koboldcpp/koboldcpp.py
2024-07-25 11:41:05 +08:00

4208 lines
219 KiB
Python

#!/usr/bin/env python3
#-*- coding: utf-8 -*-
# KoboldCpp is an easy-to-use AI text-generation software for GGML models.
# It's a single self contained distributable from Concedo, that builds off llama.cpp,
# and adds a versatile Kobold API endpoint, additional format support,
# backward compatibility, as well as a fancy UI with persistent stories,
# editing tools, save formats, memory, world info, author's note, characters,
# scenarios and everything Kobold and KoboldAI Lite have to offer.
import ctypes
import os, math, re
import argparse
import platform
import base64
import json, sys, http.server, time, asyncio, socket, threading
from concurrent.futures import ThreadPoolExecutor
# constants
sampler_order_max = 7
stop_token_max = 16
ban_token_max = 16
tensor_split_max = 16
logit_bias_max = 16
dry_seq_break_max = 16
images_max = 4
bias_min_value = -100.0
bias_max_value = 100.0
# global vars
handle = None
friendlymodelname = "inactive"
friendlysdmodelname = "inactive"
fullsdmodelpath = "" #if empty, it's not initialized
mmprojpath = "" #if empty, it's not initialized
password = "" #if empty, no auth key required
fullwhispermodelpath = "" #if empty, it's not initialized
maxctx = 4096
maxhordectx = 4096
maxhordelen = 350
modelbusy = threading.Lock()
requestsinqueue = 0
defaultport = 5001
KcppVersion = "1.71"
showdebug = True
guimode = False
showsamplerwarning = True
showmaxctxwarning = True
session_kudos_earned = 0
session_jobs = 0
session_starttime = None
exitcounter = -1
punishcounter = 0 #causes a timeout if too many errors
rewardcounter = 0 #reduces error counts for successful jobs
totalgens = 0
currentusergenkey = "" #store a special key so polled streaming works even in multiuser
pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later
args = None #global args
gui_layers_untouched = True
runmode_untouched = True
preloaded_story = None
chatcompl_adapter = None
embedded_kailite = None
embedded_kcpp_docs = None
embedded_kcpp_sdui = None
sslvalid = False
nocertify = False
start_time = time.time()
last_req_time = time.time()
last_non_horde_req_time = time.time()
currfinishreason = "null"
using_gui_launcher = False
using_outdated_flags = False
CLDevices = ["1","2","3","4"]
CUDevices = ["1","2","3","4","All"]
CLDevicesNames = ["","","",""]
CUDevicesNames = ["","","","",""]
VKDevicesNames = ["","","",""]
VKIsDGPU = [0,0,0,0]
MaxMemory = [0]
class logit_bias(ctypes.Structure):
_fields_ = [("token_id", ctypes.c_int32),
("bias", ctypes.c_float)]
class token_count_outputs(ctypes.Structure):
_fields_ = [("count", ctypes.c_int),
("ids", ctypes.POINTER(ctypes.c_int))]
class load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("blasthreads", ctypes.c_int),
("max_context_length", ctypes.c_int),
("low_vram", ctypes.c_bool),
("use_mmq", ctypes.c_bool),
("use_rowsplit", ctypes.c_bool),
("executable_path", ctypes.c_char_p),
("model_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_base", ctypes.c_char_p),
("mmproj_filename", ctypes.c_char_p),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("use_smartcontext", ctypes.c_bool),
("use_contextshift", ctypes.c_bool),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("blasbatchsize", ctypes.c_int),
("debugmode", ctypes.c_int),
("forceversion", ctypes.c_int),
("gpulayers", ctypes.c_int),
("rope_freq_scale", ctypes.c_float),
("rope_freq_base", ctypes.c_float),
("flash_attention", ctypes.c_bool),
("tensor_split", ctypes.c_float * tensor_split_max),
("quant_k", ctypes.c_int),
("quant_v", ctypes.c_int)]
class generation_inputs(ctypes.Structure):
_fields_ = [("seed", ctypes.c_int),
("prompt", ctypes.c_char_p),
("memory", ctypes.c_char_p),
("images", ctypes.c_char_p * images_max),
("max_context_length", ctypes.c_int),
("max_length", ctypes.c_int),
("temperature", ctypes.c_float),
("top_k", ctypes.c_int),
("top_a", ctypes.c_float),
("top_p", ctypes.c_float),
("min_p", ctypes.c_float),
("typical_p", ctypes.c_float),
("tfs", ctypes.c_float),
("rep_pen", ctypes.c_float),
("rep_pen_range", ctypes.c_int),
("rep_pen_slope", ctypes.c_float),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("dry_multiplier", ctypes.c_float),
("dry_base", ctypes.c_float),
("dry_allowed_length", ctypes.c_int),
("dry_penalty_last_n", ctypes.c_int),
("dry_sequence_breakers", ctypes.c_char_p * dry_seq_break_max),
("sampler_order", ctypes.c_int * sampler_order_max),
("sampler_len", ctypes.c_int),
("allow_eos_token", ctypes.c_bool),
("bypass_eos_token", ctypes.c_bool),
("render_special", ctypes.c_bool),
("stop_sequence", ctypes.c_char_p * stop_token_max),
("stream_sse", ctypes.c_bool),
("grammar", ctypes.c_char_p),
("grammar_retain_state", ctypes.c_bool),
("quiet", ctypes.c_bool),
("dynatemp_range", ctypes.c_float),
("dynatemp_exponent", ctypes.c_float),
("smoothing_factor", ctypes.c_float),
("logit_biases", logit_bias * logit_bias_max),
("banned_tokens", ctypes.c_char_p * ban_token_max)]
class generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("stopreason", ctypes.c_int),
("text", ctypes.c_char_p)]
class sd_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("threads", ctypes.c_int),
("quant", ctypes.c_int),
("taesd", ctypes.c_bool),
