mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-09 08:34:37 +00:00
1051 lines
41 KiB
C++
1051 lines
41 KiB
C++
//This is Concedo's shitty adapter for adding python bindings for llama
|
|
|
|
//Considerations:
|
|
//Don't want to use pybind11 due to dependencies on MSVCC
|
|
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
|
|
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
|
|
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
|
|
//Python will ALWAYS provide the memory, we just write to it.
|
|
|
|
#include <time.h>
|
|
#include "model_adapter.h"
|
|
#include "otherarch.h"
|
|
|
|
//for easier compilation
|
|
//concat source files into one file for compilation purposes
|
|
#include "llama_v2.cpp"
|
|
#include "llama.cpp"
|
|
#include "utils.cpp"
|
|
#include "gptj_v1.cpp"
|
|
#include "gptj_v2.cpp"
|
|
#include "gptj_v3.cpp"
|
|
#include "gpt2_v1.cpp"
|
|
#include "gpt2_v2.cpp"
|
|
#include "gpt2_v3.cpp"
|
|
#include "rwkv_v2.cpp"
|
|
#include "neox_v2.cpp"
|
|
#include "neox_v3.cpp"
|
|
|
|
|
|
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
|
|
static FileFormat file_format = FileFormat::BADFORMAT;
|
|
|
|
static gpt_vocab vocab;
|
|
|
|
static gptj_v1_model gptj_ctx_v1;
|
|
static gptj_v2_model gptj_ctx_v2;
|
|
static gptj_model gptj_ctx_v3;
|
|
|
|
static gpt2_v1_model gpt2_ctx_v1;
|
|
static gpt2_v2_model gpt2_ctx_v2;
|
|
static gpt2_model gpt2_ctx_v3;
|
|
|
|
static gpt_neox_v2_model neox_ctx_v2;
|
|
static gpt_neox_model neox_ctx_v3;
|
|
|
|
static rwkv_context * rwkv_ctx_v1;
|
|
static llama_v2_context_params llama_ctx_params_v2;
|
|
static llama_context_params llama_ctx_params;
|
|
static llama_v2_context * llama_ctx_v2;
|
|
static llama_context * llama_ctx_v3;
|
|
|
|
static gpt_params params;
|
|
static int n_past = 0;
|
|
static int n_threads = 4;
|
|
static int n_blasthreads = 4;
|
|
static int n_batch = 8;
|
|
static bool useSmartContext = false;
|
|
static bool unbanTokens = false;
|
|
static int blasbatchsize = 512;
|
|
static bool debugmode = false;
|
|
static std::string modelname;
|
|
static std::vector<gpt_vocab::id> last_n_tokens;
|
|
static std::vector<gpt_vocab::id> current_context_tokens;
|
|
static size_t mem_per_token = 0;
|
|
static std::vector<float> logits;
|
|
static std::vector<int> smartcontext;
|
|
static std::vector<std::string> stop_sequence;
|
|
|
|
inline bool IsNanCheck(float f)
|
|
{
|
|
const unsigned int u = *(unsigned int*)&f;
|
|
return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan.
