mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 00:54:41 +00:00
384 lines
14 KiB
C++
384 lines
14 KiB
C++
//This is Concedo's shitty adapter for adding python bindings for llama
|
|
|
|
//Considerations:
|
|
//Don't want to use pybind11 due to dependencies on MSVCC
|
|
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
|
|
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
|
|
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
|
|
//Python will ALWAYS provide the memory, we just write to it.
|
|
|
|
#include <time.h>
|
|
#include "model_adapter.h"
|
|
#include "otherarch/otherarch.h"
|
|
|
|
//concat source files into one file for compilation purposes
|
|
#include "otherarch/utils.cpp"
|
|
#include "otherarch/gptj_v1.cpp"
|
|
#include "otherarch/gptj_v2.cpp"
|
|
#include "otherarch/gpt2_v1.cpp"
|
|
#include "otherarch/gpt2_v2.cpp"
|
|
|
|
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
|
|
static FileFormat file_format = FileFormat::BADFORMAT;
|
|
static gpt_vocab vocab;
|
|
static gptj_model_v1 model_v1;
|
|
static gptj_model model_v2;
|
|
static gpt2_v1_model model_gpt2_v1;
|
|
static gpt2_model model_gpt2_v2;
|
|
static gpt_params params;
|
|
static int n_past = 0;
|
|
static int n_threads = 4;
|
|
static int n_batch = 8;
|
|
static bool useSmartContext = false;
|
|
static int blasbatchsize = 512;
|
|
static std::string modelname;
|
|
static std::vector<gpt_vocab::id> last_n_tokens;
|
|
static std::vector<gpt_vocab::id> current_context_tokens;
|
|
static size_t mem_per_token = 0;
|
|
static std::vector<float> logits;
|
|
static std::vector<int> smartcontext;
|
|
static std::vector<std::string> stop_sequence;
|
|
|
|
inline bool IsNanCheck(float f)
|
|
{
|
|
const unsigned int u = *(unsigned int*)&f;
|
|
return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan.
|
|
}
|
|
|
|
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format)
|
|
{
|
|
ggml_time_init();
|
|
|
|
file_format = in_file_format;
|
|
n_threads = params.n_threads = inputs.threads;
|
|
n_batch = params.n_batch = inputs.batch_size;
|
|
modelname = params.model = inputs.model_filename;
|
|
useSmartContext = inputs.use_smartcontext;
|
|
blasbatchsize = inputs.blasbatchsize;
|
|
params.memory_f16 = inputs.f16_kv;
|
|
params.n_ctx = inputs.max_context_length;
|
|
model_v1.hparams.n_ctx = model_v2.hparams.n_ctx = model_gpt2_v1.hparams.n_ctx = model_gpt2_v2.hparams.n_ctx = params.n_ctx;
|
|
|
|
if (file_format == FileFormat::GPT2_1)
|
|
{
|
|
ModelLoadResult res = legacy_gpt2_model_load(params.model, model_gpt2_v1, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
legacy_gpt2_eval(model_gpt2_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if (file_format == FileFormat::GPT2_2)
|
|
{
|
|
ModelLoadResult res = gpt2_model_load(params.model, model_gpt2_v2, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
gpt2_eval(model_gpt2_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
|
|
{
|
|
ModelLoadResult res = legacy_gptj_model_load(params.model, model_v1, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
legacy_gptj_eval(model_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
|
|
//if the logits are NAN, it means the model is incompatible
|
|
if(logits.size()>0 && IsNanCheck(logits[0]))
|
|
{
|
|
printf("\nBad Logits detected! Retrying GPT-J model loading...");
|
|
ggml_v1_free(model_v1.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
ModelLoadResult loadresult = gptj_model_load(params.model, model_v2, vocab);
|
|
if (loadresult == ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return loadresult;
|
|
}
|
|
else if (loadresult == ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
|
|
return loadresult;
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
gptj_eval(model_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
|
|
//if the logits are NAN, it means the model is incompatible
|
|
if(logits.size()>0 && IsNanCheck(logits[0]))
|
|
{
|
|
printf("\nBad Logits detected! Retrying GPT-J model loading...");
|
|
ggml_free(model_v2.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output)
|
|
{
|
|
stop_sequence.clear();
|
|
for(int x=0;x<stop_token_max;++x)
|
|
{
|
|
if(inputs.stop_sequence[x]!="")
|
|
{
|
|
stop_sequence.push_back(inputs.stop_sequence[x]);
|
|
}
|
|
}
|
|
params.prompt = inputs.prompt;
|
|
params.seed = inputs.seed;
|
|
params.n_predict = inputs.max_length;
|
|
params.top_k = inputs.top_k;
|
|
params.top_p = inputs.top_p;
|
|
params.temp = inputs.temperature;
|
|
params.repeat_last_n = inputs.rep_pen_range;
|
|
params.repeat_penalty = inputs.rep_pen;
|
|
params.n_ctx = inputs.max_context_length;
|
|
params.n_batch = n_batch;
|
|
params.n_threads = n_threads;
|
|
|
|
if (params.repeat_last_n < 1)
|
|
{
|
|
params.repeat_last_n = 1;
|
|
}
|
|
if (params.top_k < 1)
|
|
{
|
|
params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
|
|
}
|
|
if (params.seed <= 0)
|
|
{
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