("vae_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_multiplier", ctypes.c_float),
("debugmode", ctypes.c_int)]
class sd_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("negative_prompt", ctypes.c_char_p),
("init_images", ctypes.c_char_p),
("denoising_strength", ctypes.c_float),
("cfg_scale", ctypes.c_float),
("sample_steps", ctypes.c_int),
("width", ctypes.c_int),
("height", ctypes.c_int),
("seed", ctypes.c_int),
("sample_method", ctypes.c_char_p),
("clip_skip", ctypes.c_int),
("quiet", ctypes.c_bool)]
class sd_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
class whisper_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("debugmode", ctypes.c_int)]
class whisper_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("audio_data", ctypes.c_char_p),
("quiet", ctypes.c_bool)]
class whisper_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
def getdirpath():
return os.path.dirname(os.path.realpath(__file__))
def getabspath():
return os.path.dirname(os.path.abspath(__file__))
def file_exists(filename):
return os.path.exists(os.path.join(getdirpath(), filename))
def get_default_threads():
physical_core_limit = 1
if os.cpu_count()!=None and os.cpu_count()>1:
physical_core_limit = os.cpu_count() // 2
default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1))
processor = platform.processor()
if 'Intel' in processor:
default_threads = (8 if default_threads > 8 else default_threads) #this helps avoid e-cores.
return default_threads
def pick_existant_file(ntoption,nonntoption):
precompiled_prefix = "precompiled_"
ntexist = file_exists(ntoption)
nonntexist = file_exists(nonntoption)
precompiled_ntexist = file_exists(precompiled_prefix+ntoption)
precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption)
if os.name == 'nt':
if not ntexist and precompiled_ntexist:
return (precompiled_prefix+ntoption)
if nonntexist and not ntexist:
return nonntoption
return ntoption
else:
if not nonntexist and precompiled_nonntexist:
return (precompiled_prefix+nonntoption)
if ntexist and not nonntexist:
return ntoption
return nonntoption
lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so")
lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so")
lib_openblas = pick_existant_file("koboldcpp_openblas.dll","koboldcpp_openblas.so")
lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so")
lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so")
lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so")
lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so")
lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so")
lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so")
lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so")
libname = ""
lib_option_pairs = [
(lib_openblas, "Use OpenBLAS"),
(lib_default, "Use No BLAS"),
(lib_clblast, "Use CLBlast"),
(lib_cublas, "Use CuBLAS"),
(lib_hipblas, "Use hipBLAS (ROCm)"),
(lib_vulkan, "Use Vulkan"),
(lib_noavx2, "NoAVX2 Mode (Old CPU)"),
(lib_clblast_noavx2, "CLBlast NoAVX2 (Old CPU)"),
(lib_vulkan_noavx2, "Vulkan NoAVX2 (Old CPU)"),
(lib_failsafe, "Failsafe Mode (Old CPU)")]
openblas_option, default_option, clblast_option, cublas_option, hipblas_option, vulkan_option, noavx2_option, clblast_noavx2_option, vulkan_noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs)
runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)]
def init_library():
global handle, args, libname
global lib_default,lib_failsafe,lib_openblas,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2
libname = ""
use_openblas = False # if true, uses OpenBLAS for acceleration. libopenblas.dll must exist in the same dir.
use_clblast = False #uses CLBlast instead
use_cublas = False #uses cublas instead
use_hipblas = False #uses hipblas instead
use_noavx2 = False #uses no avx2 instructions
use_failsafe = False #uses no intrinsics, failsafe mode
use_vulkan = False #uses vulkan (needs avx2)
if args.noavx2:
use_noavx2 = True
if args.useclblast:
if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: NoAVX2 CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan_noavx2):
print("Warning: NoAVX2 Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
else:
if not file_exists(lib_noavx2):
print("Warning: NoAVX2 library file not found. Failsafe library will be used.")
elif (args.noblas and args.nommap):
use_failsafe = True
print("!!! Attempting to use FAILSAFE MODE !!!")
else:
print("Attempting to use non-avx2 compatibility library.")
elif (args.usecublas is not None):
if not file_exists(lib_cublas) and not file_exists(lib_hipblas):
print("Warning: CuBLAS library file not found. Non-BLAS library will be used.")
else:
if file_exists(lib_cublas):
print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.")
use_cublas = True
elif file_exists(lib_hipblas):
print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.")
use_hipblas = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan):
print("Warning: Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
elif args.useclblast:
if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
else:
if not file_exists(lib_openblas) or (os.name=='nt' and not file_exists("libopenblas.dll")):
print("Warning: OpenBLAS library file not found. Non-BLAS library will be used.")