|
|
}
|
|
|
|
inline bool LogitsDuplicated(std::vector<float> & arr1, std::vector<float> & arr2)
|
|
{
|
|
int compareQty = 5;
|
|
if(arr1.size() < compareQty || arr2.size() < compareQty || arr1.size()!=arr2.size())
|
|
{
|
|
printf("\nError: Logit array sizes are bad!\n");
|
|
return false;
|
|
}
|
|
for(int i=0;i<compareQty;++i)
|
|
{
|
|
if(arr1[i]!=arr2[i])
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
llama_token sample_token(llama_token_data_array * candidates, std::mt19937 & rng)
|
|
{
|
|
llama_sample_softmax(nullptr, candidates);
|
|
std::vector<float> probs;
|
|
probs.reserve(candidates->size);
|
|
for (size_t i = 0; i < candidates->size; ++i) {
|
|
probs.push_back(candidates->data[i].p);
|
|
}
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
llama_token result = candidates->data[idx].id;
|
|
return result;
|
|
}
|
|
|
|
llama_token sample_token_mirostat(int n_vocab, llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, int m, float * mu)
|
|
{
|
|
float N = float(n_vocab);
|
|
llama_sample_softmax(nullptr, candidates);
|
|
// Estimate s_hat using the most probable m tokens
|
|
float s_hat = 0.0;
|
|
float sum_ti_bi = 0.0;
|
|
float sum_ti_sq = 0.0;
|
|
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
|
|
float t_i = logf(float(i + 2) / float(i + 1));
|
|
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
|
|
sum_ti_bi += t_i * b_i;
|
|
sum_ti_sq += t_i * t_i;
|
|
}
|
|
s_hat = sum_ti_bi / sum_ti_sq;
|
|
// Compute k from the estimated s_hat and target surprise value
|
|
float epsilon_hat = s_hat - 1;
|
|
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
|
|
// Sample the next word X using top-k sampling
|
|
llama_sample_top_k(nullptr, candidates, int(k),1);
|
|
llama_token X = sample_token(candidates, rng); // Compute error as the difference between observed surprise and target surprise value
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
|
return candidate.id == X;
|
|
}));
|
|
float observed_surprise = -log2f(candidates->data[X_idx].p);
|
|
float e = observed_surprise - tau;
|
|
// Update mu using the learning rate and error
|
|
*mu = *mu - eta * e;
|
|
return X;
|
|
}
|
|
|
|
llama_token sample_token_mirostat_v2(llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, float * mu)
|
|
{
|
|
llama_sample_softmax(nullptr, candidates);
|
|
// Truncate the words with surprise values greater than mu
|
|
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
|
return -log2f(candidate.p) > *mu;
|
|
}));
|
|
// Normalize the probabilities of the remaining words
|
|
llama_sample_softmax(nullptr, candidates);
|
|
// Sample the next word X from the remaining words
|
|
llama_token X = sample_token(candidates,rng);
|
|
|
|
// Compute error as the difference between observed surprise and target surprise value
|
|
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
|
|
return candidate.id == X;
|
|
}));
|
|
float observed_surprise = -log2f(candidates->data[X_idx].p);
|
|
float e = observed_surprise - tau;
|
|
// Update mu using the learning rate and error
|
|
*mu = *mu - eta * e;
|
|
return X;
|
|
}
|
|
|
|
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float top_k, float top_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
|
|
int mirostat, float mirostat_tau, float mirostat_eta)
|
|
{
|
|
int id = 0;
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// Apply penalties
|
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx);
|
|
llama_sample_repetition_penalty(nullptr, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, rep_pen);
|
|
|
|
// llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p,
|
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
// last_n_repeat, alpha_frequency, alpha_presence);
|
|
|
|
if (temp <= 0)
|
|
{
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(nullptr, &candidates_p);
|
|
}
|
|
else
|
|
{
|
|
if (mirostat == 1)
|
|
{
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(nullptr, &candidates_p, temp);
|
|
id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
}
|
|
else if (mirostat == 2)
|
|
{
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(nullptr, &candidates_p, temp);
|
|
id = sample_token_mirostat_v2(&candidates_p, rng, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
}
|
|
else
|
|
{
|
|
// Temperature sampling
|
|
llama_sample_top_k(nullptr, &candidates_p, top_k,1);
|
|
llama_sample_tail_free(nullptr, &candidates_p, tfs,1);
|
|
llama_sample_typical(nullptr, &candidates_p, typical_p,1);
|
|
llama_sample_top_p(nullptr, &candidates_p, top_p,1);
|
|
llama_sample_temperature(nullptr, &candidates_p, temp);
|
|
id = sample_token(&candidates_p, rng);
