()
|
|
ssl_key_var = ctk.StringVar()
|
|
password_var = ctk.StringVar()
|
|
|
|
sd_model_var = ctk.StringVar()
|
|
sd_lora_var = ctk.StringVar()
|
|
sd_loramult_var = ctk.StringVar(value="1.0")
|
|
sd_vae_var = ctk.StringVar()
|
|
sd_vaeauto_var = ctk.IntVar(value=0)
|
|
sd_clamped_var = ctk.StringVar(value="0")
|
|
sd_threads_var = ctk.StringVar(value=str(default_threads))
|
|
sd_quant_var = ctk.IntVar(value=0)
|
|
|
|
whisper_model_var = ctk.StringVar()
|
|
|
|
def tabbuttonaction(name):
|
|
for t in tabcontent:
|
|
if name == t:
|
|
tabcontent[t].grid(row=0, column=0)
|
|
navbuttons[t].configure(fg_color="#6f727b")
|
|
else:
|
|
tabcontent[t].grid_remove()
|
|
navbuttons[t].configure(fg_color="transparent")
|
|
|
|
# Dynamically create tabs + buttons based on values of [tabnames]
|
|
for idx, name in enumerate(tabnames):
|
|
tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent")
|
|
tabcontent[name].grid_propagate(False)
|
|
if idx == 0:
|
|
tabcontent[name].grid(row=idx, sticky="nsew")
|
|
ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw')
|
|
|
|
navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" )
|
|
navbuttons[name].grid(row=idx)
|
|
|
|
tabbuttonaction(tabnames[0])
|
|
# Quick Launch Tab
|
|
quick_tab = tabcontent["Quick Launch"]
|
|
|
|
# helper functions
|
|
def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""):
|
|
temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue)
|
|
if command is not None and variable is not None:
|
|
variable.trace("w", command)
|
|
temp.grid(row=row,column=column, padx=8, pady=1, stick="nw")
|
|
if tooltiptxt!="":
|
|
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
|
|
temp.bind("<Leave>", hide_tooltip)
|
|
return temp
|
|
|
|
def makelabel(parent, text, row, column=0, tooltiptxt="", columnspan=1, padx=8):
|
|
temp = ctk.CTkLabel(parent, text=text)
|
|
temp.grid(row=row, column=column, padx=padx, pady=1, stick="nw", columnspan=columnspan)
|
|
if tooltiptxt!="":
|
|
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
|
|
temp.bind("<Leave>", hide_tooltip)
|
|
return temp
|
|
|
|
def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""):
|
|
sliderLabel = makelabel(parent, options[set], row + 1, 0, columnspan=2, padx=(width+12))
|
|
titleLabel = makelabel(parent, label, row,0,tooltip)
|
|
|
|
def sliderUpdate(a,b,c):
|
|
sliderLabel.configure(text = options[int(var.get())])
|
|
var.trace("w", sliderUpdate)
|
|
slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1)
|
|
slider.grid(row=row+1, column=0, padx = 8, stick="w", columnspan=2)
|
|
slider.set(set)
|
|
return slider, sliderLabel, titleLabel
|
|
|
|
|
|
def makelabelentry(parent, text, var, row=0, width=50, padx=8, singleline=False, tooltip=""):
|
|
label = makelabel(parent, text, row, 0, tooltip)
|
|
entry = ctk.CTkEntry(parent, width=width, textvariable=var)
|
|
entry.grid(row=row, column=(0 if singleline else 1), padx=padx, sticky="nw")
|
|
return entry, label
|
|
|
|
def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, singlecol=True, tooltiptxt=""):
|
|
label = makelabel(parent, text, row,0,tooltiptxt,columnspan=3)
|
|
def getfilename(var, text):
|
|
initialDir = os.path.dirname(var.get())
|
|
initialDir = initialDir if os.path.isdir(initialDir) else None
|
|
fnam = askopenfilename(title=text,filetypes=filetypes, initialdir=initialDir)
|
|
if fnam:
|
|
var.set(fnam)
|
|
if onchoosefile:
|
|
onchoosefile(var.get())
|
|
entry = ctk.CTkEntry(parent, width, textvariable=var)
|
|
button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b))
|
|
if singlerow:
|
|
entry.grid(row=row, column=1, padx=8, stick="w")
|
|
button.grid(row=row, column=1, padx=(width+12), stick="nw")
|
|
else:
|
|
if singlecol:
|
|
entry.grid(row=row+1, column=0, columnspan=3, padx=8, stick="nw")
|
|
button.grid(row=row+1, column=0, columnspan=3, padx=(width+12), stick="nw")
|
|
else:
|
|
entry.grid(row=row+1, column=0, columnspan=1, padx=8, stick="nw")
|
|
button.grid(row=row+1, column=1, columnspan=1, padx=8, stick="nw")
|
|
return label, entry, button
|
|
|
|
# decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers
|
|
# run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI
|
|
def auto_set_backend_gui(manual_select=False):
|
|
global exitcounter, runmode_untouched
|
|
if manual_select:
|
|
print("\nA .kcppt template was selected from GUI - automatically selecting your backend...")
|
|
runmode_untouched = True
|
|
fetch_gpu_properties(False,True,True)
|
|
else:
|
|
fetch_gpu_properties(True,True,True)
|
|
found_new_backend = False
|
|
#autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick
|
|
#we do not want to autoselect hip/cublas if the user has already changed their desired backend!
|
|
if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched:
|
|
if "Use CuBLAS" in runopts:
|
|
runopts_var.set("Use CuBLAS")
|
|
gpu_choice_var.set("1")
|
|
print("Auto Selected CUDA Backend...\n")
|
|
found_new_backend = True
|
|
elif "Use hipBLAS (ROCm)" in runopts:
|
|
runopts_var.set("Use hipBLAS (ROCm)")
|
|
gpu_choice_var.set("1")
|
|
print("Auto Selected HIP Backend...\n")
|
|
found_new_backend = True
|
|
elif exitcounter < 100 and (1 in VKIsDGPU) and runmode_untouched and "Use Vulkan" in runopts:
|
|
for i in range(0,len(VKIsDGPU)):
|
|
if VKIsDGPU[i]==1:
|
|
runopts_var.set("Use Vulkan")
|
|
gpu_choice_var.set(str(i+1))
|
|
print("Auto Selected Vulkan Backend...\n")
|
|
found_new_backend = True
|
|
break
|
|
if not found_new_backend:
|
|
print("Auto Selected Default Backend...\n")
|
|
changed_gpu_choice_var()
|
|
|
|
def on_picked_model_file(filepath):
|
|
if filepath.lower().endswith('.kcpps') or filepath.lower().endswith('.kcppt'):
|
|
#load it as a config file instead
|
|
with open(filepath, 'r') as f:
|
|
dict = json.load(f)
|
|
import_vars(dict)
|
|
|
|
def setup_backend_tooltip(parent):
|
|
# backend count label with the tooltip function
|
|
nl = '\n'
|
|
tooltxt = f"Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) < 8 else "")
|
|
num_backends_built = makelabel(parent, str(len(runopts)) + f"/8", 5, 2,tooltxt)
|
|
num_backends_built.grid(row=1, column=1, padx=195, pady=0)
|
|
num_backends_built.configure(text_color="#00ff00")
|
|
|
|
def gui_changed_modelfile(*args):
|
|
global importvars_in_progress
|
|
if not importvars_in_progress:
|
|
filepath = model_var.get()
|
|
sdfilepath = sd_model_var.get()
|
|
whisperfilepath = whisper_model_var.get()
|
|
mmprojfilepath = mmproj_var.get()
|
|
extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath)
|
|
changed_gpulayers_estimate()
|
|
pass
|
|
|
|
def changed_gpulayers_estimate(*args):
|
|
predicted_gpu_layers = autoset_gpu_layers(int(contextsize_text[context_var.get()]),(sd_quant_var.get()==1),int(blasbatchsize_values[int(blas_size_var.get())]))
|
|
max_gpu_layers = (f"/{modelfile_extracted_meta[0][0]+3}" if (modelfile_extracted_meta and modelfile_extracted_meta[0] and modelfile_extracted_meta[0][0]!=0) else "")
|
|
index = runopts_var.get()
|
|
gpu_be = (index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)")
|
|
layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
|
|
quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
|
|
if sys.platform=="darwin" and gpulayers_var.get()=="-1":
|
|
quick_layercounter_label.configure(text=f"(Auto: All Layers)")
|
|
layercounter_label.configure(text=f"(Auto: All Layers)")
|
|
elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers>0:
|
|
quick_layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)")
|
|
layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)")
|
|
elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers<=0 and (modelfile_extracted_meta and modelfile_extracted_meta[1]):
|
|
quick_layercounter_label.configure(text=f"(Auto: No Offload)")
|
|
layercounter_label.configure(text=f"(Auto: No Offload)")
|
|
elif gpu_be and gpulayers_var.get()=="":
|
|
quick_layercounter_label.configure(text=f"(Set -1 for Auto)")
|
|
layercounter_label.configure(text=f"(Set -1 for Auto)")
|
|
else:
|
|
layercounter_label.grid_remove()
|
|
quick_layercounter_label.grid_remove()
|
|
pass
|
|
|
|
def changed_gpu_choice_var(*args):
|
|
global exitcounter
|
|
if exitcounter > 100:
|
|
return
|
|
if gpu_choice_var.get()!="All":
|
|
try:
|
|
s = int(gpu_choice_var.get())-1
|
|
v = runopts_var.get()
|
|
if v == "Use Vulkan" or v == "Use Vulkan (Old CPU)":
|
|
quick_gpuname_label.configure(text=VKDevicesNames[s])
|
|
gpuname_label.configure(text=VKDevicesNames[s])
|
|
elif v == "Use CLBlast" or v == "Use CLBlast (Old CPU)":
|
|
quick_gpuname_label.configure(text=CLDevicesNames[s])
|
|
gpuname_label.configure(text=CLDevicesNames[s])
|
|
else:
|
|
quick_gpuname_label.configure(text=CUDevicesNames[s])
|
|
gpuname_label.configure(text=CUDevicesNames[s])
|
|
except Exception as ex:
|
|
pass
|
|
else:
|
|
quick_gpuname_label.configure(text="")
|
|
gpuname_label.configure(text="")
|
|
|
|
gpu_choice_var.trace("w", changed_gpu_choice_var)
|
|
gpulayers_var.trace("w", changed_gpulayers_estimate)
|
|
|
|
def togglectxshift(a,b,c):
|
|
if contextshift.get()==0:
|
|
smartcontextbox.grid()
|
|
else:
|
|
smartcontextbox.grid_remove()
|
|
|
|
if contextshift.get()==0 and flashattention.get()==1:
|
|
qkvslider.grid()
|
|
qkvlabel.grid()
|
|
noqkvlabel.grid_remove()
|
|
else:
|
|
qkvslider.grid_remove()
|
|
qkvlabel.grid_remove()
|
|
noqkvlabel.grid()
|
|
|
|
def toggleflashattn(a,b,c):
|
|
if contextshift.get()==0 and flashattention.get()==1:
|
|
qkvslider.grid()
|
|
qkvlabel.grid()
|
|
noqkvlabel.grid_remove()
|
|
else:
|
|
qkvslider.grid_remove()
|
|
qkvlabel.grid_remove()
|
|
noqkvlabel.grid()
|
|
|
|
|
|
def guibench():
|
|
args.benchmark = "stdout"
|
|
launchbrowser.set(0)
|
|
guilaunch()
|
|
|
|
def changerunmode(a,b,c):
|
|
global runmode_untouched
|
|
runmode_untouched = False
|
|
index = runopts_var.get()
|
|
if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
|
|
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
|
|
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
|
|
gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
|
|
quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
|
|
if index == "Use CLBlast" or index == "Use CLBlast (Old CPU)":
|
|
gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
|
|
quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
|
|
CUDA_gpu_selector_box.grid_remove()
|
|
CUDA_quick_gpu_selector_box.grid_remove()
|
|
if gpu_choice_var.get()=="All":
|
|
gpu_choice_var.set("1")
|
|
elif index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
|
|
gpu_selector_box.grid_remove()
|
|
quick_gpu_selector_box.grid_remove()
|
|
CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
|
|
CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
|
|
else:
|
|
quick_gpuname_label.grid_remove()
|
|
gpuname_label.grid_remove()
|
|
gpu_selector_label.grid_remove()
|
|
gpu_selector_box.grid_remove()
|
|
CUDA_gpu_selector_box.grid_remove()
|
|
quick_gpu_selector_label.grid_remove()
|
|
quick_gpu_selector_box.grid_remove()
|
|
CUDA_quick_gpu_selector_box.grid_remove()
|
|
|
|
if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
|
|
lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw")
|
|
mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
|
|
quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
|
|
splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw")
|
|
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
|
|
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
|
|
else:
|
|
lowvram_box.grid_remove()
|
|
mmq_box.grid_remove()
|
|
quick_mmq_box.grid_remove()
|
|
tensor_split_label.grid_remove()
|
|
tensor_split_entry.grid_remove()
|
|
splitmode_box.grid_remove()
|
|
|
|
if index == "Use Vulkan":
|
|
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
|
|
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
|
|
|
|
if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
|
|
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
|
|
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
|
|
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
|
|
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
|
|
elif sys.platform=="darwin":
|
|
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
|
|
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
|
|
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
|
|
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
|
|
else:
|
|
gpu_layers_label.grid_remove()
|
|
gpu_layers_entry.grid_remove()
|
|
quick_gpu_layers_label.grid_remove()
|
|
quick_gpu_layers_entry.grid_remove()
|
|
changed_gpulayers_estimate()
|
|
changed_gpu_choice_var()
|
|
|
|
|
|
# presets selector
|
|
makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.")