elif args.noblas:
print("Attempting to library without OpenBLAS.")
else:
use_openblas = True
print("Attempting to use OpenBLAS library for faster prompt ingestion. A compatible libopenblas will be required.")
if sys.platform=="darwin":
print("Mac OSX note: Some people have found Accelerate actually faster than OpenBLAS. To compare, run Koboldcpp with --noblas instead.")
if use_noavx2:
if use_failsafe:
libname = lib_failsafe
elif use_clblast:
libname = lib_clblast_noavx2
elif use_vulkan:
libname = lib_vulkan_noavx2
else:
libname = lib_noavx2
else:
if use_clblast:
libname = lib_clblast
elif use_cublas:
libname = lib_cublas
elif use_hipblas:
libname = lib_hipblas
elif use_openblas:
libname = lib_openblas
elif use_vulkan:
libname = lib_vulkan
else:
libname = lib_default
print("Initializing dynamic library: " + libname)
dir_path = getdirpath()
abs_path = getabspath()
#add all potential paths
if os.name=='nt':
os.add_dll_directory(dir_path)
os.add_dll_directory(abs_path)
os.add_dll_directory(os.getcwd())
if libname == lib_cublas and "CUDA_PATH" in os.environ:
newpath = os.path.join(os.environ["CUDA_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
if libname == lib_hipblas and "HIP_PATH" in os.environ:
newpath = os.path.join(os.environ["HIP_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
handle = ctypes.CDLL(os.path.join(dir_path, libname))
handle.load_model.argtypes = [load_model_inputs]
handle.load_model.restype = ctypes.c_bool
handle.generate.argtypes = [generation_inputs]
handle.generate.restype = generation_outputs
handle.new_token.restype = ctypes.c_char_p
handle.new_token.argtypes = [ctypes.c_int]
handle.get_stream_count.restype = ctypes.c_int
handle.has_finished.restype = ctypes.c_bool
handle.get_last_eval_time.restype = ctypes.c_float
handle.get_last_process_time.restype = ctypes.c_float
handle.get_last_token_count.restype = ctypes.c_int
handle.get_last_seed.restype = ctypes.c_int
handle.get_total_gens.restype = ctypes.c_int
handle.get_last_stop_reason.restype = ctypes.c_int
handle.abort_generate.restype = ctypes.c_bool
handle.token_count.restype = token_count_outputs
handle.get_pending_output.restype = ctypes.c_char_p
handle.sd_load_model.argtypes = [sd_load_model_inputs]
handle.sd_load_model.restype = ctypes.c_bool
handle.sd_generate.argtypes = [sd_generation_inputs]
handle.sd_generate.restype = sd_generation_outputs
handle.whisper_load_model.argtypes = [whisper_load_model_inputs]
handle.whisper_load_model.restype = ctypes.c_bool
handle.whisper_generate.argtypes = [whisper_generation_inputs]
handle.whisper_generate.restype = whisper_generation_outputs
def set_backend_props(inputs):
clblastids = 0
if args.useclblast:
clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1])
inputs.clblast_info = clblastids
# we must force an explicit tensor split
# otherwise the default will divide equally and multigpu crap will slow it down badly
inputs.cublas_info = 0
if not args.tensor_split:
if (args.usecublas and "0" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["HIP_VISIBLE_DEVICES"] = "0"
elif (args.usecublas and "1" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["HIP_VISIBLE_DEVICES"] = "1"
elif (args.usecublas and "2" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["HIP_VISIBLE_DEVICES"] = "2"
elif (args.usecublas and "3" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["HIP_VISIBLE_DEVICES"] = "3"
else:
if (args.usecublas and "0" in args.usecublas):
inputs.cublas_info = 0
elif (args.usecublas and "1" in args.usecublas):
inputs.cublas_info = 1
elif (args.usecublas and "2" in args.usecublas):
inputs.cublas_info = 2
elif (args.usecublas and "3" in args.usecublas):
inputs.cublas_info = 3
if args.usevulkan: #is an empty array if using vulkan without defined gpu
s = ""
for l in range(0,len(args.usevulkan)):
s += str(args.usevulkan[l])
inputs.vulkan_info = s.encode("UTF-8")
else:
inputs.vulkan_info = "".encode("UTF-8")
return inputs
def end_trim_to_sentence(input_text):
enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '']
last = -1
for ender in enders:
last = max(last, input_text.rfind(ender))
nl = input_text.rfind("\n")
last = max(last, nl)
if last > 0:
return input_text[:last + 1].strip()
return input_text.strip()
def tryparseint(value):
try:
return int(value)
except ValueError:
return value
def unpack_to_dir(destpath = ""):
import shutil
srcpath = os.path.abspath(os.path.dirname(__file__))
cliunpack = False if destpath == "" else True
print("Attempt to unpack KoboldCpp into directory...")