|
|
}
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format)
|
|
{
|
|
ggml_time_init();
|
|
|
|
file_format = in_file_format;
|
|
n_threads = params.n_threads = inputs.threads;
|
|
n_blasthreads = inputs.blasthreads;
|
|
n_batch = params.n_batch = inputs.batch_size;
|
|
modelname = params.model = inputs.model_filename;
|
|
useSmartContext = inputs.use_smartcontext;
|
|
debugmode = inputs.debugmode;
|
|
unbanTokens = inputs.unban_tokens;
|
|
blasbatchsize = inputs.blasbatchsize;
|
|
params.memory_f16 = inputs.f16_kv;
|
|
params.n_ctx = inputs.max_context_length;
|
|
|
|
neox_ctx_v2.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx
|
|
= neox_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = params.n_ctx;
|
|
|
|
printf("System Info: %s\n", llama_print_system_info());
|
|
SetQuantsUnshuffled(false);
|
|
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
|
|
{
|
|
//newer format has bit unshuffling
|
|
SetQuantsUnshuffled(file_format == FileFormat::GGJT_2);
|
|
|
|
llama_ctx_params_v2 = llama_v2_context_default_params();
|
|
llama_ctx_params_v2.n_ctx = inputs.max_context_length;
|
|
//llama_ctx_params.n_parts = -1;
|
|
llama_ctx_params_v2.seed = -1;
|
|
llama_ctx_params_v2.f16_kv = inputs.f16_kv;
|
|
llama_ctx_params_v2.logits_all = false;
|
|
llama_ctx_params_v2.use_mmap = inputs.use_mmap;
|
|
llama_ctx_params_v2.use_mlock = inputs.use_mlock;
|
|
llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers;
|
|
|
|
llama_ctx_v2 = llama_v2_init_from_file(modelname.c_str(), llama_ctx_params_v2);
|
|
|
|
if (llama_ctx_v2 == NULL)
|
|
{
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
|
|
printf("\n---\nWarning: Your model may be an OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format);
|
|
|
|
if (lora_filename != "")
|
|
{
|
|
printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());
|
|
|
|
int err = llama_v2_apply_lora_from_file(llama_ctx_v2,
|
|
lora_filename.c_str(),
|
|
NULL,
|
|
n_threads);
|
|
if (err != 0)
|
|
{
|
|
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
}
|
|
|
|
//determine mem per token
|
|
const std::vector<int> tmp = {1, 2, 3, 4};
|
|
llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if(file_format == FileFormat::GGJT_3)
|
|
{
|
|
llama_ctx_params = llama_context_default_params();
|
|
llama_ctx_params.n_ctx = inputs.max_context_length;
|
|
//llama_ctx_paran_parts = -1;
|
|
llama_ctx_params.seed = -1;
|
|
llama_ctx_params.f16_kv = inputs.f16_kv;
|
|
llama_ctx_params.logits_all = false;
|
|
llama_ctx_params.use_mmap = inputs.use_mmap;
|
|
llama_ctx_params.use_mlock = inputs.use_mlock;
|
|
llama_ctx_params.n_gpu_layers = inputs.gpulayers;
|
|
|
|
llama_ctx_v3 = llama_init_from_file(modelname.c_str(), llama_ctx_params);
|
|
|
|
if (llama_ctx_v3 == NULL)
|
|
{
|
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
if (lora_filename != "")
|
|
{
|
|
printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());
|
|
|
|
int err = llama_apply_lora_from_file(llama_ctx_v3,
|
|
lora_filename.c_str(),
|
|
NULL,
|
|
n_threads);
|
|
if (err != 0)
|
|
{
|
|
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
}
|
|
|
|
//determine mem per token
|
|
const std::vector<int> tmp = {1, 2, 3, 4};
|
|
auto er = llama_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
if(er!=0)
|
|
{
|
|
printf("\nLLAMA EVAL returned nonzero!\n");
|
|
}
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if (file_format == FileFormat::RWKV_1)
|
|
{
|
|
rwkv_ctx_v1 = rwkv_init_from_file(modelname.c_str(), n_threads);
|
|
|
|
//setup buffers for rwkv state
|
|
auto padding = 512u;
|
|
auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
|
|
auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
|
|
|
|
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
|
|
rwkv_ctx_v1->state_out = (float *)malloc(statebufsiz);
|
|
rwkv_ctx_v1->logits_out = (float *)malloc(logitbufsiz);
|
|
rwkv_ctx_v1->state_in = nullptr;
|
|
n_batch = 1;
|
|
|
|
std::string word;
|
|
read_rwkv_vocab();
|
|
int vocabsiz = rwkv_vocab.size();
|
|
for (int i = 0; i < vocabsiz; i++) {
|
|
uint32_t len;
|
|
word = rwkv_vocab[i];
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
}
|
|
printf("\nRWKV Vocab: %u\n",vocabsiz);
|
|
|
|
bool testeval = rwkv_eval(rwkv_ctx_v1, 0, rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
|
|
if(!testeval)
|
|
{
|
|
printf("\nError: RWKV Init Eval Failed!\n");
|
|
}
|
|
logits.resize(vocabsiz);
|
|
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*vocabsiz);
|
|
|
|
if (rwkv_ctx_v1 == NULL)
|
|
{
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if (file_format == FileFormat::GPT2_1)