|
|
|
|
runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
|
|
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
|
|
runoptbox.set(runopts[0]) # Set to first available option
|
|
|
|
# Tell user how many backends are available
|
|
setup_backend_tooltip(quick_tab)
|
|
|
|
# gpu options
|
|
quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
|
|
quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
|
|
CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
|
|
quick_gpuname_label = ctk.CTkLabel(quick_tab, text="")
|
|
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
|
|
quick_gpuname_label.configure(text_color="#ffff00")
|
|
quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81")
|
|
quick_layercounter_label = ctk.CTkLabel(quick_tab, text="")
|
|
quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
|
|
quick_layercounter_label.configure(text_color="#ffff00")
|
|
quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.")
|
|
|
|
# quick boxes
|
|
quick_boxes = {
|
|
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
|
|
"Disable MMAP": [disablemmap, "Avoids using mmap to load models if enabled"],
|
|
"Use ContextShift": [contextshift, "Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info."],
|
|
"Remote Tunnel": [remotetunnel, "Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."],
|
|
"Use FlashAttention": [flashattention, "Enable flash attention for GGUF models."],
|
|
"Quiet Mode": [quietmode, "Prevents all generation related terminal output from being displayed."]
|
|
}
|
|
|
|
for idx, (name, properties) in enumerate(quick_boxes.items()):
|
|
makecheckbox(quick_tab, name, properties[0], int(idx/2) + 20, idx % 2, tooltiptxt=properties[1])
|
|
|
|
# context size
|
|
makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
|
|
|
|
# load model
|
|
makefileentry(quick_tab, "Model:", "Select GGUF or GGML Model File", model_var, 40, 280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
|
|
model_var.trace("w", gui_changed_modelfile)
|
|
|
|
# Hardware Tab
|
|
hardware_tab = tabcontent["Hardware"]
|
|
|
|
# presets selector
|
|
makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.")
|
|
runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
|
|
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
|
|
runoptbox.set(runopts[0]) # Set to first available option
|
|
|
|
# Tell user how many backends are available
|
|
setup_backend_tooltip(hardware_tab)
|
|
|
|
# gpu options
|
|
gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
|
|
gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
|
|
CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
|
|
gpuname_label = ctk.CTkLabel(hardware_tab, text="")
|
|
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
|
|
gpuname_label.configure(text_color="#ffff00")
|
|
gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81")
|
|
layercounter_label = ctk.CTkLabel(hardware_tab, text="")
|
|
layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
|
|
layercounter_label.configure(text_color="#ffff00")
|
|
tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.')
|
|
lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.')
|
|
mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.")
|
|
splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.")
|
|
|
|
# threads
|
|
makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,tooltip="How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.")
|
|
|
|
# hardware checkboxes
|
|
hardware_boxes = {
|
|
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
|
|
"High Priority": [highpriority, "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended."],
|
|
"Disable MMAP": [disablemmap, "Avoids using mmap to load models if enabled"],
|
|
"Use mlock": [usemlock, "Enables mlock, preventing the RAM used to load the model from being paged out."],
|
|
"Debug Mode": [debugmode, "Enables debug mode, with extra info printed to the terminal."],
|
|
"Keep Foreground": [keepforeground, "Bring KoboldCpp to the foreground every time there is a new generation."]
|
|
}
|
|
|
|
for idx, (name, properties) in enumerate(hardware_boxes.items()):
|
|
makecheckbox(hardware_tab, name, properties[0], int(idx/2) + 30, idx % 2, tooltiptxt=properties[1])
|
|
|
|
# blas thread specifier
|
|
makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,tooltip="How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.")
|
|
# blas batch size
|
|
makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16,width=200, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.")
|
|
blas_size_var.trace("w", changed_gpulayers_estimate)
|
|
|
|
# force version
|
|
makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,tooltip="If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.")
|
|
ctk.CTkButton(hardware_tab , text = "Run Benchmark", command = guibench ).grid(row=110,column=0, stick="se", padx= 0, pady=2)
|
|
|
|
|
|
runopts_var.trace('w', changerunmode)
|
|
changerunmode(1,1,1)
|
|
global runmode_untouched
|
|
runmode_untouched = True
|
|
|
|
# Tokens Tab
|
|
tokens_tab = tabcontent["Tokens"]
|
|
# tokens checkboxes
|
|
smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.")
|
|
makecheckbox(tokens_tab, "Use ContextShift", contextshift, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift)
|
|
|
|
|
|
# context size
|
|
makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
|
|
context_var.trace("w", changed_gpulayers_estimate)
|
|
|
|
customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale, row=23, padx=100, singleline=True, tooltip="For Linear RoPE scaling. RoPE frequency scale.")
|
|
customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base, row=24, padx=100, singleline=True, tooltip="For NTK Aware Scaling. RoPE frequency base.")
|
|
def togglerope(a,b,c):
|
|
items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry]
|
|
for idx, item in enumerate(items):
|
|
if customrope_var.get() == 1:
|
|
item.grid()
|
|
else:
|
|
item.grid_remove()
|
|
makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.")
|
|
makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.")
|
|
noqkvlabel = makelabel(tokens_tab,"Requirments Not Met",31,0,"Requires FlashAttention ENABLED and ContextShift DISABLED.")
|
|
noqkvlabel.configure(text_color="#ff5555")
|
|
qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention and disables ContextShift.")
|
|
|
|
togglerope(1,1,1)
|
|
toggleflashattn(1,1,1)
|
|
togglectxshift(1,1,1)
|
|
|
|
# Model Tab
|
|
model_tab = tabcontent["Model Files"]
|
|
|
|
makefileentry(model_tab, "Model:", "Select GGUF or GGML Model File", model_var, 1,width=280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
|
|
makefileentry(model_tab, "Lora:", "Select Lora File",lora_var, 3,width=280,tooltiptxt="Select an optional GGML LoRA adapter to use.\nLeave blank to skip.")
|
|
makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,width=280,tooltiptxt="Select an optional F16 GGML LoRA base file to use.\nLeave blank to skip.")
|
|
makefileentry(model_tab, "LLaVA mmproj:", "Select LLaVA mmproj File", mmproj_var, 7,width=280,tooltiptxt="Select a mmproj file to use for LLaVA.\nLeave blank to skip.")
|
|
makefileentry(model_tab, "Preloaded Story:", "Select Preloaded Story File", preloadstory_var, 9,width=280,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.")
|
|
makefileentry(model_tab, "ChatCompletions Adapter:", "Select ChatCompletions Adapter File", chatcompletionsadapter_var, 12, width=250, filetypes=[("JSON Adapter", "*.json")], tooltiptxt="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.")
|
|
def pickpremadetemplate():
|
|
initialDir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
|
|
initialDir = initialDir if os.path.isdir(initialDir) else None
|
|
fnam = askopenfilename(title="Pick Premade ChatCompletions Adapter",filetypes=[("JSON Adapter", "*.json")], initialdir=initialDir)
|
|
if fnam:
|
|
chatcompletionsadapter_var.set(fnam)
|
|
ctk.CTkButton(model_tab, 64, text="Pick Premade", command=pickpremadetemplate).grid(row=13, column=0, padx=322, stick="nw")
|
|
|
|
mmproj_var.trace("w", gui_changed_modelfile)
|
|
makecheckbox(model_tab, "Allow Launch Without Models", nomodel, 15, tooltiptxt="Allows running the WebUI with no model loaded.")
|
|
|
|
# Network Tab
|
|
network_tab = tabcontent["Network"]
|
|
|
|
# interfaces
|
|
makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip="Select the port to host the KoboldCPP webserver.\n(Defaults to 5001)")
|
|
makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)")
|
|
|
|
makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.")
|
|
makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.")
|
|
makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.")
|
|
makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.")
|
|
|
|
makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 5, width=200 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.")
|
|
makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 7, width=200, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.")
|
|
makelabelentry(network_tab, "Password: ", password_var, 8, 200,tooltip="Enter a password required to use this instance.\nThis key will be required for all text endpoints.\nImage endpoints are not secured.")
|
|
|
|
# Horde Tab
|
|
horde_tab = tabcontent["Horde Worker"]
|
|
makelabel(horde_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10)
|
|
|
|
horde_name_entry, horde_name_label = makelabelentry(horde_tab, "Horde Model Name:", horde_name_var, 20, 180,tooltip="The model name to be displayed on the AI Horde.")
|
|
horde_gen_entry, horde_gen_label = makelabelentry(horde_tab, "Gen. Length:", horde_gen_var, 21, 50,tooltip="The maximum amount to generate per request \nthat this worker will accept jobs for.")
|
|
horde_context_entry, horde_context_label = makelabelentry(horde_tab, "Max Context:",horde_context_var, 22, 50,tooltip="The maximum context length \nthat this worker will accept jobs for.")
|
|
horde_apikey_entry, horde_apikey_label = makelabelentry(horde_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,tooltip="Your AI Horde API Key that you have registered.")
|
|
horde_workername_entry, horde_workername_label = makelabelentry(horde_tab, "Horde Worker Name:",horde_workername_var, 24, 180,tooltip="Your worker's name to be displayed.")
|
|
|
|
def togglehorde(a,b,c):
|
|
horde_items = zip([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry],
|
|
[horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label])
|
|
|
|
for item, label in horde_items:
|
|
if usehorde_var.get() == 1:
|
|
item.grid()
|
|
label.grid()
|
|
else:
|
|
item.grid_remove()
|
|
label.grid_remove()
|
|
if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="":
|
|
basefile = os.path.basename(model_var.get())
|
|
horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0]))
|
|
|
|
makecheckbox(horde_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.")
|
|
togglehorde(1,1,1)
|
|
|
|
# Image Gen Tab
|
|
|
|
images_tab = tabcontent["Image Gen"]
|
|
makefileentry(images_tab, "Stable Diffusion Model (safetensors/gguf):", "Select Stable Diffusion Model File", sd_model_var, 1, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Stable Diffusion model file on disk to be loaded.")
|
|
makelabelentry(images_tab, "Clamped Mode (Limit Resolution)", sd_clamped_var, 4, 50,tooltip="Limit generation steps and resolution settings for shared use.\nSet to 0 to disable, otherwise value is the size limit (min 512px).")
|
|
makelabelentry(images_tab, "Image Threads:" , sd_threads_var, 6, 50,tooltip="How many threads to use during image generation.\nIf left blank, uses same value as threads.")
|
|
sd_model_var.trace("w", gui_changed_modelfile)
|
|
|
|
sdloritem1,sdloritem2,sdloritem3 = makefileentry(images_tab, "Image LoRA (Must be non-quant):", "Select SD lora file",sd_lora_var, 10, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD LoRA model file to be loaded.")
|
|
sdloritem4,sdloritem5 = makelabelentry(images_tab, "Image LoRA Multiplier:" , sd_loramult_var, 12, 50,tooltip="What mutiplier value to apply the SD LoRA with.")