if not cliunpack:
from tkinter.filedialog import askdirectory
from tkinter import messagebox
destpath = askdirectory(title='Select an empty folder to unpack KoboldCpp')
if not destpath:
return
if os.path.isdir(srcpath) and os.path.isdir(destpath) and not os.listdir(destpath):
try:
if cliunpack:
print(f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
else:
messagebox.showinfo("Unpack Starting", f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
for item in os.listdir(srcpath):
s = os.path.join(srcpath, item)
d = os.path.join(destpath, item)
if item.endswith('.pyd'): # Skip .pyd files
continue
if os.path.isdir(s):
shutil.copytree(s, d, False, None)
else:
shutil.copy2(s, d)
if cliunpack:
print(f"KoboldCpp successfully extracted to {destpath}")
else:
messagebox.showinfo("KoboldCpp Unpack Success", f"KoboldCpp successfully extracted to {destpath}")
except Exception as e:
if cliunpack:
print(f"An error occurred while unpacking: {e}")
else:
messagebox.showerror("Error", f"An error occurred while unpacking: {e}")
else:
if cliunpack:
print(f"The target folder is not empty or invalid. Please select an empty folder.")
else:
messagebox.showwarning("Invalid Selection", "The target folder is not empty or invalid. Please select an empty folder.")
def exit_with_error(code, message, title="Error"):
global guimode
print("")
time.sleep(1)
if guimode:
show_gui_msgbox(title, message)
else:
print(message, flush=True)
time.sleep(2)
sys.exit(code)
def utfprint(str):
maxlen = 32000
if args.debugmode >= 1:
maxlen = 64000
strlength = len(str)
if strlength > maxlen: #limit max output len
str = str[:maxlen] + f"... (+{strlength-maxlen} chars)"
try:
print(str)
except UnicodeEncodeError:
# Replace or omit the problematic character
utf_string = str.encode('ascii', 'ignore').decode('ascii',"ignore")
utf_string = utf_string.replace('\a', '') #remove bell characters
print(utf_string)
def bring_terminal_to_foreground():
if os.name=='nt':
ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9)
ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow())
def string_contains_sequence_substring(inputstr,sequences):
if inputstr.strip()=="":
return False
for s in sequences:
if s.strip()=="":
continue
if s.strip() in inputstr.strip() or inputstr.strip() in s.strip():
return True
return False
import struct
def read_gguf_metadata(file_path):
chunk_size = 8192 # read only first 8kb of file
try:
def read_gguf_key(keyname,data,maxval):
keylen = len(keyname)
index = data.find(keyname) # Search for the magic number, Read 2 chunks of 4 byte numbers
if index != -1 and index + keylen + 8 <= chunk_size:
start_index = index + keylen
first_value_bytes = data[start_index:start_index + 4]
second_value_bytes = data[start_index + 4:start_index + 8]
# Unpack each 4 bytes as an unsigned int32 in little-endian format
value1 = struct.unpack('<I', first_value_bytes)[0] #4 means its a uint32
value2 = struct.unpack('<I', second_value_bytes)[0]
if value1 == 4 and value2 > 0 and value2 <= maxval:
return value2 #contains the desired value
return 0
else:
return 0 #not found
fsize = os.path.getsize(file_path)
if fsize < 10000: #ignore files under 10kb
return None
with open(file_path, 'rb') as f:
file_header = f.read(4)
if file_header != b'GGUF': #file is not GGUF
return None
data = f.read(chunk_size)
layercount = read_gguf_key(b'.block_count',data,512)
head_count_kv = read_gguf_key(b'.attention.head_count_kv',data,8192)
key_length = read_gguf_key(b'.attention.key_length',data,8192)
val_length = read_gguf_key(b'.attention.value_length',data,8192)
return [layercount,head_count_kv, max(key_length,val_length)]
except Exception as ex:
return None
def autoset_gpu_layers(filepath,ctxsize,gpumem): #shitty algo to determine how many layers to use
try:
layerlimit = 0
fsize = os.path.getsize(filepath)
if fsize>10000000: #dont bother with models < 10mb
cs = ctxsize
mem = gpumem
csmul = 1.0
if cs:
csmul = (cs/4096) if cs >= 8192 else 1.8 if cs > 4096 else 1.2 if cs > 2048 else 1.0
ggufmeta = read_gguf_metadata(filepath)
if not ggufmeta or ggufmeta[0]==0: #fail to read or no layers
sizeperlayer = fsize*csmul*0.052
layerlimit = int(min(200,mem/sizeperlayer))
else:
layers = ggufmeta[0]
headcount = ggufmeta[1]
headkvlen = (ggufmeta[2] if ggufmeta[2] > 0 else 128)
ratio = mem/(fsize*csmul*1.5)
computemem = layers*4*headkvlen*cs*4*1.4 # For now the first 4 is the hardcoded result for a blasbatchsize of 512. Ideally we automatically calculate blasbatchsize / 4 but I couldn't easily grab the value yet - Henk
contextmem = layers*headcount*headkvlen*cs*4
reservedmem = 1.5*1024*1024*1024 # Users often don't have their GPU's VRAM worth of memory, we assume 500MB to avoid driver swapping + 500MB for the OS + 500MB for background apps / browser - Henk
if headcount > 0:
ratio = max(ratio, (mem - reservedmem - computemem) / (fsize + contextmem))
layerlimit = min(int(ratio*layers), (layers + 3))
return layerlimit
except Exception as ex:
return 0
def fetch_gpu_properties(testCL,testCU,testVK):
import subprocess
if testCL:
try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found.