|
|
{
|
|
ModelLoadResult res = legacy_gpt2_model_load(params.model, gpt2_ctx_v1, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4)
|
|
{
|
|
if(file_format==FileFormat::GPT2_4)
|
|
{
|
|
ModelLoadResult res = gpt2_model_load(params.model, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
gpt2_eval(gpt2_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
//newer format has bit unshuffling
|
|
SetQuantsUnshuffled(file_format == FileFormat::GPT2_3);
|
|
|
|
ModelLoadResult res = gpt2_v2_model_load(params.model, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
}
|
|
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
|
|
{
|
|
ModelLoadResult res = legacy_gptj_model_load(params.model, gptj_ctx_v1, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
|
|
return res;
|
|
}
|
|
// determine the required inference memory per token:
|
|
legacy_gptj_eval(gptj_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
|
|
|
|
//if the logits are NAN or duplicated, it means the model is incompatible
|
|
if(logits.size()>0 && IsNanCheck(logits[0]))
|
|
{
|
|
printf("\nBad Logits detected! Retrying GPT-J model loading...");
|
|
ggml_v1_free(gptj_ctx_v1.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else if(file_format == FileFormat::GPTJ_3 || file_format == FileFormat::GPTJ_4 || file_format == FileFormat::GPTJ_5)
|
|
{
|
|
if(file_format == FileFormat::GPTJ_5)
|
|
{
|
|
ModelLoadResult loadresult = gptj_model_load(params.model, gptj_ctx_v3, vocab, inputs.gpulayers);
|
|
if (loadresult == ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return loadresult;
|
|
}
|
|
else if (loadresult == ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
|
|
return loadresult;
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
gptj_eval(gptj_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
//if the logits are NAN or duplicated, it means the model is incompatible
|
|
std::vector<float> oldlogits(logits);
|
|
|
|
//this is another hack because they change the library - we run the eval through the model
|
|
//twice and compare logits. if they give the same logits for different inputs, model is broken
|
|
gptj_eval(gptj_ctx_v3, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
|
|
|
|
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
|
|
{
|
|
printf("\nBad Logits detected! Retrying GPT-J model loading...");
|
|
ggml_free(gptj_ctx_v3.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
//newer format has bit unshuffling
|
|
SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4);
|
|
|
|
ModelLoadResult loadresult = gptj_v2_model_load(params.model, gptj_ctx_v2, vocab, inputs.gpulayers);
|
|
if (loadresult == ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return loadresult;
|
|
}
|
|
else if (loadresult == ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
|
|
return loadresult;
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
//if the logits are NAN or duplicated, it means the model is incompatible
|
|
std::vector<float> oldlogits(logits);
|
|
|
|
//this is another hack because they change the library - we run the eval through the model
|
|
//twice and compare logits. if they give the same logits for different inputs, model is broken
|
|
gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);
|
|
|
|
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
|
|
{
|
|
printf("\nBad Logits detected! Retrying GPT-J model loading...");
|
|
ggml_v2_free(gptj_ctx_v2.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
}
|
|
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5|| file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
|
|
{
|
|
if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
|
|
{
|
|
ModelLoadResult res = gpt_neox_model_load(params.model, neox_ctx_v3, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
|
|
return res;
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
gpt_neox_eval(neox_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
//newer format has bit unshuffling
|
|
SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5);
|
|
|
|
ModelLoadResult res = gpt_neox_v2_model_load(params.model, neox_ctx_v2, vocab, file_format);
|
|
if(res==ModelLoadResult::FAIL)
|
|
{
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return res;
|
|
}
|
|
else if(res==ModelLoadResult::RETRY_LOAD)
|
|
{
|
|
printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
|
|
return res;
|
|
}
|
|
|
|
// determine the required inference memory per token:
|
|
gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
|
|
{
|
|
//run the black magic eval to determine if it's redpajama. VERY UGLY HACK!