|
|
def togglesdquant(a,b,c):
|
|
if sd_quant_var.get()==1:
|
|
sdloritem1.grid_remove()
|
|
sdloritem2.grid_remove()
|
|
sdloritem3.grid_remove()
|
|
sdloritem4.grid_remove()
|
|
sdloritem5.grid_remove()
|
|
else:
|
|
sdloritem1.grid()
|
|
sdloritem2.grid()
|
|
sdloritem3.grid()
|
|
sdloritem4.grid()
|
|
sdloritem5.grid()
|
|
makecheckbox(images_tab, "Compress Weights (Saves Memory)", sd_quant_var, 8,command=togglesdquant,tooltiptxt="Quantizes the SD model weights to save memory. May degrade quality.")
|
|
sd_quant_var.trace("w", changed_gpulayers_estimate)
|
|
|
|
sdvaeitem1,sdvaeitem2,sdvaeitem3 = makefileentry(images_tab, "Image VAE:", "Select SD VAE file",sd_vae_var, 14, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD VAE file to be loaded.")
|
|
def toggletaesd(a,b,c):
|
|
if sd_vaeauto_var.get()==1:
|
|
sdvaeitem1.grid_remove()
|
|
sdvaeitem2.grid_remove()
|
|
sdvaeitem3.grid_remove()
|
|
else:
|
|
sdvaeitem1.grid()
|
|
sdvaeitem2.grid()
|
|
sdvaeitem3.grid()
|
|
makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 16,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.")
|
|
|
|
# audio tab
|
|
audio_tab = tabcontent["Audio"]
|
|
makefileentry(audio_tab, "Whisper Model (Speech-To-Text):", "Select Whisper .bin Model File", whisper_model_var, 1, width=280, filetypes=[("*.bin","*.bin")], tooltiptxt="Select a Whisper .bin model file on disk to be loaded.")
|
|
whisper_model_var.trace("w", gui_changed_modelfile)
|
|
|
|
def kcpp_export_template():
|
|
nonlocal kcpp_exporting_template
|
|
kcpp_exporting_template = True
|
|
export_vars()
|
|
kcpp_exporting_template = False
|
|
savdict = json.loads(json.dumps(args.__dict__))
|
|
file_type = [("KoboldCpp LaunchTemplate", "*.kcppt")]
|
|
#remove blacklisted fields
|
|
savdict["istemplate"] = True
|
|
savdict["gpulayers"] = -1
|
|
savdict["threads"] = -1
|
|
savdict["hordekey"] = ""
|
|
savdict["hordeworkername"] = ""
|
|
savdict["sdthreads"] = 0
|
|
savdict["password"] = None
|
|
savdict["nommap"] = False
|
|
savdict["usemlock"] = False
|
|
savdict["debugmode"] = 0
|
|
savdict["ssl"] = None
|
|
savdict["useclblast"] = None
|
|
savdict["usecublas"] = None
|
|
savdict["usevulkan"] = None
|
|
savdict["tensor_split"] = None
|
|
savdict["config"] = None
|
|
filename = asksaveasfile(filetypes=file_type, defaultextension=file_type)
|
|
if filename == None:
|
|
return
|
|
file = open(str(filename.name), 'a')
|
|
file.write(json.dumps(savdict))
|
|
file.close()
|
|
pass
|
|
|
|
# extra tab
|
|
extra_tab = tabcontent["Extra"]
|
|
makelabel(extra_tab, "Unpack KoboldCpp to a local directory to modify its files.", 1, 0)
|
|
makelabel(extra_tab, "You can also launch via koboldcpp.py for faster startup.", 2, 0)
|
|
ctk.CTkButton(extra_tab , text = "Unpack KoboldCpp To Folder", command = unpack_to_dir ).grid(row=3,column=0, stick="w", padx= 8, pady=2)
|
|
makelabel(extra_tab, "Export as launcher .kcppt template (Expert Only)", 4, 0,tooltiptxt="Creates a KoboldCpp launch template for others to use.\nEmbeds JSON files directly into exported file when saving.\nWhen loaded, forces the backend to be automatically determined.\nWarning! Not recommended for beginners!")
|
|
ctk.CTkButton(extra_tab , text = "Generate LaunchTemplate", command = kcpp_export_template ).grid(row=5,column=0, stick="w", padx= 8, pady=2)
|
|
|
|
# launch
|
|
def guilaunch():
|
|
if model_var.get() == "" and sd_model_var.get() == "" and whisper_model_var.get() == "" and nomodel.get()!=1:
|
|
tmp = askopenfilename(title="Select ggml model .bin or .gguf file")
|
|
model_var.set(tmp)
|
|
nonlocal nextstate
|
|
nextstate = 1
|
|
root.withdraw()
|
|
root.quit()
|
|
pass
|
|
|
|
def export_vars():
|
|
nonlocal kcpp_exporting_template
|
|
args.threads = int(threads_var.get())
|
|
args.usemlock = usemlock.get() == 1
|
|
args.debugmode = debugmode.get()
|
|
args.launch = launchbrowser.get()==1
|
|
args.highpriority = highpriority.get()==1
|
|
args.nommap = disablemmap.get()==1
|
|
args.smartcontext = smartcontext.get()==1
|
|
args.flashattention = flashattention.get()==1
|
|
args.noshift = contextshift.get()==0
|
|
args.remotetunnel = remotetunnel.get()==1
|
|
args.foreground = keepforeground.get()==1
|
|
args.quiet = quietmode.get()==1
|
|
args.nocertify = nocertifymode.get()==1
|
|
args.nomodel = nomodel.get()==1
|
|
if contextshift.get()==0 and flashattention.get()==1:
|
|
args.quantkv = quantkv_var.get()
|
|
else:
|
|
args.quantkv = 0
|
|
|
|
gpuchoiceidx = 0
|
|
args.usecpu = False
|
|
args.usevulkan = None
|
|
args.usecublas = None
|
|
args.useclblast = None
|
|
args.noavx2 = False
|
|
if gpu_choice_var.get()!="All":
|
|
gpuchoiceidx = int(gpu_choice_var.get())-1
|
|
if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "Use CLBlast (Old CPU)":
|
|
args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx]
|
|
if runopts_var.get() == "CUse CLBlast (Old CPU)":
|
|
args.noavx2 = True
|
|
if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)":
|
|
if gpu_choice_var.get()=="All":
|
|
args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"]
|
|
else:
|
|
args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)]
|
|
if mmq_var.get()==1:
|
|
args.usecublas.append("mmq")
|
|
if rowsplit_var.get()==1:
|
|
args.usecublas.append("rowsplit")
|
|
if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Use Vulkan (Old CPU)":
|
|
if gpu_choice_var.get()=="All":
|
|
args.usevulkan = []
|
|
else:
|
|
args.usevulkan = [int(gpuchoiceidx)]
|
|
if runopts_var.get() == "Use Vulkan (Old CPU)":
|
|
args.noavx2 = True
|
|
if gpulayers_var.get():
|
|
args.gpulayers = int(gpulayers_var.get())
|
|
if runopts_var.get()=="Use CPU":
|
|
args.usecpu = True
|
|
if runopts_var.get()=="Use CPU (Old CPU)":
|
|
args.noavx2 = True
|
|
if runopts_var.get()=="Failsafe Mode (Old CPU)":
|
|
args.noavx2 = True
|
|
args.usecpu = True
|
|
args.nommap = True
|
|
if tensor_split_str_vars.get()!="":
|
|
tssv = tensor_split_str_vars.get()
|
|
if "," in tssv:
|
|
args.tensor_split = [float(x) for x in tssv.split(",")]
|
|
else:
|
|
args.tensor_split = [float(x) for x in tssv.split(" ")]
|
|
|
|
args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get())
|
|
|
|
args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())])
|
|
args.forceversion = 0 if version_var.get()=="" else int(version_var.get())
|
|
|
|
args.contextsize = int(contextsize_text[context_var.get()])
|
|
|
|
if customrope_var.get()==1:
|
|
args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())]
|
|
|
|
args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get()
|
|
try:
|
|
if kcpp_exporting_template and isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="" and os.path.exists(args.chatcompletionsadapter):
|
|
print(f"Embedding chat completions adapter...") # parse and save embedded preload story
|
|
with open(args.chatcompletionsadapter, 'r') as f:
|
|
args.chatcompletionsadapter = json.load(f)
|
|
except Exception as ex2:
|
|
pass
|
|
|
|
args.model_param = None if model_var.get() == "" else model_var.get()
|
|
args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()])
|
|
args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get()
|
|
try:
|
|
if kcpp_exporting_template and isinstance(args.preloadstory, str) and args.preloadstory!="" and os.path.exists(args.preloadstory):
|
|
print(f"Embedding preload story...") # parse and save embedded preload story
|
|
with open(args.preloadstory, 'r') as f:
|
|
args.preloadstory = json.load(f)
|
|
except Exception as ex2:
|
|
pass
|
|
args.mmproj = None if mmproj_var.get() == "" else mmproj_var.get()
|
|
|
|
args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()])
|
|
args.password = None if (password_var.get() == "") else (password_var.get())
|
|
|
|
args.port_param = defaultport if port_var.get()=="" else int(port_var.get())
|
|
args.host = host_var.get()
|
|
args.multiuser = multiuser_var.get()
|
|
|
|
if usehorde_var.get() != 0:
|
|
args.hordemodelname = horde_name_var.get()
|
|
args.hordegenlen = int(horde_gen_var.get())
|
|
args.hordemaxctx = int(horde_context_var.get())
|
|
if horde_apikey_var.get()!="" and horde_workername_var.get()!="":
|
|
args.hordekey = horde_apikey_var.get()
|
|
args.hordeworkername = horde_workername_var.get()
|
|
|
|
if sd_model_var.get() != "":
|
|
args.sdmodel = sd_model_var.get()
|
|
|
|
args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get()))
|
|
args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get()))
|
|
if sd_vaeauto_var.get()==1:
|
|
args.sdvaeauto = True
|
|
args.sdvae = ""
|
|
else:
|
|
args.sdvaeauto = False
|
|
args.sdvae = ""
|
|
if sd_vae_var.get() != "":
|
|
args.sdvae = sd_vae_var.get()
|
|
if sd_quant_var.get()==1:
|
|
args.sdquant = True
|
|
args.sdlora = ""
|
|
else:
|
|
if sd_lora_var.get() != "":
|
|
args.sdlora = sd_lora_var.get()
|
|
args.sdloramult = float(sd_loramult_var.get())
|
|
else:
|
|
args.sdlora = ""
|
|
|
|
if whisper_model_var.get() != "":
|
|
args.whispermodel = whisper_model_var.get()
|
|
|
|
def import_vars(dict):
|
|
global importvars_in_progress
|
|
importvars_in_progress = True
|
|
dict = convert_outdated_args(dict)
|
|
|
|
if "threads" in dict:
|
|
threads_var.set(dict["threads"])
|
|
usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0)
|
|
if "debugmode" in dict:
|
|
debugmode.set(dict["debugmode"])
|
|
launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0)
|
|
highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0)
|
|
disablemmap.set(1 if "nommap" in dict and dict["nommap"] else 0)
|
|
smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0)
|
|
flashattention.set(1 if "flashattention" in dict and dict["flashattention"] else 0)
|
|
contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1)
|
|
remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0)
|
|
keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0)
|
|
quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0)
|
|
nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0)
|
|
nomodel.set(1 if "nomodel" in dict and dict["nomodel"] else 0)
|
|
if "quantkv" in dict:
|
|
quantkv_var.set(dict["quantkv"])
|
|
if "useclblast" in dict and dict["useclblast"]:
|
|
if "noavx2" in dict and dict["noavx2"]:
|
|
if clblast_noavx2_option is not None:
|
|
runopts_var.set(clblast_noavx2_option)
|
|
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
|
|
else:
|
|
if clblast_option is not None:
|
|
runopts_var.set(clblast_option)
|
|
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
|
|
elif "usecublas" in dict and dict["usecublas"]:
|
|
if cublas_option is not None or hipblas_option is not None:
|
|
if cublas_option:
|
|
runopts_var.set(cublas_option)
|
|
elif hipblas_option:
|
|
runopts_var.set(hipblas_option)
|
|
lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0)
|
|
mmq_var.set(1 if "mmq" in dict["usecublas"] else 0)
|
|
rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0)
|
|