// tokenize the prompt
|
|
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
|
|
|
//truncate to front of the prompt if its too long
|
|
int32_t nctx = params.n_ctx;
|
|
|
|
if (embd_inp.size() + params.n_predict > nctx)
|
|
{
|
|
int offset = embd_inp.size() - nctx + params.n_predict;
|
|
embd_inp = std::vector<llama_token>(embd_inp.begin() + offset, embd_inp.end());
|
|
}
|
|
|
|
//determine how much npast we have to rewind from the current state
|
|
std::vector<gpt_vocab::id> embd;
|
|
|
|
int last_n_size = params.repeat_last_n;
|
|
last_n_tokens.resize(last_n_size);
|
|
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
n_past = 0;
|
|
|
|
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext);
|
|
|
|
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch
|
|
// bool approved_format = (file_format!=FileFormat::GPT2_1 && file_format!=FileFormat::GPTJ_1 && file_format!=FileFormat::GPTJ_2);
|
|
// bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas());
|
|
bool blasmode = false;
|
|
int original_batch = params.n_batch;
|
|
int original_threads = params.n_threads;
|
|
if (blasmode)
|
|
{
|
|
params.n_batch = blasbatchsize; //received reports of 1024 and above crashing on some models
|
|
params.n_threads = 1;
|
|
}
|
|
|
|
current_context_tokens.resize(n_past);
|
|
|
|
int remaining_tokens = params.n_predict;
|
|
int input_consumed = 0;
|
|
std::mt19937 rng(params.seed);
|
|
std::string concat_output = "";
|
|
|
|
bool startedsampling = false;
|
|
|
|
timer_start();
|
|
double time1 = 0, time2 = 0;
|
|
unsigned int embd_inp_size = embd_inp.size();
|
|
int32_t n_vocab = 0;
|
|
if(file_format == FileFormat::GPTJ_1||file_format == FileFormat::GPTJ_2)
|
|
{
|
|
n_vocab = model_v1.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPTJ_3)
|
|
{
|
|
n_vocab = model_v2.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPT2_1)
|
|
{
|
|
n_vocab = model_gpt2_v1.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPT2_2)
|
|
{
|
|
n_vocab = model_gpt2_v2.hparams.n_vocab;
|
|
}
|
|
else
|
|
{
|
|
printf("Bad format!");
|
|
}
|
|
|
|
printf("\n");
|
|
while (remaining_tokens > 0)
|
|
{
|
|
gpt_vocab::id id = 0;
|
|
// predict
|
|
unsigned int embdsize = embd.size();
|
|
if (embdsize > 0)
|
|
{
|
|
//print progress
|
|
if (!startedsampling)
|
|
{
|
|
printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp_size);
|
|
}
|
|
else
|
|
{
|
|
printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict);
|
|
}
|
|
|
|
bool evalres = false;
|
|
|
|
//print_tok_vec(logits);
|
|
if(file_format==FileFormat::GPT2_1)
|
|
{
|
|
evalres = legacy_gpt2_eval(model_gpt2_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::GPT2_2)
|
|
{
|
|
evalres = gpt2_eval(model_gpt2_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
|
|
{
|
|
evalres = legacy_gptj_eval(model_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else
|
|
{
|
|
evalres = gptj_eval(model_v2, params.n_threads, n_past, embd, logits, mem_per_token);
|
|
}
|
|
if (!evalres)
|
|
{
|
|
fprintf(stderr, "Failed to predict\n");
|
|
snprintf(output.text, sizeof(output.text), "%s", "");
|
|
output.status = 0;
|
|
return output;
|
|
}
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
if ((int)embd_inp.size() <= input_consumed)
|
|
{
|
|
// out of user input, sample next token
|
|
const float top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
|
|
if (!startedsampling)
|
|
{
|
|
startedsampling = true;
|
|
params.n_batch = original_batch;
|
|
params.n_threads = original_threads;
|
|
time1 = timer_check();
|
|
timer_start();
|
|
printf("\n");
|
|
}
|
|
|
|
{
|
|
// set the logit of the eos token (2) to zero to avoid sampling it
|
|
logits[50256] = (logits[50256]<0?logits[50256]:0);
|
|
|
|
//gpt2 uses negative logits, so we cant zero it
|
|
|
|
id = gptj_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
|
|
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
current_context_tokens.push_back(id);
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
|
|
for (auto id : embd)
|
|
{
|
|
concat_output += vocab.id_to_token[id].c_str();
|
|
for (const auto &matched : stop_sequence)
|
|
{
|
|
if (concat_output.find(matched) != std::string::npos)
|
|
{
|
|
remaining_tokens = 0;
|
|
printf("\n(Stop sequence triggered)");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int)embd_inp.size() > input_consumed)
|
|
{
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
current_context_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if ((int)embd.size() >= params.n_batch)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
time2 = timer_check();
|
|
float pt1 = (time1*1000.0/(embd_inp_size==0?1:embd_inp_size));
|
|
float pt2 = (time2*1000.0/(params.n_predict==0?1:params.n_predict));
|
|
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2));
|
|
fflush(stdout);
|
|
output.status = 1;
|
|
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
|
|
return output;
|
|
}
|