|
|
std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
|
|
auto orig_par_res = neox_ctx_v2.hparams.par_res;
|
|
neox_ctx_v2.hparams.par_res = 0; //test with residual false
|
|
gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, test_embd, logits, mem_per_token);
|
|
neox_ctx_v2.hparams.par_res = orig_par_res;
|
|
int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
|
|
std::string predicted = vocab.id_to_token[topid].c_str();
|
|
auto findresult = predicted.find("8");
|
|
if(findresult != std::string::npos && findresult<2)
|
|
{
|
|
printf("\n---\nOld RedPajama NeoX Detected! Switching to new format! (use_parallel_residual=False)\n");
|
|
ggml_v2_free(neox_ctx_v2.ctx);
|
|
return ModelLoadResult::RETRY_LOAD;
|
|
}
|
|
}
|
|
|
|
return ModelLoadResult::SUCCESS;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
printf("\nUnknown Model, cannot load.\n");
|
|
return ModelLoadResult::FAIL;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output)
|
|
{
|
|
stop_sequence.clear();
|
|
for(int x=0;x<stop_token_max;++x)
|
|
{
|
|
std::string stopper = inputs.stop_sequence[x];
|
|
if(stopper!="")
|
|
{
|
|
stop_sequence.push_back(stopper);
|
|
}
|
|
}
|
|
params.prompt = inputs.prompt;
|
|
params.seed = inputs.seed;
|
|
params.n_predict = inputs.max_length;
|
|
params.top_k = inputs.top_k;
|
|
params.top_p = inputs.top_p;
|
|
params.typical_p = inputs.typical_p;
|
|
params.tfs_z = inputs.tfs;
|
|
params.temp = inputs.temperature;
|
|
params.repeat_last_n = inputs.rep_pen_range;
|
|
params.repeat_penalty = inputs.rep_pen;
|
|
params.mirostat = inputs.mirostat;
|
|
params.mirostat_eta = inputs.mirostat_eta;
|
|
params.mirostat_tau = inputs.mirostat_tau;
|
|
params.n_ctx = inputs.max_context_length;
|
|
params.n_batch = n_batch;
|
|
params.n_threads = n_threads;
|
|
|
|
if (params.repeat_last_n < 1)
|
|
{
|
|
params.repeat_last_n = 1;
|
|
}
|
|
if (params.top_k < 1)
|
|
{
|
|
params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number
|
|
}
|
|
if (params.seed <= 0)
|
|
{
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
// tokenize the prompt
|
|
std::vector<int> embd_inp;
|
|
|
|
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3)
|
|
{
|
|
params.prompt.insert(0, 1, ' ');
|
|
if(file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 )
|
|
{
|
|
embd_inp = ::llama_v2_tokenize(llama_ctx_v2, params.prompt, true);
|
|
}
|
|
else if (file_format == FileFormat::GGML)
|
|
{
|
|
embd_inp = ::legacy_llama_v2_tokenize(llama_ctx_v2, params.prompt, true);
|
|
}
|
|
else
|
|
{
|
|
embd_inp = ::llama_tokenize(llama_ctx_v3, params.prompt, true);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// tokenize the prompt
|
|
embd_inp = ::gpt_tokenize(vocab, params.prompt);
|
|
}
|
|
|
|
//truncate to front of the prompt if its too long
|
|
int32_t nctx = params.n_ctx;
|
|
|
|
if (embd_inp.size() + params.n_predict > nctx)
|
|
{
|
|
int offset = embd_inp.size() - nctx + params.n_predict;
|
|
embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end());
|
|
}
|
|
|
|
//determine how much npast we have to rewind from the current state
|
|
std::vector<gpt_vocab::id> embd;
|
|
|
|
int last_n_size = params.repeat_last_n;
|
|
last_n_tokens.resize(last_n_size);
|
|
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
n_past = 0;
|
|
|
|
if (file_format == FileFormat::RWKV_1)
|
|
{
|
|
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true);
|
|
}
|
|