gpu_choice_var.set("All")
|
|
for g in range(4):
|
|
if str(g) in dict["usecublas"]:
|
|
gpu_choice_var.set(str(g+1))
|
|
break
|
|
elif "usevulkan" in dict and dict['usevulkan'] is not None:
|
|
if "noavx2" in dict and dict["noavx2"]:
|
|
if vulkan_noavx2_option is not None:
|
|
runopts_var.set(vulkan_noavx2_option)
|
|
gpu_choice_var.set("All")
|
|
for opt in range(0,4):
|
|
if opt in dict["usevulkan"]:
|
|
gpu_choice_var.set(str(opt+1))
|
|
break
|
|
else:
|
|
if vulkan_option is not None:
|
|
runopts_var.set(vulkan_option)
|
|
gpu_choice_var.set("All")
|
|
for opt in range(0,4):
|
|
if opt in dict["usevulkan"]:
|
|
gpu_choice_var.set(str(opt+1))
|
|
break
|
|
|
|
elif "noavx2" in dict and "usecpu" in dict and dict["usecpu"] and dict["noavx2"]:
|
|
if failsafe_option is not None:
|
|
runopts_var.set(failsafe_option)
|
|
elif "noavx2" in dict and dict["noavx2"]:
|
|
if noavx2_option is not None:
|
|
runopts_var.set(noavx2_option)
|
|
elif "usecpu" in dict and dict["usecpu"]:
|
|
if default_option is not None:
|
|
runopts_var.set(default_option)
|
|
if "gpulayers" in dict and dict["gpulayers"]:
|
|
gpulayers_var.set(dict["gpulayers"])
|
|
else:
|
|
gpulayers_var.set("0")
|
|
if "tensor_split" in dict and dict["tensor_split"]:
|
|
tssep = ','.join(map(str, dict["tensor_split"]))
|
|
tensor_split_str_vars.set(tssep)
|
|
if "blasthreads" in dict and dict["blasthreads"]:
|
|
blas_threads_var.set(str(dict["blasthreads"]))
|
|
else:
|
|
blas_threads_var.set("")
|
|
if "contextsize" in dict and dict["contextsize"]:
|
|
context_var.set(contextsize_text.index(str(dict["contextsize"])))
|
|
if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1:
|
|
if dict["ropeconfig"][0]>0:
|
|
customrope_var.set(1)
|
|
customrope_scale.set(str(dict["ropeconfig"][0]))
|
|
customrope_base.set(str(dict["ropeconfig"][1]))
|
|
else:
|
|
customrope_var.set(0)
|
|
|
|
if "blasbatchsize" in dict and dict["blasbatchsize"]:
|
|
blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"])))
|
|
|
|
version_var.set(str(dict["forceversion"]) if ("forceversion" in dict and dict["forceversion"]) else "0")
|
|
model_var.set(dict["model_param"] if ("model_param" in dict and dict["model_param"]) else "")
|
|
|
|
lora_var.set("")
|
|
lora_base_var.set("")
|
|
if "lora" in dict and dict["lora"]:
|
|
if len(dict["lora"]) > 1:
|
|
lora_var.set(dict["lora"][0])
|
|
lora_base_var.set(dict["lora"][1])
|
|
else:
|
|
lora_var.set(dict["lora"][0])
|
|
|
|
mmproj_var.set(dict["mmproj"] if ("mmproj" in dict and dict["mmproj"]) else "")
|
|
|
|
ssl_cert_var.set("")
|
|
ssl_key_var.set("")
|
|
if "ssl" in dict and dict["ssl"]:
|
|
if len(dict["ssl"]) == 2:
|
|
ssl_cert_var.set(dict["ssl"][0])
|
|
ssl_key_var.set(dict["ssl"][1])
|
|
|
|
password_var.set(dict["password"] if ("password" in dict and dict["password"]) else "")
|
|
preloadstory_var.set(dict["preloadstory"] if ("preloadstory" in dict and dict["preloadstory"]) else "")
|
|
chatcompletionsadapter_var.set(dict["chatcompletionsadapter"] if ("chatcompletionsadapter" in dict and dict["chatcompletionsadapter"]) else "")
|
|
port_var.set(dict["port_param"] if ("port_param" in dict and dict["port_param"]) else defaultport)
|
|
host_var.set(dict["host"] if ("host" in dict and dict["host"]) else "")
|
|
multiuser_var.set(dict["multiuser"] if ("multiuser" in dict) else 1)
|
|
|
|
horde_name_var.set(dict["hordemodelname"] if ("hordemodelname" in dict and dict["hordemodelname"]) else "koboldcpp")
|
|
horde_context_var.set(dict["hordemaxctx"] if ("hordemaxctx" in dict and dict["hordemaxctx"]) else maxhordectx)
|
|
horde_gen_var.set(dict["hordegenlen"] if ("hordegenlen" in dict and dict["hordegenlen"]) else maxhordelen)
|
|
horde_apikey_var.set(dict["hordekey"] if ("hordekey" in dict and dict["hordekey"]) else "")
|
|
horde_workername_var.set(dict["hordeworkername"] if ("hordeworkername" in dict and dict["hordeworkername"]) else "")
|
|
usehorde_var.set(1 if ("hordekey" in dict and dict["hordekey"]) else 0)
|
|
|
|
sd_model_var.set(dict["sdmodel"] if ("sdmodel" in dict and dict["sdmodel"]) else "")
|
|
sd_clamped_var.set(int(dict["sdclamped"]) if ("sdclamped" in dict and dict["sdclamped"]) else 0)
|
|
sd_threads_var.set(str(dict["sdthreads"]) if ("sdthreads" in dict and dict["sdthreads"]) else str(default_threads))
|
|
sd_quant_var.set(1 if ("sdquant" in dict and dict["sdquant"]) else 0)
|
|
sd_vae_var.set(dict["sdvae"] if ("sdvae" in dict and dict["sdvae"]) else "")
|
|
sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0)
|
|
sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "")
|
|
sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0")
|
|
|
|
whisper_model_var.set(dict["whispermodel"] if ("whispermodel" in dict and dict["whispermodel"]) else "")
|
|
|
|
importvars_in_progress = False
|
|
gui_changed_modelfile()
|
|
if "istemplate" in dict and dict["istemplate"]:
|
|
auto_set_backend_gui(True)
|
|
|
|
def save_config_gui():
|
|
nonlocal kcpp_exporting_template
|
|
kcpp_exporting_template = False
|
|
export_vars()
|
|
savdict = json.loads(json.dumps(args.__dict__))
|
|
file_type = [("KoboldCpp Settings", "*.kcpps")]
|
|
filename = asksaveasfile(filetypes=file_type, defaultextension=file_type)
|
|
if filename == None: return
|
|
file = open(str(filename.name), 'a')
|
|
file.write(json.dumps(savdict))
|
|
file.close()
|
|
pass
|
|
|
|
def load_config_gui(): #this is used to populate the GUI with a config file, whereas load_config_cli simply overwrites cli args
|
|
file_type = [("KoboldCpp Settings", "*.kcpps *.kcppt")]
|
|
global runmode_untouched
|
|
filename = askopenfilename(filetypes=file_type, defaultextension=file_type, initialdir=None)
|
|
if not filename or filename=="":
|
|
return
|
|
runmode_untouched = False
|
|
with open(filename, 'r') as f:
|
|
dict = json.load(f)
|
|
import_vars(dict)
|
|
pass
|
|
|
|
def display_help():
|
|
try:
|
|
import webbrowser as wb
|
|
wb.open("https://github.com/LostRuins/koboldcpp/wiki")
|
|
except:
|
|
print("Cannot launch help in browser.")
|
|
def display_updates():
|
|
try:
|
|
import webbrowser as wb
|
|
wb.open("https://github.com/LostRuins/koboldcpp/releases/latest")
|
|
except:
|
|
print("Cannot launch updates in browser.")
|
|
|
|
ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5)
|
|
|
|
ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5)
|
|
ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5)
|
|
ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5)
|
|
ctk.CTkButton(tabs , text = "Help", fg_color="#992222", hover_color="#bb3333", command = display_help, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5)
|
|
|
|
# start a thread that tries to get actual gpu names and layer counts
|
|
gpuinfo_thread = threading.Thread(target=auto_set_backend_gui)
|
|
gpuinfo_thread.start() #submit job in new thread so nothing is waiting
|
|
|
|
if args.showgui:
|
|
if isinstance(args, argparse.Namespace):
|
|
dict = vars(args)
|
|
import_vars(dict)
|
|
|
|
# runs main loop until closed or launch clicked
|
|
root.mainloop()
|
|
|
|
if nextstate==0:
|
|
exitcounter = 999
|
|
print("Exiting by user request.")
|
|
sys.exit(0)
|
|
else:
|
|
# processing vars
|
|
kcpp_exporting_template = False
|
|
export_vars()
|
|
|
|
if not args.model_param and not args.sdmodel and not args.whispermodel and not args.nomodel:
|
|
exitcounter = 999
|
|
exit_with_error(2,"No text or image model file was selected. Exiting.")
|
|
|
|
def show_gui_msgbox(title,message):
|
|
print(title + ": " + message, flush=True)
|
|
try:
|
|
from tkinter import messagebox
|
|
import tkinter as tk
|
|
root = tk.Tk()
|
|
root.attributes("-alpha", 0)
|
|
messagebox.showerror(title=title, message=message)
|
|
root.withdraw()
|
|
root.quit()
|
|
except Exception as ex2:
|
|
pass
|
|
|
|
def print_with_time(txt):
|
|
print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True)
|
|
|
|
def make_url_request(url, data, method='POST', headers={}):
|
|
import urllib.request, ssl
|
|
global nocertify
|
|
try:
|
|
request = None
|
|
ssl_cert_dir = os.environ.get('SSL_CERT_DIR')
|
|
if not ssl_cert_dir and not nocertify and os.name != 'nt':
|
|
os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs'
|
|
ssl_context = ssl.create_default_context()
|
|
if nocertify:
|
|
ssl_context.check_hostname = False
|
|
ssl_context.verify_mode = ssl.CERT_NONE
|
|
if method=='POST':
|
|
json_payload = json.dumps(data).encode('utf-8')
|
|
request = urllib.request.Request(url, data=json_payload, headers=headers, method=method)
|
|
request.add_header('content-type', 'application/json')
|
|
else:
|
|
request = urllib.request.Request(url, headers=headers, method=method)
|
|
response_data = ""
|
|
with urllib.request.urlopen(request,context=ssl_context,timeout=300) as response:
|
|
response_data = response.read().decode('utf-8',"ignore")
|
|
json_response = json.loads(response_data)
|
|
return json_response
|
|
except urllib.error.HTTPError as e:
|
|
try:
|
|
errmsg = e.read().decode('utf-8',"ignore")
|
|
print_with_time(f"Error: {e} - {errmsg}")
|
|
except Exception as e:
|
|
print_with_time(f"Error: {e}")
|
|
return None
|
|
except Exception as e:
|
|
print_with_time(f"Error: {e} - {response_data}")
|
|
return None
|
|
|
|
#A very simple and stripped down embedded horde worker with no dependencies
|
|
def run_horde_worker(args, api_key, worker_name):
|
|
import random
|
|
global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime, sslvalid
|
|
httpsaffix = ("https" if sslvalid else "http")
|
|
epurl = f"{httpsaffix}://localhost:{args.port}"
|
|
if args.host!="":
|
|
epurl = f"{httpsaffix}://{args.host}:{args.port}"
|
|
|
|
def submit_completed_generation(url, jobid, sessionstart, submit_dict):
|
|
global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter
|
|
reply = make_url_request_horde(url, submit_dict)
|
|
if not reply:
|
|
punishcounter += 1
|
|
print_with_time(f"Error, Job submit failed.")
|
|
else:
|
|
reward = reply["reward"]
|
|
session_kudos_earned += reward
|
|
session_jobs += 1
|
|
curtime = datetime.now()
|
|
elapsedtime=curtime-sessionstart
|
|
hrs = int(elapsedtime.total_seconds()) // 3600
|
|
mins = elapsedtime.seconds // 60 % 60
|
|
secs = elapsedtime.seconds % 60
|
|
elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s"
|
|
earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600)
|
|
print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]')
|
|
rewardcounter += 1
|
|
if rewardcounter > 50:
|
|
rewardcounter = 0
|
|
if exitcounter > 1:
|
|
exitcounter -= 1
|
|
|
|
def make_url_request_horde(url, data, method='POST',addmykey=False):
|
|
global password
|
|
headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'}
|
|
if addmykey and password!="":
|
|
headers["Authorization"] = f"Bearer {password}"
|
|
ret = make_url_request(url, data, method, headers)
|
|
if not ret:
|
|
print("Make sure your Horde API key and worker name is valid!")