basepath = os.path.abspath(os.path.dirname(__file__))
output = ""
data = None
try:
output = subprocess.run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout
data = json.loads(output)
except Exception as e1:
output = subprocess.run([((os.path.join(basepath, "winclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, creationflags=subprocess.CREATE_NO_WINDOW | subprocess.DETACHED_PROCESS, encoding='utf-8').stdout
data = json.loads(output)
plat = 0
dev = 0
lowestclmem = 0
for platform in data["devices"]:
dev = 0
for device in platform["online"]:
dname = device["CL_DEVICE_NAME"]
dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"])
idx = plat+dev*2
if idx<len(CLDevices):
CLDevicesNames[idx] = dname
lowestclmem = dmem if lowestclmem==0 else (dmem if dmem<lowestclmem else lowestclmem)
dev += 1
plat += 1
MaxMemory[0] = lowestclmem
except Exception as e:
pass
if testCU:
FetchedCUdevices = []
FetchedCUdeviceMem = []
AMDgpu = None
try: # Get NVIDIA GPU names
output = subprocess.run(['nvidia-smi','--query-gpu=name,memory.total','--format=csv,noheader'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
FetchedCUdevices = [line.split(",")[0].strip() for line in output.splitlines()]
FetchedCUdeviceMem = [line.split(",")[1].strip().split(" ")[0].strip() for line in output.splitlines()]
except Exception as e:
pass
if len(FetchedCUdevices)==0:
try: # Get AMD ROCm GPU names
output = subprocess.run(['rocminfo'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
device_name = None
for line in output.splitlines(): # read through the output line by line
line = line.strip()
if line.startswith("Marketing Name:"): device_name = line.split(":", 1)[1].strip() # if we find a named device, temporarily save the name
elif line.startswith("Device Type:") and "GPU" in line and device_name is not None: # if the following Device Type is a GPU (not a CPU) then add it to devices list
FetchedCUdevices.append(device_name)
AMDgpu = True
elif line.startswith("Device Type:") and "GPU" not in line: device_name = None
if FetchedCUdevices:
getamdvram = subprocess.run(['rocm-smi', '--showmeminfo', 'vram', '--csv'], capture_output=True, text=True, check=True, encoding='utf-8').stdout # fetch VRAM of devices
FetchedCUdeviceMem = [line.split(",")[1].strip() for line in getamdvram.splitlines()[1:] if line.strip()]
except Exception as e:
pass
for idx in range(0,4):
if(len(FetchedCUdevices)>idx):
CUDevicesNames[idx] = FetchedCUdevices[idx]
if AMDgpu:
MaxMemory[0] = max(int(FetchedCUdeviceMem[idx]),MaxMemory[0])
else:
MaxMemory[0] = max(int(FetchedCUdeviceMem[idx])*1024*1024,MaxMemory[0])
if testVK:
try: # Get Vulkan names
output = subprocess.run(['vulkaninfo','--summary'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
devicelist = [line.split("=")[1].strip() for line in output.splitlines() if "deviceName" in line]
devicetypes = [line.split("=")[1].strip() for line in output.splitlines() if "deviceType" in line]
idx = 0
for dname in devicelist:
if idx<len(VKDevicesNames):
VKDevicesNames[idx] = dname
idx += 1
if len(devicetypes) == len(devicelist):
idx = 0
for dvtype in devicetypes:
if idx<len(VKIsDGPU):
VKIsDGPU[idx] = (1 if dvtype=="PHYSICAL_DEVICE_TYPE_DISCRETE_GPU" else 0)
idx += 1
except Exception as e:
pass
return
def auto_set_backend_cli():
print("\nA .kcppt template was selected from CLI - automatically selecting your backend...")