else
|
|
{
|
|
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext, false);
|
|
}
|
|
|
|
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch
|
|
bool approved_format = !(file_format == FileFormat::BADFORMAT ||
|
|
file_format == FileFormat::GPT2_1 ||
|
|
file_format == FileFormat::GPTJ_1 ||
|
|
file_format == FileFormat::GPTJ_2 ||
|
|
file_format == FileFormat::RWKV_1);
|
|
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas());
|
|
// bool blasmode = false;
|
|
int original_batch = params.n_batch;
|
|
int original_threads = params.n_threads;
|
|
if (blasmode)
|
|
{
|
|
//for non llama, limit to 256
|
|
int bbs = blasbatchsize;
|
|
if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT && file_format != FileFormat::GGJT_2 && file_format != FileFormat::GGJT_3)
|
|
{
|
|
bbs = (blasbatchsize > 256 ? 256 : blasbatchsize);
|
|
}
|
|
|
|
params.n_batch = bbs; //received reports of 1024 and above crashing on some models
|
|
if(!ggml_cpu_has_gpublas())
|
|
{
|
|
params.n_threads = 1; //do not limit here anymore.
|
|
}
|
|
else
|
|
{
|
|
params.n_threads = n_blasthreads;
|
|
}
|
|
}
|
|
|
|
current_context_tokens.resize(n_past);
|
|
|
|
int remaining_tokens = params.n_predict;
|
|
int stopper_unused_tokens = 0;
|
|
int input_consumed = 0;
|
|
std::mt19937 rng(params.seed);
|
|
std::string concat_output = "";
|
|
|
|
bool startedsampling = false;
|
|
|
|
timer_start();
|
|
double time1 = 0, time2 = 0;
|
|
int32_t n_vocab = 0;
|
|
|
|
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
|
|
{
|
|
n_vocab = llama_v2_n_vocab(llama_ctx_v2);
|
|
}
|
|
else if(file_format == FileFormat::GGJT_3)
|
|
{
|
|
n_vocab = llama_n_vocab(llama_ctx_v3);
|
|
}
|
|
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
|
|
{
|
|
n_vocab = gptj_ctx_v1.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4)
|
|
{
|
|
n_vocab = gptj_ctx_v2.hparams.n_vocab;
|
|
}
|
|
else if(file_format==FileFormat::GPTJ_5)
|
|
{
|
|
n_vocab = gptj_ctx_v3.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPT2_1)
|
|
{
|
|
n_vocab = gpt2_ctx_v1.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3)
|
|
{
|
|
n_vocab = gpt2_ctx_v2.hparams.n_vocab;
|
|
}
|
|
else if(file_format==FileFormat::GPT2_4)
|
|
{
|
|
n_vocab = gpt2_ctx_v3.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5)
|
|
{
|
|
n_vocab = neox_ctx_v2.hparams.n_vocab;
|
|
}
|
|
else if( file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
|
|
{
|
|
n_vocab = neox_ctx_v3.hparams.n_vocab;
|
|
}
|
|
else if(file_format == FileFormat::RWKV_1)
|
|
{
|
|
n_vocab = vocab.id_to_token.size(); //handled seperately
|
|
if(n_past==0)
|
|
{
|
|
rwkv_ctx_v1->state_in = nullptr;
|
|
}
|
|
else
|
|
{
|
|
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
|
|
//if it's empty, push in the final previous token
|
|
if(embd_inp.size()==0 && current_context_tokens.size()>0)
|
|
{
|
|
embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printf("Bad format!");
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
if(debugmode)
|
|
{
|
|
printf("\n[Debug: Dump Input Tokens: %d]\n",file_format);
|
|
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
|
|
{
|
|
for (auto id : embd_inp)
|
|
{
|
|
printf("'%s (%d)', ",llama_v2_token_to_str(llama_ctx_v2, id),id);
|
|
}
|
|
}
|
|
else if (file_format == FileFormat::GGJT_3)
|
|
{
|
|
for (auto id : embd_inp)
|
|
{
|
|
printf("'%s (%d)', ",llama_token_to_str(llama_ctx_v3, id),id);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (auto id : embd_inp)