|
|
return ret
|
|
|
|
current_id = None
|
|
current_payload = None
|
|
current_generation = None
|
|
session_starttime = datetime.now()
|
|
sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower)
|
|
exitcounter = 0
|
|
print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own Horde Bridge/Scribe worker instead, don't set your API key)")
|
|
BRIDGE_AGENT = f"KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp"
|
|
cluster = "https://aihorde.net"
|
|
while exitcounter < 10:
|
|
time.sleep(3)
|
|
readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET',addmykey=True)
|
|
if readygo:
|
|
print_with_time(f"Embedded Horde Worker '{worker_name}' is started.")
|
|
break
|
|
|
|
while exitcounter < 10:
|
|
currentjob_attempts = 0
|
|
current_generation = None
|
|
|
|
if punishcounter >= 5:
|
|
punishcounter = 0
|
|
exitcounter += 1
|
|
if exitcounter < 10:
|
|
penaltytime = (2 ** exitcounter)
|
|
print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.")
|
|
print_with_time(f"Caution: Too many failed jobs may lead to entering maintenance mode.")
|
|
time.sleep(60 * penaltytime)
|
|
else:
|
|
print_with_time(f"Horde Worker Exit limit reached, too many errors.")
|
|
|
|
global last_non_horde_req_time
|
|
sec_since_non_horde = time.time() - last_non_horde_req_time
|
|
no_recent_local_usage = sec_since_non_horde>20
|
|
if not no_recent_local_usage:
|
|
#print_with_time(f"Recent Local Usage - Horde Worker Waiting...")
|
|
time.sleep(1)
|
|
continue
|
|
|
|
#first, make sure we are not generating
|
|
if modelbusy.locked():
|
|
time.sleep(0.2)
|
|
continue
|
|
|
|
#pop new request
|
|
gen_dict = {
|
|
"name": worker_name,
|
|
"models": [friendlymodelname],
|
|
"max_length": maxhordelen,
|
|
"max_context_length": maxhordectx,
|
|
"priority_usernames": [],
|
|
"softprompts": [],
|
|
"bridge_agent": BRIDGE_AGENT,
|
|
}
|
|
pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict)
|
|
if not pop:
|
|
punishcounter += 1
|
|
print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...")
|
|
time.sleep(10)
|
|
continue
|
|
if not pop["id"]:
|
|
slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3))
|
|
time.sleep(slp)
|
|
sleepy_counter += 1
|
|
if sleepy_counter==20:
|
|
print_with_time(f"No recent jobs, entering low power mode...")
|
|
continue
|
|
|
|
sleepy_counter = 0
|
|
current_id = pop['id']
|
|
current_payload = pop['payload']
|
|
print(f"") #empty newline
|
|
print_with_time(f"Job received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...")
|
|
|
|
#do gen
|
|
while exitcounter < 10:
|
|
if not modelbusy.locked():
|
|
#horde gets a genkey to avoid KCPP overlap
|
|
current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}"
|
|
current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload, method='POST',addmykey=True)
|
|
if current_generation:
|
|
break
|
|
else:
|
|
currentjob_attempts += 1
|
|
if currentjob_attempts>5:
|
|
break
|
|
|
|
print_with_time(f"Server Busy - Not ready to generate...")
|
|
time.sleep(5)
|
|
|
|
#submit reply
|
|
print(f"") #empty newline
|
|
if current_generation:
|
|
submit_dict = {
|
|
"id": current_id,
|
|
"generation": current_generation["results"][0]["text"],
|
|
"state": "ok"
|
|
}
|
|
submiturl = cluster + '/api/v2/generate/text/submit'
|
|
submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict))
|
|
submit_thread.start() #submit job in new thread so nothing is waiting
|
|
else:
|
|
print_with_time(f"Error, Abandoned current job due to errors. Getting new job.")
|
|
current_id = None
|
|
current_payload = None
|
|
time.sleep(0.1)
|
|
|
|
if exitcounter<100:
|
|
print_with_time(f"Horde Worker Shutdown - Too many errors.")
|
|
else:
|
|
print_with_time(f"Horde Worker Shutdown - Server Closing.")
|
|
exitcounter = 999
|
|
time.sleep(3)
|
|
sys.exit(2)
|
|
|
|
def convert_outdated_args(args):
|
|
dict = args
|
|
if isinstance(args, argparse.Namespace):
|
|
dict = vars(args)
|
|
|
|
global using_outdated_flags
|
|
using_outdated_flags = False
|
|
if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"])>0:
|
|
using_outdated_flags = True
|
|
dict["sdmodel"] = dict["sdconfig"][0]
|
|
if dict["sdconfig"] and len(dict["sdconfig"]) > 1:
|
|
dict["sdclamped"] = 512
|
|
if dict["sdconfig"] and len(dict["sdconfig"]) > 2:
|
|
dict["sdthreads"] = int(dict["sdconfig"][2])
|
|
if dict["sdconfig"] and len(dict["sdconfig"]) > 3:
|
|
dict["sdquant"] = (True if dict["sdconfig"][3]=="quant" else False)
|
|
if "hordeconfig" in dict and dict["hordeconfig"] and dict["hordeconfig"][0]!="":
|
|
using_outdated_flags = True
|
|
dict["hordemodelname"] = dict["hordeconfig"][0]
|
|
if len(dict["hordeconfig"]) > 1:
|
|
dict["hordegenlen"] = int(dict["hordeconfig"][1])
|
|
if len(dict["hordeconfig"]) > 2:
|
|
dict["hordemaxctx"] = int(dict["hordeconfig"][2])
|
|
if len(dict["hordeconfig"]) > 4:
|
|
dict["hordekey"] = dict["hordeconfig"][3]
|
|
dict["hordeworkername"] = dict["hordeconfig"][4]
|
|
if "noblas" in dict and dict["noblas"]:
|
|
dict["usecpu"] = True
|
|
|
|
check_deprecation_warning()
|
|
return args
|
|
|
|
def check_deprecation_warning():
|
|
# slightly naggy warning to encourage people to switch to new flags
|
|
# if you want you can remove this at your own risk,
|
|
# but i am not going to troubleshoot or provide support for deprecated flags.
|
|
global using_outdated_flags
|
|
if using_outdated_flags:
|
|
print(f"\n=== !!! IMPORTANT WARNING !!! ===")
|
|
print("You are using one or more OUTDATED config files or launch flags!")
|
|
print("The flags --hordeconfig and --sdconfig have been DEPRECATED, and MAY be REMOVED in future!")
|
|
print("They will still work for now, but you SHOULD switch to the updated flags instead, to avoid future issues!")
|
|
print("New flags are: --hordemodelname --hordeworkername --hordekey --hordemaxctx --hordegenlen --sdmodel --sdthreads --sdquant --sdclamped")
|
|
print("For more information on these flags, please check --help")
|
|
print(">>> If you are using the GUI launcher, simply re-saving your config again will get rid of this warning.")
|
|
print("=== !!! IMPORTANT WARNING !!! ===\n")
|
|
|
|
|
|
|
|
def setuptunnel(has_sd):
|
|
# This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet
|
|
# It should work out of the box on both linux and windows
|
|
try:
|
|
import subprocess, re
|
|
global sslvalid
|
|
httpsaffix = ("https" if sslvalid else "http")
|
|
def run_tunnel():
|
|
tunnelproc = None
|
|
tunneloutput = ""
|
|
tunnelrawlog = ""
|
|
time.sleep(0.2)
|
|
if os.name == 'nt':
|
|
print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True)
|
|
tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url {httpsaffix}://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
|
|
elif sys.platform=="darwin":
|
|
print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True)
|
|
tunnelproc = subprocess.Popen(f"./cloudflared tunnel --url {httpsaffix}://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
|
|
else:
|
|
print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True)
|
|
tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url {httpsaffix}://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
|
|
time.sleep(10)
|
|
def tunnel_reader():
|
|
nonlocal tunnelproc,tunneloutput,tunnelrawlog
|
|
pattern = r'https://[\w\.-]+\.trycloudflare\.com'
|
|
while True:
|
|
line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason
|
|
tunnelrawlog += line+"\n"
|
|
if not line:
|
|
return
|
|
found = re.findall(pattern, line)
|
|
for x in found:
|
|
tunneloutput = x
|
|
print(f"Your remote Kobold API can be found at {tunneloutput}/api")
|
|
print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1")
|
|
if has_sd:
|
|
print(f"StableUI is available at {tunneloutput}/sdui/")
|
|
print("======\n")
|
|
print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True)
|
|
return
|
|
|
|
tunnel_reader_thread = threading.Thread(target=tunnel_reader)
|
|
tunnel_reader_thread.start()
|
|
time.sleep(5)
|
|
if tunneloutput=="":
|
|
print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True)
|
|
time.sleep(0.5)
|
|
tunnelproc.wait()
|
|
|
|
if os.name == 'nt':
|
|
if os.path.exists("cloudflared.exe") and os.path.getsize("cloudflared.exe") > 1000000:
|
|
print("Cloudflared file exists, reusing it...")
|
|
else:
|
|
print("Downloading Cloudflare Tunnel for Windows...")
|
|
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe -o cloudflared.exe", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
|
|
elif sys.platform=="darwin":
|
|
if os.path.exists("cloudflared") and os.path.getsize("cloudflared") > 1000000:
|
|
print("Cloudflared file exists, reusing it...")
|
|
else:
|
|
print("Downloading Cloudflare Tunnel for MacOS...")
|
|
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz -o cloudflared-darwin-amd64.tgz", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
|
|
subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True)
|
|
subprocess.run("chmod +x 'cloudflared'", shell=True)
|
|
else:
|
|
if os.path.exists("cloudflared-linux-amd64") and os.path.getsize("cloudflared-linux-amd64") > 1000000:
|
|
print("Cloudflared file exists, reusing it...")
|
|
else:
|
|
print("Downloading Cloudflare Tunnel for Linux...")
|
|
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared-linux-amd64", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
|
|
subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True)
|
|
print("Attempting to start tunnel thread...", flush=True)
|
|
tunnel_thread = threading.Thread(target=run_tunnel)
|
|
tunnel_thread.start()
|
|
except Exception as ex:
|
|
print("Remote Tunnel Failed!")
|
|
print(str(ex))
|
|
return None
|
|
|
|
def unload_libs():
|
|
global handle
|
|
OS = platform.system()
|
|
dll_close = None
|
|
if OS == "Windows": # pragma: Windows
|
|
from ctypes import wintypes
|
|
dll_close = ctypes.windll.kernel32.FreeLibrary
|
|
dll_close.argtypes = [wintypes.HMODULE]
|
|
dll_close.restype = ctypes.c_int
|
|
elif OS == "Darwin":
|
|
try:
|
|
try: # macOS 11 (Big Sur). Possibly also later macOS 10s.
|
|
stdlib = ctypes.CDLL("libc.dylib")
|
|
except OSError:
|
|
stdlib = ctypes.CDLL("libSystem")
|
|
except OSError:
|
|
# Older macOSs. Not only is the name inconsistent but it's
|
|
# not even in PATH.
|
|
stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib")
|
|
dll_close = stdlib.dlclose
|
|
dll_close.argtypes = [ctypes.c_void_p]
|
|
dll_close.restype = ctypes.c_int
|
|
elif OS == "Linux":
|
|
try:
|
|
stdlib = ctypes.CDLL("")
|
|
except OSError:
|
|
stdlib = ctypes.CDLL("libc.so") # Alpine Linux.
|
|
dll_close = stdlib.dlclose
|
|
dll_close.argtypes = [ctypes.c_void_p]
|
|
dll_close.restype = ctypes.c_int
|
|
elif sys.platform == "msys":
|
|
# msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`.
|
|
stdlib = ctypes.CDLL("msys-2.0.dll")
|
|
dll_close = stdlib.dlclose
|
|
dll_close.argtypes = [ctypes.c_void_p]
|
|
dll_close.restype = ctypes.c_int
|
|
elif sys.platform == "cygwin":
|
|
stdlib = ctypes.CDLL("cygwin1.dll")
|
|
dll_close = stdlib.dlclose
|
|
dll_close.argtypes = [ctypes.c_void_p]
|
|
dll_close.restype = ctypes.c_int
|
|
elif OS == "FreeBSD":
|
|
# FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number.
|
|
# It is not in PATH but using its name instead of its path is somehow the
|
|
# only way to open it. The name must include the .so.7 suffix.
|
|
stdlib = ctypes.CDLL("libc.so.7")
|
|
dll_close = stdlib.close
|
|
|
|
if handle and dll_close:
|
|
print("Unloading Libraries...")
