koboldcpp/examples/model-conversion/scripts/utils/hf-create-collection.py
Daniel Bevenius 2758fa10da
examples : add model conversion tool/example (#15455)
* examples : add model conversion tool/example

This commit adds an "example/tool" that is intended to help in the
process of converting models to GGUF. Currently it supports normal
causal models and embedding models. The readme contains instructions and
command to guide through the process.

The motivation for this to have a structured and repeatable process for
model conversions and hopefully with time improve upon it to make the
process easier and more reliable. We have started to use this for new
model conversions internally and will continue doing so and improve it
as we go along. Perhaps with time this should be placed in a different
directory than the examples directory, but for now it seems like a good
place to keep it while we are still developing it.

* squash! examples : add model conversion tool/example

Remove dependency on scikit-learn in model conversion example.

* squash! examples : add model conversion tool/example

Update transformer dep to use non-dev version. And also import
`AutoModelForCausalLM` instead of `AutoModel` to ensure compatibility
with the latest version.

* squash! examples : add model conversion tool/example

Remove the logits requirements file from the all requirements file.
2025-08-21 12:16:54 +02:00

106 lines
3.4 KiB
Python
Executable file

#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
import os
import sys
def create_collection(title, description, private=False, namespace=None, return_slug=False):
"""
Create a new collection on Hugging Face
Args:
title: Collection title
description: Collection description
private: Whether the collection should be private (default: False)
namespace: Optional namespace (defaults to your username)
Returns:
Collection object if successful, None if failed
"""
# Check if HF_TOKEN is available
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
if not token:
print("❌ No HF_TOKEN or HUGGINGFACE_HUB_TOKEN found in environment variables")
print("Please set your Hugging Face token as an environment variable")
return None
# Initialize API
api = HfApi()
try:
# Test authentication first
user_info = api.whoami()
if not return_slug:
print(f"✅ Authenticated as: {user_info['name']}")
# Create the collection
if not return_slug:
print(f"📚 Creating collection: '{title}'...")
collection = api.create_collection(
title=title,
description=description,
private=private,
namespace=namespace
)
if not return_slug:
print(f"✅ Collection created successfully!")
print(f"📋 Collection slug: {collection.slug}")
print(f"🔗 Collection URL: https://huggingface.co/collections/{collection.slug}")
return collection
except Exception as e:
print(f"❌ Error creating collection: {e}")
return None
def main():
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
parser = argparse.ArgumentParser(description='Create a Huggingface Collection')
parser.add_argument('--name', '-n', help='The name/title of the Collection', required=True)
parser.add_argument('--description', '-d', help='The description for the Collection', required=True)
parser.add_argument('--namespace', '-ns', help='The namespace to add the Collection to', required=True)
parser.add_argument('--private', '-p', help='Create a private Collection', action='store_true') # Fixed
parser.add_argument('--return-slug', '-s', help='Only output the collection slug', action='store_true') # Fixed
args = parser.parse_args()
name = args.name
description = args.description
private = args.private
namespace = args.namespace
return_slug = args.return_slug
if not return_slug:
print("🚀 Creating Hugging Face Collection")
print(f"Title: {name}")
print(f"Description: {description}")
print(f"Namespace: {namespace}")
print(f"Private: {private}")
collection = create_collection(
title=name,
description=description,
private=private,
namespace=namespace,
return_slug=return_slug
)
if collection:
if return_slug:
print(collection.slug)
else:
print("\n🎉 Collection created successfully!")
print(f"Use this slug to add models: {collection.slug}")
else:
print("\n❌ Failed to create collection")
sys.exit(1)
if __name__ == "__main__":
main()