|
|
{
|
|
printf("'%s (%d)', ",vocab.id_to_token[id].c_str(),id);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
while (remaining_tokens > 0)
|
|
{
|
|
gpt_vocab::id id = 0;
|
|
// predict
|
|
unsigned int embdsize = embd.size();
|
|
if (embdsize > 0)
|
|
{
|
|
//print progress
|
|
if (!startedsampling)
|
|
{
|
|
printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size());
|
|
}
|
|
else
|
|
{
|
|
printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict);
|
|
}
|
|
fflush(stdout);
|
|
|
|
bool evalres = false;
|
|
|
|
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
|
|
{
|
|
evalres = (llama_v2_eval(llama_ctx_v2, embd.data(), embdsize, n_past, params.n_threads)==0);
|
|
}
|
|
else if(file_format == FileFormat::GGJT_3)
|
|
{
|
|
evalres = (llama_eval(llama_ctx_v3, embd.data(), embdsize, n_past, params.n_threads)==0);
|
|
}
|
|
else if(file_format==FileFormat::RWKV_1)
|
|
{
|
|
evalres = rwkv_eval(rwkv_ctx_v1, embd[0], rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
|
|
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*rwkv_vocab.size());
|
|
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
|
|
}
|
|
else if(file_format==FileFormat::GPT2_1)
|
|
{
|
|
evalres = legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3)
|
|
{
|
|
evalres = gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::GPT2_4)
|
|
{
|
|
evalres = gpt2_eval(gpt2_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5)
|
|
{
|
|
evalres = gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token);
|
|
}
|
|
else if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
|
|
{
|
|
evalres = gpt_neox_eval(neox_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token);
|
|
}
|
|
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
|
|
{
|
|
evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
|
|
}
|
|
else if(file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4)
|
|
{
|
|
evalres = gptj_v2_eval(gptj_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token);
|
|
}
|
|
else if(file_format==FileFormat::GPTJ_5)
|
|
{
|
|
evalres = gptj_eval(gptj_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token);
|
|
}
|
|
else
|
|
{
|
|
printf("\nCannot find eval function\n");
|
|
}
|
|
|
|
if (!evalres)
|
|
{
|
|
fprintf(stderr, "Failed to predict\n");
|
|
snprintf(output.text, sizeof(output.text), "%s", "");
|
|
output.status = 0;
|
|
return output;
|
|
}
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
if ((int)embd_inp.size() <= input_consumed)
|
|
{
|
|
// out of user input, sample next token
|
|
const float top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float typical_p = params.typical_p;
|
|
const float tfs_z = params.tfs_z;
|
|
|
|
if (!startedsampling)
|
|
{
|
|
startedsampling = true;
|
|
params.n_batch = original_batch;
|
|
params.n_threads = original_threads;
|
|
time1 = timer_check();
|
|
timer_start();
|
|
printf("\n");
|
|
}
|
|
|
|
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3)
|
|
{
|
|
float * logits;
|
|
if(file_format == FileFormat::GGJT_3)
|
|
{
|
|
logits = llama_get_logits(llama_ctx_v3);
|
|
}
|
|
else
|
|
{
|
|
logits = llama_v2_get_logits(llama_ctx_v2);
|
|
}
|
|
|
|
if (!unbanTokens)
|
|
{
|
|
// set the logit of the eos token (2) to zero to avoid sampling it
|
|
logits[llama_token_eos()] = 0;
|
|
//set logits of opening square bracket to zero.