|
|
dll_close(handle._handle)
|
|
del handle.load_model
|
|
del handle.generate
|
|
del handle.new_token
|
|
del handle.get_stream_count
|
|
del handle.has_finished
|
|
del handle.get_last_eval_time
|
|
del handle.get_last_process_time
|
|
del handle.get_last_token_count
|
|
del handle.get_last_seed
|
|
del handle.get_total_gens
|
|
del handle.get_last_stop_reason
|
|
del handle.abort_generate
|
|
del handle.token_count
|
|
del handle.get_pending_output
|
|
del handle
|
|
handle = None
|
|
|
|
def load_config_cli(filename):
|
|
print("Loading .kcpps configuration file...")
|
|
with open(filename, 'r') as f:
|
|
config = json.load(f)
|
|
args.istemplate = False
|
|
raw_args = (sys.argv[1:]) #a lousy hack to allow for overriding kcpps
|
|
for key, value in config.items():
|
|
if f"--{key}" in raw_args:
|
|
if key!="config":
|
|
print(f"Overriding Config Value: {key}")
|
|
else:
|
|
setattr(args, key, value)
|
|
if args.istemplate:
|
|
print("\nA .kcppt template was selected from CLI - automatically selecting your backend...")
|
|
auto_set_backend_cli()
|
|
|
|
|
|
def delete_old_pyinstaller():
|
|
try:
|
|
base_path = sys._MEIPASS
|
|
except Exception:
|
|
return # not running from pyinstaller
|
|
if not base_path:
|
|
return
|
|
|
|
import time, os, shutil
|
|
selfdirpath = os.path.abspath(base_path)
|
|
temp_parentdir_path = os.path.abspath(os.path.join(base_path, '..'))
|
|
for dirname in os.listdir(temp_parentdir_path):
|
|
absdirpath = os.path.abspath(os.path.join(temp_parentdir_path, dirname))
|
|
if os.path.isdir(absdirpath) and os.path.basename(absdirpath).startswith('_MEI'): #only delete kobold pyinstallers
|
|
if absdirpath!=selfdirpath and (time.time() - os.path.getctime(absdirpath)) > 14400: # remove if older than 4 hours
|
|
kobold_itemcheck1 = os.path.join(absdirpath, 'koboldcpp_default.dll')
|
|
kobold_itemcheck2 = os.path.join(absdirpath, 'koboldcpp_default.so')
|
|
kobold_itemcheck3 = os.path.join(absdirpath, 'klite.embd')
|
|
kobold_itemcheck4 = os.path.join(absdirpath, 'cublasLt64_11.dll')
|
|
kobold_itemcheck5 = os.path.join(absdirpath, 'cublas64_11.dll')
|
|
kobold_itemcheck6 = os.path.join(absdirpath, 'clblast.dll')
|
|
if os.path.exists(kobold_itemcheck1) or os.path.exists(kobold_itemcheck2) or os.path.exists(kobold_itemcheck3) or (os.path.exists(kobold_itemcheck4) and os.path.exists(kobold_itemcheck5) and os.path.exists(kobold_itemcheck6)):
|
|
try:
|
|
shutil.rmtree(absdirpath)
|
|
print(f"Deleted orphaned pyinstaller dir: {absdirpath}")
|
|
except Exception as e:
|
|
print(f"Error deleting orphaned pyinstaller dir: {absdirpath}: {e}")
|
|
|
|
def sanitize_string(input_string):
|
|
# alphanumeric characters, dots, dashes, and underscores
|
|
import re
|
|
sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string)
|
|
return sanitized_string
|
|
|
|
def download_model_from_url(url): #returns path to downloaded model when done
|
|
import subprocess
|
|
mdlfilename = os.path.basename(url)
|
|
#check if file already exists
|
|
if mdlfilename:
|
|
if os.path.exists(mdlfilename) and os.path.getsize(mdlfilename) > 10000000: #10MB trigger
|
|
print(f"File {mdlfilename} already exists, not redownloading.")
|
|
return mdlfilename
|
|
else:
|
|
dl_url = url
|
|
if "https://huggingface.co/" in dl_url and "/blob/main/" in dl_url:
|
|
dl_url = dl_url.replace("/blob/main/", "/resolve/main/")
|
|
print(f"Downloading file from external URL at {dl_url} now...")
|
|
subprocess.run(f"curl -fL {dl_url} -o {mdlfilename}", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
|
|
print(f"Download {mdlfilename} completed.", flush=True)
|
|
return mdlfilename
|
|
return None
|
|
|
|
def main(launch_args,start_server=True):
|
|
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
|
|
global libname, args, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath
|
|
|
|
args = launch_args
|
|
if (args.model_param or args.model) and args.prompt and not args.benchmark and not (args.debugmode >= 1):
|
|
suppress_stdout()
|
|
|
|
print(f"***\nWelcome to KoboldCpp - Version {KcppVersion}") # just update version manually
|
|
# print("Python version: " + sys.version)
|
|
|
|
#perform some basic cleanup of old temporary directories
|
|
try:
|
|
delete_old_pyinstaller()
|
|
except Exception as e:
|
|
print(f"Error cleaning up orphaned pyinstaller dirs: {e}")
|
|
|
|
if args.unpack:
|
|
unpack_to_dir(args.unpack)
|
|
return
|
|
|
|
if args.config and len(args.config)==1:
|
|
cfgname = args.config[0]
|
|
if cfgname.endswith("?download=true"):
|
|
cfgname = cfgname.replace("?download=true","")
|
|
if isinstance(cfgname, str) and (cfgname.startswith("http://") or cfgname.startswith("https://")) and (cfgname.endswith(".kcpps") or cfgname.endswith(".kcppt")):
|
|
dlfile = download_model_from_url(cfgname)
|
|
if dlfile:
|
|
cfgname = dlfile
|
|
if isinstance(cfgname, str) and os.path.exists(cfgname):
|
|
load_config_cli(cfgname)
|
|
elif args.ignoremissing:
|
|
print("Ignoring missing kcpp config file...")
|
|
else:
|
|
global exitcounter
|
|
exitcounter = 999
|
|
exit_with_error(2,"Specified kcpp config file invalid or not found.")
|
|
args = convert_outdated_args(args)
|
|
|
|
#positional handling for kcpps files (drag and drop)
|
|
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt')):
|
|
load_config_cli(args.model_param)
|
|
|
|
#prevent quantkv from being used without flash attn
|
|
if args.quantkv and args.quantkv>0 and not args.flashattention:
|
|
exit_with_error(1, "Error: Using --quantkv requires --flashattention")
|
|
|
|
if not args.model_param:
|
|
args.model_param = args.model
|
|
|
|
if args.showgui or (not args.model_param and not args.sdmodel and not args.whispermodel and not args.nomodel):
|
|
#give them a chance to pick a file
|
|
print("For command line arguments, please refer to --help")
|
|
print("***")
|
|
try:
|
|
show_gui()
|
|
except Exception as ex:
|
|
exitcounter = 999
|
|
ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\nPlease check command line: script.py --help"
|
|
show_gui_msgbox("Warning, GUI failed to start",ermsg)
|
|
if args.skiplauncher:
|
|
print(f"Note: In order to use --skiplauncher, you need to specify a model with --model")
|
|
time.sleep(3)
|
|
sys.exit(2)
|
|
|
|
#try to read story if provided
|
|
if args.preloadstory:
|
|
global preloaded_story
|
|
canload = False
|
|
if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory):
|
|
print(f"Preloading saved story {args.preloadstory} into server...")
|
|
with open(args.preloadstory, mode='rb') as f:
|
|
preloaded_story = f.read()
|
|
canload = True
|
|
elif isinstance(args.preloadstory, str):
|
|
print(f"Preloading saved story as JSON into server...")
|
|
try:
|
|
import ast
|
|
parsed = ast.literal_eval(args.preloadstory)
|
|
preloaded_story = json.dumps(parsed).encode()
|
|
canload = True
|
|
except Exception as ex:
|
|
print(ex)
|
|
elif isinstance(args.preloadstory, dict):
|
|
try:
|
|
preloaded_story = json.dumps(args.preloadstory).encode()
|
|
canload = True
|
|
except Exception as ex:
|
|
print(ex)
|
|
if canload:
|
|
print("Saved story preloaded.")
|
|
else:
|
|
print(f"Warning: Saved story file invalid or not found. No story will be preloaded into server.")
|
|
|
|
# try to read chat completions adapter
|
|
if args.chatcompletionsadapter:
|
|
global chatcompl_adapter
|
|
ccadapter_path = None
|
|
canload = False
|
|
adapt_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
|
|
adapt_dir = adapt_dir if os.path.isdir(adapt_dir) else None
|
|
if isinstance(args.chatcompletionsadapter, str) and os.path.exists(args.chatcompletionsadapter):
|
|
ccadapter_path = os.path.abspath(args.chatcompletionsadapter)
|
|
elif isinstance(args.chatcompletionsadapter, str) and adapt_dir:
|
|
filename = args.chatcompletionsadapter
|
|
if not filename.endswith(".json"):
|
|
filename += ".json"
|
|
premade_adapt_path = os.path.join(adapt_dir,filename)
|
|
if premade_adapt_path and os.path.exists(premade_adapt_path):
|
|
ccadapter_path = os.path.abspath(premade_adapt_path)
|
|
if ccadapter_path:
|
|
print(f"Loading Chat Completions Adapter: {ccadapter_path}")
|
|
with open(ccadapter_path, 'r') as f:
|
|
chatcompl_adapter = json.load(f)
|
|
canload = True
|
|
else:
|
|
if isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="":
|
|
try:
|
|
import ast
|
|
parsed = ast.literal_eval(args.chatcompletionsadapter)
|
|
chatcompl_adapter = json.loads(json.dumps(parsed))
|
|
canload = True
|
|
except Exception as ex:
|
|
print(ex)
|
|
elif isinstance(args.chatcompletionsadapter, dict):
|
|
try:
|
|
chatcompl_adapter = json.loads(json.dumps(args.chatcompletionsadapter))
|
|
canload = True
|
|
except Exception as ex:
|
|
print(ex)
|
|
if canload:
|
|
print(f"Chat Completions Adapter Loaded")
|
|
else:
|
|
print(f"Warning: Chat Completions Adapter invalid or not found.")
|
|
|
|
# handle model downloads if needed
|
|
if args.model_param and args.model_param!="":
|
|
if args.model_param.endswith("?download=true"):
|
|
args.model_param = args.model_param.replace("?download=true","")
|
|
if (args.model_param.startswith("http://") or args.model_param.startswith("https://")) and (args.model_param.endswith(".gguf") or args.model_param.endswith(".bin")):
|
|
dlfile = download_model_from_url(args.model_param)
|
|
if dlfile:
|
|
args.model_param = dlfile
|
|
if args.sdmodel and args.sdmodel!="":
|
|
if args.sdmodel.endswith("?download=true"):
|
|
args.sdmodel = args.sdmodel.replace("?download=true","")
|
|
if (args.sdmodel.startswith("http://") or args.sdmodel.startswith("https://")) and (args.sdmodel.endswith(".gguf") or args.sdmodel.endswith(".safetensors")):
|
|
dlfile = download_model_from_url(args.sdmodel)
|
|
if dlfile:
|
|
args.sdmodel = dlfile
|
|
if args.mmproj and args.mmproj!="":
|
|
if args.mmproj.endswith("?download=true"):
|
|
args.mmproj = args.mmproj.replace("?download=true","")
|
|
if (args.mmproj.startswith("http://") or args.mmproj.startswith("https://")) and (args.mmproj.endswith(".gguf")):
|
|
dlfile = download_model_from_url(args.mmproj)
|
|
if dlfile:
|
|
args.mmproj = dlfile
|
|
if args.whispermodel and args.whispermodel!="":
|
|
if args.whispermodel.endswith("?download=true"):
|
|
args.whispermodel = args.whispermodel.replace("?download=true","")
|
|
if (args.whispermodel.startswith("http://") or args.whispermodel.startswith("https://")) and (args.whispermodel.endswith(".gguf") or args.whispermodel.endswith(".bin")):
|
|
dlfile = download_model_from_url(args.whispermodel)
|
|
if dlfile:
|
|
args.whispermodel = dlfile
|
|
|
|
# sanitize and replace the default vanity name. remember me....
|
|
if args.model_param and args.model_param!="":
|
|
newmdldisplayname = os.path.basename(args.model_param)
|
|
newmdldisplayname = os.path.splitext(newmdldisplayname)[0]
|
|
friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname)
|
|
|
|
# horde worker settings
|
|
global maxhordelen, maxhordectx, showdebug
|
|
if args.hordemodelname and args.hordemodelname!="":
|
|
friendlymodelname = args.hordemodelname
|
|
if args.debugmode == 1:
|
|
friendlymodelname = "debug-" + friendlymodelname
|
|
if not friendlymodelname.startswith("koboldcpp/"):
|
|
friendlymodelname = "koboldcpp/" + friendlymodelname
|
|
if (args.hordemodelname and args.hordemodelname!="") or (args.hordeworkername and args.hordeworkername!="") or (args.hordekey and args.hordekey!=""):
|
|
if args.debugmode == 0:
|
|
args.debugmode = -1
|
|
if args.hordegenlen and args.hordegenlen > 0:
|
|
maxhordelen = int(args.hordegenlen)
|
|
if args.hordemaxctx and args.hordemaxctx > 0:
|
|
maxhordectx = int(args.hordemaxctx)
|
|
|
|
if args.debugmode != 1:
|
|
showdebug = False
|
|
|
|
if args.highpriority:
|
|
print("Setting process to Higher Priority - Use Caution")
|
|
try:
|
|
import psutil
|
|
os_used = sys.platform
|
|
process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU
|
|
oldprio = process.nice()
|
|
if os_used == "win32": # Windows (either 32-bit or 64-bit)
|
|
process.nice(psutil.REALTIME_PRIORITY_CLASS)
|
|
print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice()))
|
|
elif os_used == "linux": # linux
|
|
process.nice(psutil.IOPRIO_CLASS_RT)
|
|
print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice()))
|
|
else: # MAC OS X or other
|
|
process.nice(-18)
|
|
print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice()))
|
|
except Exception as ex:
|
|
print("Error, Could not change process priority: " + str(ex))
|
|
|
|
if args.contextsize:
|
|
global maxctx
|
|
maxctx = args.contextsize
|
|
|
|
if args.nocertify:
|
|
global nocertify
|
|
nocertify = True
|
|
|
|
if args.gpulayers:
|
|
shouldavoidgpu = False
|
|
if args.usecpu and sys.platform!="darwin":
|
|
shouldavoidgpu = True
|
|
if args.gpulayers and args.gpulayers>0:
|
|
print("WARNING: GPU layers is set, but a GPU backend was not selected! GPU will not be used!")
|
|
args.gpulayers = 0
|
|
elif args.gpulayers==-1 and sys.platform=="darwin" and args.model_param and os.path.exists(args.model_param):
|
|
print(f"MacOS detected: Auto GPU layers set to maximum")
|
|
args.gpulayers = 200
|
|
elif not shouldavoidgpu and args.model_param and os.path.exists(args.model_param):
|
|
if (args.usecublas is None) and (args.usevulkan is None) and (args.useclblast is None):
|
|
print("No GPU or CPU backend was selected. Trying to assign one for you automatically...")
|
|
auto_set_backend_cli()
|
|
if MaxMemory[0] == 0: #try to get gpu vram for cuda if not picked yet
|
|
fetch_gpu_properties(False,True,True)
|
|
pass
|
|
if args.gpulayers==-1:
|
|
if MaxMemory[0] > 0 and (not args.usecpu) and (args.usecublas or (args.usevulkan is not None) or args.useclblast or sys.platform=="darwin"):
|
|
extract_modelfile_params(args.model_param,args.sdmodel,args.whispermodel,args.mmproj)
|
|
layeramt = autoset_gpu_layers(args.contextsize,args.sdquant,args.blasbatchsize)
|
|
print(f"Auto Recommended GPU Layers: {layeramt}")
|
|
args.gpulayers = layeramt
|
|
else:
|
|
print(f"No GPU backend found, or could not automatically determine GPU layers. Please set it manually.")
|
|
args.gpulayers = 0
|
|
|
|
if args.threads == -1:
|
|
args.threads = get_default_threads()
|
|
print(f"Auto Set Threads: {args.threads}")
|
|
|
|
init_library() # Note: if blas does not exist and is enabled, program will crash.
|
|
print("==========")
|
|
time.sleep(1)
|
|
|
|
#handle loading text model
|
|
if args.model_param:
|
|
if not os.path.exists(args.model_param):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing model file: {args.model_param}")
|
|
args.model_param = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find text model file: {args.model_param}")
|
|
|
|
if args.lora and args.lora[0]!="":
|
|
if not os.path.exists(args.lora[0]):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing lora file: {args.lora[0]}")
|
|
args.lora = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find lora file: {args.lora[0]}")
|
|
else:
|
|
args.lora[0] = os.path.abspath(args.lora[0])
|
|
if len(args.lora) > 1:
|
|
if not os.path.exists(args.lora[1]):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing lora base: {args.lora[1]}")
|
|
args.lora = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find lora base: {args.lora[1]}")
|
|
|
|
else:
|
|
args.lora[1] = os.path.abspath(args.lora[1])
|
|
|
|
if args.mmproj and args.mmproj!="":
|
|
if not os.path.exists(args.mmproj):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing mmproj file: {args.mmproj}")
|
|
args.mmproj = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find mmproj file: {args.mmproj}")
|
|
else:
|
|
global mmprojpath
|
|
args.mmproj = os.path.abspath(args.mmproj)
|
|
mmprojpath = args.mmproj
|
|
|
|
if args.password and args.password!="":
|
|
password = args.password.strip()
|
|
|
|
if not args.blasthreads or args.blasthreads <= 0:
|
|
args.blasthreads = args.threads
|
|
|
|
modelname = os.path.abspath(args.model_param)
|
|
print(args)
|
|
# Flush stdout for win32 issue with regards to piping in terminals,
|
|
# especially before handing over to C++ context.
|
|
print(f"==========\nLoading model: {modelname}", flush=True)
|
|
loadok = load_model(modelname)
|
|
print("Load Text Model OK: " + str(loadok))
|
|
|
|
if not loadok:
|
|
exitcounter = 999
|
|
exit_with_error(3,"Could not load text model: " + modelname)
|
|
|
|
#handle loading image model
|
|
if args.sdmodel and args.sdmodel!="":
|
|
imgmodel = args.sdmodel
|
|
if not imgmodel or not os.path.exists(imgmodel):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing img model file: {imgmodel}")
|
|
args.sdmodel = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find image model file: {imgmodel}")
|
|
else:
|
|
imglora = ""
|
|
imgvae = ""
|
|
if args.sdlora:
|
|
if os.path.exists(args.sdlora):
|
|
imglora = os.path.abspath(args.sdlora)
|
|
else:
|
|
print(f"Missing SD LORA model file...")
|
|
if args.sdvae:
|
|
if os.path.exists(args.sdvae):
|
|
imgvae = os.path.abspath(args.sdvae)
|
|
else:
|
|
print(f"Missing SD VAE model file...")
|
|
|
|
imgmodel = os.path.abspath(imgmodel)
|
|
fullsdmodelpath = imgmodel
|
|
friendlysdmodelname = os.path.basename(imgmodel)
|
|
friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0]
|
|
friendlysdmodelname = sanitize_string(friendlysdmodelname)
|
|
loadok = sd_load_model(imgmodel,imgvae,imglora)
|
|
print("Load Image Model OK: " + str(loadok))
|
|
if not loadok:
|
|
exitcounter = 999
|
|
exit_with_error(3,"Could not load image model: " + imgmodel)
|
|
|
|
#handle whisper model
|
|
if args.whispermodel and args.whispermodel!="":
|
|
whispermodel = args.whispermodel
|
|
if not whispermodel or not os.path.exists(whispermodel):
|
|
if args.ignoremissing:
|
|
print(f"Ignoring missing whisper model file: {whispermodel}")
|
|
args.whispermodel = None
|
|
else:
|
|
exitcounter = 999
|
|
exit_with_error(2,f"Cannot find whisper model file: {whispermodel}")
|
|
else:
|
|
whispermodel = os.path.abspath(whispermodel)
|
|
fullwhispermodelpath = whispermodel
|
|
loadok = whisper_load_model(whispermodel)
|
|
print("Load Whisper Model OK: " + str(loadok))
|
|
if not loadok:
|
|
exitcounter = 999
|
|
exit_with_error(3,"Could not load whisper model: " + whispermodel)
|
|
|
|
|
|
#load embedded lite
|
|
try:
|
|
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
|
|
with open(os.path.join(basepath, "klite.embd"), mode='rb') as f:
|
|
embedded_kailite = f.read()
|
|
# patch it with extra stuff
|
|
origStr = "Sorry, KoboldAI Lite requires Javascript to function."
|
|
patchedStr = "Sorry, KoboldAI Lite requires Javascript to function.<br>You can use <a class=\"color_blueurl\" href=\"/noscript\">KoboldCpp NoScript mode</a> instead."
|
|
embedded_kailite = embedded_kailite.decode("UTF-8","ignore")
|
|
embedded_kailite = embedded_kailite.replace(origStr, patchedStr)
|
|
embedded_kailite = embedded_kailite.encode()
|
|
print("Embedded KoboldAI Lite loaded.")
|
|
except Exception as e:
|
|
print("Could not find KoboldAI Lite. Embedded KoboldAI Lite will not be available.")
|
|
|
|
try:
|
|
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
|
|
with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f:
|
|
embedded_kcpp_docs = f.read()
|
|
print("Embedded API docs loaded.")
|
|
except Exception as e:
|
|
print("Could not find Embedded KoboldCpp API docs.")
|
|
|
|
try:
|
|
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
|
|
with open(os.path.join(basepath, "kcpp_sdui.embd"), mode='rb') as f:
|
|
embedded_kcpp_sdui = f.read()
|
|
if args.sdmodel:
|
|
print("Embedded SDUI loaded.")
|
|
except Exception as e:
|
|
print("Could not find Embedded SDUI.")
|
|
|
|
if args.port_param!=defaultport:
|
|
args.port = args.port_param
|
|
|
|
global sslvalid
|
|
if args.ssl:
|
|
if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]):
|
|
sslvalid = True
|
|
print("SSL configuration is valid and will be used.")
|
|
else:
|
|
print("Your SSL configuration is INVALID. SSL will not be used.")
|
|
epurl = ""
|
|
httpsaffix = ("https" if sslvalid else "http")
|
|
if args.host=="":
|
|
epurl = f"{httpsaffix}://localhost:{args.port}"
|
|
else:
|
|
epurl = f"{httpsaffix}://{args.host}:{args.port}"
|
|
if not args.remotetunnel:
|
|
print(f"Starting Kobold API on port {args.port} at {epurl}/api/")
|
|
print(f"Starting OpenAI Compatible API on port {args.port} at {epurl}/v1/")
|
|
if args.sdmodel:
|
|
print(f"StableUI is available at {epurl}/sdui/")
|
|
|
|
if args.launch:
|
|
try:
|
|
import webbrowser as wb
|
|
wb.open(epurl)
|
|
except:
|
|
print("--launch was set, but could not launch web browser automatically.")
|
|
|
|
if args.hordekey and args.hordekey!="":
|
|
if args.hordeworkername and args.hordeworkername!="":
|
|
horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordekey,args.hordeworkername))
|
|
horde_thread.daemon = True
|
|
horde_thread.start()
|
|
else:
|
|
print("Horde worker could not start. You need to specify a horde worker name with --hordeworkername")
|
|
|
|
#if post-ready script specified, execute it
|
|
if args.onready:
|
|
def onready_subprocess():
|
|
import subprocess
|
|
print("Starting Post-Load subprocess...")
|
|
subprocess.run(args.onready[0], shell=True)
|
|
timer_thread = threading.Timer(1, onready_subprocess) #1 second delay
|
|
timer_thread.start()
|
|
|
|
if args.model_param and (args.benchmark or args.prompt):
|
|
start_server = False
|
|
save_to_file = (args.benchmark and args.benchmark!="stdout" and args.benchmark!="")
|
|
benchmaxctx = maxctx
|
|
benchlen = args.promptlimit
|
|
benchtemp = 0.1
|
|
benchtopk = 1
|
|
benchreppen = 1
|
|
benchbaneos = True
|
|
benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0])
|
|
benchprompt = ""
|
|
if args.prompt:
|
|
benchprompt = args.prompt
|
|
benchtopk = 100
|
|
benchreppen = 1.07
|
|
benchtemp = 0.8
|
|
if not args.benchmark:
|
|
benchbaneos = False
|
|
if args.benchmark:
|
|
if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000:
|
|
print(f"\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.")