fetch_gpu_properties(False,True,True)
if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and any(CUDevicesNames):
if "Use CuBLAS" in runopts or "Use hipBLAS (ROCm)" in runopts:
args.usecublas = ["normal","mmq"]
print("Auto Selected CUDA Backend...\n")
elif exitcounter < 100 and (1 in VKIsDGPU) and "Use Vulkan" in runopts:
for i in range(0,len(VKIsDGPU)):
if VKIsDGPU[i]==1:
args.usevulkan = []
print("Auto Selected Vulkan Backend...\n")
break
def load_model(model_filename):
global args
inputs = load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten
inputs.threads = args.threads
inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False)
inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False)
inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False)
inputs.vulkan_info = "0".encode("UTF-8")
inputs.blasthreads = args.blasthreads
inputs.use_mmap = (not args.nommap)
inputs.use_mlock = args.usemlock
inputs.lora_filename = "".encode("UTF-8")
inputs.lora_base = "".encode("UTF-8")
if args.lora:
inputs.lora_filename = args.lora[0].encode("UTF-8")
inputs.use_mmap = False
if len(args.lora) > 1:
inputs.lora_base = args.lora[1].encode("UTF-8")
inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8")
inputs.use_smartcontext = args.smartcontext
inputs.use_contextshift = (0 if args.noshift else 1)
inputs.flash_attention = args.flashattention
if args.quantkv>0:
inputs.quant_k = inputs.quant_v = args.quantkv
inputs.flash_attention = True
inputs.use_contextshift = 0
else:
inputs.quant_k = inputs.quant_v = 0
inputs.blasbatchsize = args.blasbatchsize
inputs.forceversion = args.forceversion
inputs.gpulayers = args.gpulayers
inputs.rope_freq_scale = args.ropeconfig[0]
if len(args.ropeconfig)>1:
inputs.rope_freq_base = args.ropeconfig[1]
else:
inputs.rope_freq_base = 10000
for n in range(tensor_split_max):
if args.tensor_split and n < len(args.tensor_split):
inputs.tensor_split[n] = float(args.tensor_split[n])
else:
inputs.tensor_split[n] = 0
inputs = set_backend_props(inputs)
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.debugmode = args.debugmode
ret = handle.load_model(inputs)
return ret
def generate(prompt, memory="", images=[], max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, rep_pen_slope=1.0, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, dry_multiplier=0.0, dry_base=1.75, dry_allowed_length=2, dry_penalty_last_n=0, dry_sequence_breakers=[], sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}, render_special=False, banned_tokens=[], bypass_eos_token=False):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
inputs = generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.memory = memory.encode("UTF-8")
for n in range(images_max):
if not images or n >= len(images):
inputs.images[n] = "".encode("UTF-8")
else:
inputs.images[n] = images[n].encode("UTF-8")
if max_length >= (max_context_length-1):
max_length = max_context_length-1
print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.")
global showmaxctxwarning
if max_context_length > maxctx:
if showmaxctxwarning:
print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)")
showmaxctxwarning = False
max_context_length = maxctx
inputs.max_context_length = max_context_length # this will resize the context buffer if changed
inputs.max_length = max_length
inputs.temperature = temperature
inputs.top_k = top_k
inputs.top_a = top_a
inputs.top_p = top_p
inputs.min_p = min_p
inputs.typical_p = typical_p
inputs.tfs = tfs
inputs.rep_pen = rep_pen
inputs.rep_pen_range = rep_pen_range
inputs.rep_pen_slope = rep_pen_slope
inputs.presence_penalty = presence_penalty
inputs.stream_sse = stream_sse
inputs.quiet = quiet
inputs.dynatemp_range = dynatemp_range
inputs.dynatemp_exponent = dynatemp_exponent
inputs.smoothing_factor = smoothing_factor
inputs.grammar = grammar.encode("UTF-8")
inputs.grammar_retain_state = grammar_retain_state
inputs.allow_eos_token = not use_default_badwordsids
inputs.bypass_eos_token = bypass_eos_token
inputs.render_special = render_special
if mirostat in (1, 2):
inputs.mirostat = mirostat
inputs.mirostat_tau = mirostat_tau
inputs.mirostat_eta = mirostat_eta
else:
inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0
inputs.dry_multiplier = dry_multiplier
inputs.dry_base = dry_base
inputs.dry_allowed_length = dry_allowed_length
inputs.dry_penalty_last_n = dry_penalty_last_n
# Handle dry_sequence_breakers being passed as a json-encoded array of
# strings, rather than as an array of strings itself. This is to support
# SillyTavern, which passes sequence breakers to Oobabooga that way.
if dry_multiplier > 0 and isinstance(dry_sequence_breakers, str):
try:
dry_sequence_breakers = json.loads(dry_sequence_breakers)
except ValueError as e:
print(f"ERROR: dry_sequence_breakers must be an array of strings or a json encoded array of strings. Could not parse '{dry_sequence_breakers}': " + str(e))
dry_sequence_breakers = []
for n in range(dry_seq_break_max):
if dry_multiplier > 0 and n < len(dry_sequence_breakers):
inputs.dry_sequence_breakers[n] = dry_sequence_breakers[n].encode("UTF-8")
else:
inputs.dry_sequence_breakers[n] = "".encode("UTF-8")
if sampler_order and 0 < len(sampler_order) <= sampler_order_max:
try:
for i, sampler in enumerate(sampler_order):
inputs.sampler_order[i] = sampler
inputs.sampler_len = len(sampler_order)
global showsamplerwarning
if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5):
print("\n(Note: Non-default sampler_order detected. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)")
showsamplerwarning = False
except TypeError as e:
print("ERROR: sampler_order must be a list of integers: " + str(e))
inputs.seed = seed
for n in range(stop_token_max):
if not stop_sequence or n >= len(stop_sequence):
inputs.stop_sequence[n] = "".encode("UTF-8")
elif stop_sequence[n]==None:
inputs.stop_sequence[n] = "".encode("UTF-8")
else:
inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8")
bias_list = []
try:
if logit_biases and len(logit_biases) > 0:
bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()]
except Exception as ex:
print(f"Logit bias dictionary is invalid: {ex}")
for n in range(logit_bias_max):
if n >= len(bias_list):
inputs.logit_biases[n] = logit_bias(-1, 0.0)
else:
try:
t_id = int(bias_list[n]['key'])
bias = float(bias_list[n]['value'])