|
|
logits[518] = 0;
|
|
logits[29961] = 0;
|
|
}
|
|
|
|
id = SampleLogits(logits, nctx, n_vocab, last_n_size, repeat_penalty,
|
|
top_k, top_p, typical_p, tfs_z, temp, rng,
|
|
params.mirostat,params.mirostat_tau,params.mirostat_eta);
|
|
|
|
}
|
|
else
|
|
{
|
|
if (!unbanTokens)
|
|
{
|
|
// set the logit of the eos token (2) to zero to avoid sampling it
|
|
if ((file_format == FileFormat::GPT2_1 ||
|
|
file_format == FileFormat::GPT2_2 ||
|
|
file_format == FileFormat::GPT2_3 ||
|
|
file_format == FileFormat::GPT2_4 ||
|
|
file_format == FileFormat::GPTJ_1 ||
|
|
file_format == FileFormat::GPTJ_2 ||
|
|
file_format == FileFormat::GPTJ_3 ||
|
|
file_format == FileFormat::GPTJ_4 ||
|
|
file_format == FileFormat::GPTJ_5) &&
|
|
logits.size() > 50256)
|
|
{
|
|
logits[50256] = (logits[50256] < 0 ? logits[50256] : 0);
|
|
}
|
|
//gpt2 uses negative logits, so we cant zero it
|
|
}
|
|
|
|
id = SampleLogits(logits.data(), nctx, n_vocab, last_n_size, repeat_penalty,
|
|
top_k, top_p, typical_p, tfs_z, temp, rng,
|
|
params.mirostat,params.mirostat_tau,params.mirostat_eta);
|
|
}
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
current_context_tokens.push_back(id);
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// decrement remaining sampling budget
|
|
--remaining_tokens;
|
|
|
|
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2|| file_format == FileFormat::GGJT_3)
|
|
{
|
|
if(file_format == FileFormat::GGJT_3)
|
|
{
|
|
concat_output += llama_token_to_str(llama_ctx_v3, id);
|
|
}
|
|
else
|
|
{
|
|
concat_output += llama_v2_token_to_str(llama_ctx_v2, id);
|
|
}
|
|
|
|
if(unbanTokens && id==llama_token_eos())
|
|
{
|
|
printf("\n(EOS token triggered!)");
|
|
remaining_tokens = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (auto id : embd)
|
|
{
|
|
concat_output += vocab.id_to_token[id].c_str();
|
|
}
|
|
}
|
|
for (const auto &matched : stop_sequence)
|
|
{
|
|
if (concat_output.find(matched) != std::string::npos)
|
|
{
|
|
stopper_unused_tokens = remaining_tokens;
|
|
remaining_tokens = 0;
|
|
printf("\n(Stop sequence triggered: <%s>)", matched.c_str());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
while ((int)embd_inp.size() > input_consumed)
|
|
{
|
|
embd.push_back(embd_inp[input_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[input_consumed]);
|
|
current_context_tokens.push_back(embd_inp[input_consumed]);
|
|
++input_consumed;
|
|
if ((int)embd.size() >= params.n_batch)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
time2 = timer_check();
|
|
float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size()));
|
|
int realnpredict = params.n_predict-stopper_unused_tokens;
|
|
float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict));
|
|
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2));
|
|
fflush(stdout);
|
|
output.status = 1;
|
|
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());
|
|
|
|
return output;
|
|
}
|