|
|
save_to_file = False
|
|
if save_to_file:
|
|
print(f"\nRunning benchmark (Save to File: {args.benchmark})...")
|
|
else:
|
|
print(f"\nRunning benchmark (Not Saved)...")
|
|
if benchprompt=="":
|
|
benchprompt = " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
|
|
for i in range(0,14): #generate massive prompt
|
|
benchprompt += benchprompt
|
|
genp = {
|
|
"prompt":benchprompt,
|
|
"max_length":benchlen,
|
|
"max_context_length":benchmaxctx,
|
|
"temperature":benchtemp,
|
|
"top_k":benchtopk,
|
|
"rep_pen":benchreppen,
|
|
"ban_eos_token":benchbaneos
|
|
}
|
|
genout = generate(genparams=genp)
|
|
result = genout['text']
|
|
if args.prompt and not args.benchmark:
|
|
restore_stdout()
|
|
print(result)
|
|
if args.benchmark:
|
|
result = (result[:8] if len(result)>8 else "") if not args.prompt else result
|
|
t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001
|
|
t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001
|
|
s_pp = float(benchmaxctx-benchlen)/t_pp
|
|
s_gen = float(benchlen)/t_gen
|
|
datetimestamp = datetime.now(timezone.utc)
|
|
benchflagstr = f"NoAVX2={args.noavx2} Threads={args.threads} HighPriority={args.highpriority} Cublas_Args={args.usecublas} Tensor_Split={args.tensor_split} BlasThreads={args.blasthreads} BlasBatchSize={args.blasbatchsize} FlashAttention={args.flashattention} KvCache={args.quantkv}"
|
|
print(f"\nBenchmark Completed - v{KcppVersion} Results:\n======")
|
|
print(f"Flags: {benchflagstr}")
|
|
print(f"Timestamp: {datetimestamp}")
|
|
print(f"Backend: {libname}")
|
|
print(f"Layers: {args.gpulayers}")
|
|
print(f"Model: {benchmodel}")
|
|
print(f"MaxCtx: {benchmaxctx}")
|
|
print(f"GenAmount: {benchlen}\n-----")
|
|
print(f"ProcessingTime: {t_pp:.3f}s")
|
|
print(f"ProcessingSpeed: {s_pp:.2f}T/s")
|
|
print(f"GenerationTime: {t_gen:.3f}s")
|
|
print(f"GenerationSpeed: {s_gen:.2f}T/s")
|
|
print(f"TotalTime: {(t_pp+t_gen):.3f}s")
|
|
print(f"Output: {result}\n-----")
|
|
if save_to_file:
|
|
try:
|
|
with open(args.benchmark, "a") as file:
|
|
file.seek(0, 2)
|
|
if file.tell() == 0: #empty file
|
|
file.write(f"Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Output,Flags")
|
|
file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{result},{benchflagstr}")
|
|
except Exception as e:
|
|
print(f"Error writing benchmark to file: {e}")
|
|
global using_gui_launcher
|
|
if using_gui_launcher and not save_to_file:
|
|
print("===")
|
|
print("Press ENTER key to exit.", flush=True)
|
|
input()
|
|
|
|
check_deprecation_warning()
|
|
if start_server:
|
|
if args.remotetunnel:
|
|
setuptunnel(True if args.sdmodel else False)
|
|
else:
|
|
# Flush stdout for previous win32 issue so the client can see output.
|
|
print(f"======\nPlease connect to custom endpoint at {epurl}", flush=True)
|
|
asyncio.run(RunServerMultiThreaded(args.host, args.port))
|
|
else:
|
|
# Flush stdout for previous win32 issue so the client can see output.
|
|
if not args.prompt or args.benchmark:
|
|
print(f"Server was not started, main function complete. Idling.", flush=True)
|
|
|
|
def run_in_queue(launch_args, input_queue, output_queue):
|
|
main(launch_args, start_server=False)
|
|
output_queue.put({'command': 'complete'})
|
|
while True:
|
|
if not input_queue.empty():
|
|
while not input_queue.empty():
|
|
data = input_queue.get()
|
|
if data['command'] == 'generate':
|
|
pl = data['data']
|
|
genout = generate(genparams=pl)
|
|
result = genout['text']
|
|
output_queue.put({'command': 'generated text', 'data': result})
|
|
time.sleep(0.2)
|
|
|
|
def start_in_seperate_process(launch_args):
|
|
import multiprocessing
|
|
input_queue = multiprocessing.Queue()
|
|
output_queue = multiprocessing.Queue()
|
|
p = multiprocessing.Process(target=run_in_queue, args=(launch_args, input_queue, output_queue))
|
|
p.start()
|
|
return (output_queue, input_queue, p)
|
|
|
|
if __name__ == '__main__':
|
|
|
|
def check_range(value_type, min_value, max_value):
|
|
def range_checker(arg: str):
|
|
try:
|
|
f = value_type(arg)
|
|
except ValueError:
|
|
raise argparse.ArgumentTypeError(f'must be a valid {value_type}')
|
|
if f < min_value or f > max_value:
|
|
raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]')
|
|
return f
|
|
return range_checker
|
|
|
|
parser = argparse.ArgumentParser(description=f'KoboldCpp Server - Version {KcppVersion}')
|
|
modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
|
|
modelgroup.add_argument("--model", metavar=('[filename]'), help="Model file to load", type=str, default="")
|
|
modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?")
|
|
portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
|
|
portgroup.add_argument("--port", metavar=('[portnumber]'), help="Port to listen on", default=defaultport, type=int, action='store')
|
|
portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store')
|
|
parser.add_argument("--host", metavar=('[ipaddr]'), help="Host IP to listen on. If this flag is not set, all routable interfaces are accepted.", default="")
|
|
parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true')
|
|
parser.add_argument("--config", metavar=('[filename]'), help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1)
|
|
|
|
parser.add_argument("--threads", metavar=('[threads]'), help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=get_default_threads())
|
|
compatgroup = parser.add_mutually_exclusive_group()
|
|
compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit'])
|
|
compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None)
|
|
compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2)
|
|
compatgroup.add_argument("--usecpu", help="Do not use any GPU acceleration (CPU Only)", action='store_true')
|
|
parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 4096). Supported values are [256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]'), type=check_range(int,256,262144), default=4096)
|
|
parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU. Set to -1 to try autodetect, set to 0 to disable GPU offload.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=-1)
|
|
parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+')
|
|
|
|
#more advanced params
|
|
advparser = parser.add_argument_group('Advanced Commands')
|
|
advparser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+')
|
|
advparser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512)
|
|
advparser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0)
|
|
advparser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+')
|
|
advparser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true')
|
|
advparser.add_argument("--nommap", help="If set, do not use mmap to load newer models", action='store_true')
|
|
advparser.add_argument("--usemlock", help="Enables mlock, preventing the RAM used to load the model from being paged out. Not usually recommended.", action='store_true')
|
|
advparser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true')
|
|
advparser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0)
|
|
advparser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1)
|
|
advparser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None)
|
|
advparser.add_argument("--prompt", metavar=('[prompt]'), help="Passing a prompt string triggers a direct inference, loading the model, outputs the response to stdout and exits. Can be used alone or with benchmark.", type=str, default="")
|
|
advparser.add_argument("--promptlimit", help="Sets the maximum number of generated tokens, usable only with --prompt or --benchmark",metavar=('[token limit]'), type=int, default=100)
|
|
advparser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=1)
|
|
advparser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true')
|
|
advparser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true')
|
|
advparser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true')
|
|
advparser.add_argument("--preloadstory", help="Configures a prepared story json save file to be hosted on the server, which frontends (such as KoboldAI Lite) can access over the API.", default="")
|
|
advparser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running a horde worker.", action='store_true')
|
|
advparser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+')
|
|
advparser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true')
|
|
advparser.add_argument("--mmproj", help="Select a multimodal projector file for LLaVA.", default="")
|
|
advparser.add_argument("--password", help="Enter a password required to use this instance. This key will be required for all text endpoints. Image endpoints are not secured.", default=None)
|
|
advparser.add_argument("--ignoremissing", help="Ignores all missing non-essential files, just skipping them instead.", action='store_true')
|
|
advparser.add_argument("--chatcompletionsadapter", help="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.", default="")
|
|
advparser.add_argument("--flashattention", help="Enables flash attention.", action='store_true')
|
|
advparser.add_argument("--quantkv", help="Sets the KV cache data type quantization, 0=f16, 1=q8, 2=q4. Requires Flash Attention, and disables context shifting.",metavar=('[quantization level 0/1/2]'), type=int, choices=[0,1,2], default=0)
|
|
advparser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0)
|
|
advparser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently. Outdated. Not recommended.", action='store_true')
|
|
advparser.add_argument("--unpack", help="Extracts the file contents of the KoboldCpp binary into a target directory.", metavar=('destination'), type=str, default="")
|
|
advparser.add_argument("--nomodel", help="Allows you to launch the GUI alone, without selecting any model.", action='store_true')
|
|
compatgroup2 = parser.add_mutually_exclusive_group()
|
|
compatgroup2.add_argument("--showgui", help="Always show the GUI instead of launching the model right away when loading settings from a .kcpps file.", action='store_true')
|
|
compatgroup2.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true')
|
|
|
|
hordeparsergroup = parser.add_argument_group('Horde Worker Commands')
|
|
hordeparsergroup.add_argument("--hordemodelname", metavar=('[name]'), help="Sets your AI Horde display model name.", default="")
|
|
hordeparsergroup.add_argument("--hordeworkername", metavar=('[name]'), help="Sets your AI Horde worker name.", default="")
|
|
hordeparsergroup.add_argument("--hordekey", metavar=('[apikey]'), help="Sets your AI Horde API key.", default="")
|
|
hordeparsergroup.add_argument("--hordemaxctx", metavar=('[amount]'), help="Sets the maximum context length your worker will accept from an AI Horde job.", type=int, default=0)
|
|
hordeparsergroup.add_argument("--hordegenlen", metavar=('[amount]'), help="Sets the maximum number of tokens your worker will generate from an AI horde job.", type=int, default=0)
|
|
|
|
sdparsergroup = parser.add_argument_group('Image Generation Commands')
|
|
sdparsergroup.add_argument("--sdmodel", metavar=('[filename]'), help="Specify a stable diffusion safetensors or gguf model to enable image generation.", default="")
|
|
sdparsergroup.add_argument("--sdthreads", metavar=('[threads]'), help="Use a different number of threads for image generation if specified. Otherwise, has the same value as --threads.", type=int, default=0)
|
|
sdparsergroup.add_argument("--sdclamped", help="If specified, limit generation steps and resolution settings for shared use. Accepts an extra optional parameter that indicates maximum resolution (eg. 768 clamps to 768x768, min 512px, disabled if 0).", nargs='?', const=512, type=int, default=0)
|
|
sdparsergroupvae = sdparsergroup.add_mutually_exclusive_group()
|
|
sdparsergroupvae.add_argument("--sdvae", metavar=('[filename]'), help="Specify a stable diffusion safetensors VAE which replaces the one in the model.", default="")
|
|
sdparsergroupvae.add_argument("--sdvaeauto", help="Uses a built-in VAE via TAE SD, which is very fast, and fixed bad VAEs.", action='store_true')
|
|
sdparsergrouplora = sdparsergroup.add_mutually_exclusive_group()
|
|
sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true')
|
|
sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="")
|
|
sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0)
|
|
|
|
whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands')
|
|
whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper bin model to enable Speech-To-Text transcription.", default="")
|
|
|
|
deprecatedgroup = parser.add_argument_group('Deprecated Commands, DO NOT USE!')
|
|
deprecatedgroup.add_argument("--hordeconfig", help=argparse.SUPPRESS, nargs='+')
|
|
deprecatedgroup.add_argument("--sdconfig", help=argparse.SUPPRESS, nargs='+')
|
|
compatgroup.add_argument("--noblas", help=argparse.SUPPRESS, action='store_true')
|
|
|
|
main(parser.parse_args(),start_server=True)
|