mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
233 lines
No EOL
8.4 KiB
C++
233 lines
No EOL
8.4 KiB
C++
//This is Concedo's shitty adapter for adding python bindings for llama
|
|
|
|
//Considerations:
|
|
//Don't want to use pybind11 due to dependencies on MSVCC
|
|
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
|
|
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
|
|
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
|
|
//Python will ALWAYS provide the memory, we just write to it.
|
|
|
|
#include "main.cpp"
|
|
#include "extra.h"
|
|
|
|
extern "C" {
|
|
|
|
struct load_model_inputs
|
|
{
|
|
const int threads;
|
|
const int max_context_length;
|
|
const int batch_size;
|
|
const char * model_filename;
|
|
const int n_parts_overwrite = -1;
|
|
};
|
|
struct generation_inputs
|
|
{
|
|
const int seed;
|
|
const char * prompt;
|
|
const int max_length;
|
|
const float temperature;
|
|
const int top_k;
|
|
const float top_p;
|
|
const float rep_pen;
|
|
const int rep_pen_range;
|
|
const bool reset_state = true; //determines if we can continue off the previous prompt state
|
|
};
|
|
struct generation_outputs
|
|
{
|
|
int status = -1;
|
|
char text[16384]; //16kb should be enough for any response
|
|
};
|
|
|
|
gpt_params api_params;
|
|
gpt_vocab api_vocab;
|
|
llama_model api_model;
|
|
int api_n_past = 0;
|
|
gpt_vocab::id old_embd_id = -1;
|
|
std::vector<float> api_logits;
|
|
std::vector<gpt_vocab::id> last_n_tokens;
|
|
size_t mem_per_token = 0;
|
|
bool legacy_format = false;
|
|
|
|
bool load_model(const load_model_inputs inputs)
|
|
{
|
|
api_params.n_threads = inputs.threads;
|
|
api_params.n_ctx = inputs.max_context_length;
|
|
api_params.n_batch = inputs.batch_size;
|
|
api_params.model = inputs.model_filename;
|
|
|
|
int n_parts_overwrite = inputs.n_parts_overwrite;
|
|
|
|
int loadresult = llama_model_load(api_params.model, api_model, api_vocab, api_params.n_ctx, GGML_TYPE_F16, n_parts_overwrite);
|
|
if (!loadresult) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, api_params.model.c_str());
|
|
return false;
|
|
}
|
|
legacy_format = (loadresult==2?true:false);
|
|
if(legacy_format)
|
|
{
|
|
printf("\n---\nWarning: Your model is using an OUTDATED format. Please reconvert it for better results!\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
generation_outputs generate(const generation_inputs inputs, generation_outputs & output)
|
|
{
|
|
api_params.prompt = inputs.prompt;
|
|
api_params.seed = inputs.seed;
|
|
api_params.n_predict = inputs.max_length;
|
|
api_params.top_k = inputs.top_k;
|
|
api_params.top_p = inputs.top_p;
|
|
api_params.temp = inputs.temperature;
|
|
api_params.repeat_last_n = inputs.rep_pen_range;
|
|
api_params.repeat_penalty = inputs.rep_pen;
|
|
|
|
bool reset_state = inputs.reset_state;
|
|
if(api_n_past==0)
|
|
{
|
|
reset_state = true;
|
|
}
|
|
|
|
if(api_params.repeat_last_n<1)
|
|
{
|
|
api_params.repeat_last_n = 1;
|
|
}
|
|
if(api_params.top_k<1)
|
|
{
|
|
api_params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
|
|
}
|
|
if (api_params.seed < 0)
|
|
{
|
|
api_params.seed = time(NULL);
|
|
}
|
|
|
|
//display usage
|
|
// std::string tst = " ";
|
|
// char * tst2 = (char*)tst.c_str();
|
|
// gpt_print_usage(1,&tst2,api_params);
|
|
|
|
if(reset_state)
|
|
{
|
|
api_params.prompt.insert(0, 1, ' ');
|
|
}
|
|
// tokenize the prompt
|
|
std::vector<gpt_vocab::id> embd_inp;
|
|
if(legacy_format)
|
|
{
|
|