t_id = -1 if t_id < 0 else t_id
bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias))
inputs.logit_biases[n] = logit_bias(t_id, bias)
except Exception as ex:
inputs.logit_biases[n] = logit_bias(-1, 0.0)
print(f"Skipped unparsable logit bias:{ex}")
for n in range(ban_token_max):
if not banned_tokens or n >= len(banned_tokens):
inputs.banned_tokens[n] = "".encode("UTF-8")
else:
inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8")
currentusergenkey = genkey
totalgens += 1
#early exit if aborted
if pendingabortkey!="" and pendingabortkey==genkey:
print(f"\nDeferred Abort for GenKey: {pendingabortkey}")
pendingabortkey = ""
return {"text":"","status":-1,"stopreason":-1}
else:
ret = handle.generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.text.decode("UTF-8","ignore")
if trimstop:
for trim_str in stop_sequence:
sindex = outstr.find(trim_str)
if sindex != -1 and trim_str!="":
outstr = outstr[:sindex]
return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason}
def sd_load_model(model_filename,vae_filename,lora_filename):
global args
inputs = sd_load_model_inputs()
inputs.debugmode = args.debugmode
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.model_filename = model_filename.encode("UTF-8")
thds = args.threads
quant = 0
if args.sdthreads and args.sdthreads > 0:
sdt = int(args.sdthreads)
if sdt > 0:
thds = sdt
if args.sdquant:
quant = 1
inputs.threads = thds
inputs.quant = quant
inputs.taesd = True if args.sdvaeauto else False
inputs.vae_filename = vae_filename.encode("UTF-8")
inputs.lora_filename = lora_filename.encode("UTF-8")
inputs.lora_multiplier = args.sdloramult
inputs = set_backend_props(inputs)
ret = handle.sd_load_model(inputs)
return ret
def sd_generate(genparams):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey, chatcompl_adapter
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
forced_negprompt = adapter_obj.get("add_sd_negative_prompt", "")
forced_posprompt = adapter_obj.get("add_sd_prompt", "")
prompt = genparams.get("prompt", "high quality")
negative_prompt = genparams.get("negative_prompt", "")
if forced_negprompt!="":
if negative_prompt!="":
negative_prompt += ", " + forced_negprompt
else:
negative_prompt = forced_negprompt
if forced_posprompt!="":
if prompt!="":
prompt += ", " + forced_posprompt
else:
prompt = forced_posprompt
init_images_arr = genparams.get("init_images", [])
init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0])
denoising_strength = genparams.get("denoising_strength", 0.6)
cfg_scale = genparams.get("cfg_scale", 5)
sample_steps = tryparseint(genparams.get("steps", 20))
width = tryparseint(genparams.get("width", 512))
height = tryparseint(genparams.get("height", 512))
seed = tryparseint(genparams.get("seed", -1))
sample_method = genparams.get("sampler_name", "k_euler_a")
is_quiet = True if (args.quiet or args.debugmode == -1) else False
clip_skip = tryparseint(genparams.get("clip_skip", -1))
#clean vars
width = width - (width%64)
height = height - (height%64)
cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale))
sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps))
reslimit = 1024
width = (64 if width < 64 else width)
height = (64 if height < 64 else height)
if args.sdclamped:
sample_steps = (40 if sample_steps > 40 else sample_steps)
reslimit = int(args.sdclamped)
reslimit = (512 if reslimit<512 else reslimit)
print(f"\nImgGen: Clamped Mode (For Shared Use). Step counts and resolution are clamped to {reslimit}x{reslimit}.")
biggest = max(width,height)
if biggest > reslimit:
scaler = biggest / reslimit
width = int(width / scaler)
height = int(height / scaler)
width = width - (width%64)
height = height - (height%64)
inputs = sd_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.negative_prompt = negative_prompt.encode("UTF-8")
inputs.init_images = init_images.encode("UTF-8")
inputs.cfg_scale = cfg_scale
inputs.denoising_strength = denoising_strength
inputs.sample_steps = sample_steps
inputs.width = width
inputs.height = height
inputs.seed = seed
inputs.sample_method = sample_method.lower().encode("UTF-8")
inputs.quiet = is_quiet
inputs.clip_skip = clip_skip
ret = handle.sd_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def whisper_load_model(model_filename):
global args
inputs = whisper_load_model_inputs()
inputs.debugmode = args.debugmode
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.model_filename = model_filename.encode("UTF-8")
inputs = set_backend_props(inputs)
ret = handle.whisper_load_model(inputs)
return ret
def whisper_generate(genparams):
global args
is_quiet = True if (args.quiet or args.debugmode == -1) else False
prompt = genparams.get("prompt", "")
audio_data = genparams.get("audio_data", "")
if audio_data.startswith("data:audio"):
audio_data = audio_data.split(",", 1)[1]
inputs = whisper_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.audio_data = audio_data.encode("UTF-8")
inputs.quiet = is_quiet
ret = handle.whisper_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
#################################################################
### A hacky simple HTTP server simulating a kobold api by Concedo
### we are intentionally NOT using flask, because we want MINIMAL dependencies
#################################################################
# Used to parse json for openai tool calls
def extract_json_from_string(input_string):
parsed_json = None
try: # First check if model exported perfect json
parsed_json = json.loads(input_string)
return parsed_json
except Exception as e:
pass
try: # Next check if all we need is to add brackets to make it perfect json
parsed_json = json.loads(f"[{input_string}]")
return parsed_json
except Exception as e:
pass
try:
# Now use regular expression to match JSON objects or arrays in case part is valid json and part is not
json_pattern = r'(\{.*?\}|\[.*?\])' # was json_pattern = r'(\{.*\}|\[.*\])'
potential_jsons = re.findall(json_pattern, input_string, re.DOTALL)
for potential_json in potential_jsons:
try:
parsed_json = json.loads(potential_json)
return parsed_json
except Exception as e:
continue
except Exception as e:
pass
return []
def transform_genparams(genparams, api_format):
#api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate
#alias all nonstandard alternative names for rep pen.