embd_inp = ::legacy_llama_tokenize(api_vocab, api_params.prompt, true);
|
|
}else{
|
|
embd_inp = ::llama_tokenize(api_vocab, api_params.prompt, true);
|
|
}
|
|
|
|
//api_params.n_predict = std::min(api_params.n_predict, api_model.hparams.n_ctx - (int)embd_inp.size());
|
|
//truncate to front of the prompt if its too long
|
|
if (embd_inp.size() + api_params.n_predict > api_model.hparams.n_ctx) {
|
|
int offset = embd_inp.size() - api_model.hparams.n_ctx + api_params.n_predict;
|
|
embd_inp = std::vector<gpt_vocab::id>(embd_inp.begin() + offset, embd_inp.end());
|
|
}
|
|
std::vector<gpt_vocab::id> embd;
|
|
|
|
int last_n_size = api_params.repeat_last_n;
|
|
last_n_tokens.resize(last_n_size);
|
|
if(reset_state)
|
|
{
|
|
llama_eval(api_model, api_params.n_threads, 0, {0, 1, 2, 3}, api_logits, mem_per_token);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
api_n_past = 0;
|
|
}else{
|
|
//strip out the reset token (1) at the start of the embedding
|
|
if(embd_inp.size()>0)
|
|
{
|
|
embd_inp.erase(embd_inp.begin());
|
|
}
|
|
if(old_embd_id!=-1)
|
|
{
|
|
embd.push_back(old_embd_id);
|
|
}
|
|
}
|
|
|
|
int remaining_tokens = api_params.n_predict;
|
|
int input_consumed = 0;
|
|
std::mt19937 api_rng(api_params.seed);
|
|
std::string concat_output = "";
|
|
|
|
printf("\nProcessing: ");
|
|
while (remaining_tokens > 0)
|
|
{
|
|
gpt_vocab::id id = 0;
|
|
// predict
|
|
if (embd.size() > 0)
|
|
{
|
|
// for (auto i: embd) {
|
|
// std::cout << i << ',';
|
|
// }
|
|
//printf("\nnp:%d embd:%d mem:%d",api_n_past,embd.size(),mem_per_token);
|
|
printf("|");
|
|
if (!llama_eval(api_model, api_params.n_threads, api_n_past, embd, api_logits, mem_per_token))
|
|
{
|
|
fprintf(stderr, "Failed to predict\n");
|
|
snprintf(output.text, sizeof(output.text), "%s", "");
|
|
output.status = 0;
|
|
return output;
|
|
}
|
|
}
|
|
|
|
api_n_past += embd.size();
|
|
embd.clear();
|
|
if (embd_inp.size() <= input_consumed)
|
|
{
|
|
// out of user input, sample next token
|
|
const float top_k = api_params.top_k;
|
|
const float top_p = api_params.top_p;
|
|
const float temp = api_params.temp;
|
|
const float repeat_penalty = api_params.repeat_penalty;
|
|
const int n_vocab = api_model.hparams.n_vocab;
|
|
|
|
{
|
|
// set the logit of the eos token (2) to zero to avoid sampling it
|
|
api_logits[api_logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
|
|
//set logits of opening square bracket to zero.
|
|
api_logits[api_logits.size() - n_vocab + 518] = 0;
|
|
api_logits[api_logits.size() - n_vocab + 29961] = 0;
|
|
|
|
|
|
id = llama_sample_top_p_top_k(api_vocab, api_logits.data() + (api_logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, api_rng);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
}
|
|
|
|
// add it to the context
|
|
old_embd_id = id;
|
|
embd.push_back(id);
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
//printf("\nid:%d word:%s\n",id,api_vocab.id_to_token[id].c_str());
|
|
concat_output += api_vocab.id_to_token[id].c_str();
|
|
}
|
|
else
|
|
{
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while (embd_inp.size() > input_consumed)
|
|
{
|
|
old_embd_id = embd_inp[input_consumed];
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if (embd.size() > api_params.n_batch)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//printf("output: %s",concat_output.c_str());
|
|
output.status = 1;
|
|
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
|
|
return output;
|
|
}
|
|
} |