rp1 = genparams.get('repeat_penalty', 1.0)
rp2 = genparams.get('repetition_penalty', 1.0)
rp3 = genparams.get('rep_pen', 1.0)
rp_max = max(rp1,rp2,rp3)
genparams["rep_pen"] = rp_max
if api_format==1:
genparams["prompt"] = genparams.get('text', "")
genparams["top_k"] = int(genparams.get('top_k', 120))
genparams["max_length"] = genparams.get('max', 150)
elif api_format==2:
if "ignore_eos" in genparams and not ("use_default_badwordsids" in genparams):
genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False)
elif api_format==3 or api_format==4:
genparams["max_length"] = genparams.get('max_tokens', (350 if api_format==4 else 150))
presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0))
genparams["presence_penalty"] = presence_penalty
# openai allows either a string or a list as a stop sequence
if isinstance(genparams.get('stop',[]), list):
genparams["stop_sequence"] = genparams.get('stop', [])
else:
genparams["stop_sequence"] = [genparams.get('stop')]
genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1))
genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False)
genparams["mirostat"] = genparams.get('mirostat_mode', 0)
if api_format==4:
# translate openai chat completion messages format into one big string.
messages_array = genparams.get('messages', [])
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
messages_string = ""
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
system_message_end = adapter_obj.get("system_end", "")
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
user_message_end = adapter_obj.get("user_end", "")
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
assistant_message_end = adapter_obj.get("assistant_end", "")
tools_message_start = adapter_obj.get("tools_start", "")
tools_message_end = adapter_obj.get("tools_end", "")
images_added = []
message_index = 0
for message in messages_array:
message_index += 1
if message['role'] == "system":
messages_string += system_message_start
elif message['role'] == "user":
messages_string += user_message_start
elif message['role'] == "assistant":
messages_string += assistant_message_start
elif message['role'] == "tool":
messages_string += tools_message_start
# content can be a string or an array of objects
curr_content = message['content']
if isinstance(curr_content, str):
messages_string += curr_content
elif isinstance(curr_content, list): #is an array
for item in curr_content:
if item['type']=="text":
messages_string += item['text']
elif item['type']=="image_url":
if item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"):
images_added.append(item['image_url']['url'].split(",", 1)[1])
# If last message, add any tools calls after message content and before message end token if any
if message['role'] == "user" and message_index == len(messages_array):
# Check if user is passing a openai tools array, if so add to end of prompt before assistant prompt unless tool_choice has been set to None
tools_array = genparams.get('tools', [])
if tools_array and len(tools_array) > 0 and genparams.get('tool_choice',None) != None:
response_array = [{"id": "insert an id for the response", "type": "function", "function": {"name": "insert the name of the function you want to call", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}]
json_formatting_instruction = " Use this style of JSON object formatting to give your answer if you think the user is asking you to perform an action: " + json.dumps(response_array, indent=0)
tools_string = json.dumps(tools_array, indent=0)
messages_string += tools_string
specified_function = None
if isinstance(genparams.get('tool_choice'), dict):
try:
specified_function = genparams.get('tool_choice').get('function').get('name')
json_formatting_instruction = f"The user is asking you to use the style of this JSON object formatting to complete the parameters for the specific function named {specified_function} in the following format: " + json.dumps([{"id": "insert an id for the response", "type": "function", "function": {"name": f"{specified_function}", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}], indent=0)
except Exception as e:
# In case of any issues, just revert back to no specified function
pass
messages_string += json_formatting_instruction
# Set temperature low automatically if function calling
genparams["temperature"] = 0.2
genparams["using_openai_tools"] = True
# Set grammar to llamacpp example grammar to force json response (see https://github.com/ggerganov/llama.cpp/blob/master/grammars/json_arr.gbnf)
genparams["grammar"] = r"""
root ::= arr
value ::= object | array | string | number | ("true" | "false" | "null") ws
arr ::=
"[\n" ws (
value
(",\n" ws value)*
)? "]"
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\\x7F\x00-\x1F] |
"\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4})
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [1-9] [0-9]{0,15})? ws
ws ::= | " " | "\n" [ \t]{0,20}
"""
if message['role'] == "system":
messages_string += system_message_end
elif message['role'] == "user":
messages_string += user_message_end
elif message['role'] == "assistant":
messages_string += assistant_message_end
elif message['role'] == "tool":
messages_string += tools_message_end
messages_string += assistant_message_start
genparams["prompt"] = messages_string
if len(images_added)>0:
genparams["images"] = images_added
if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing
genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()]
else:
genparams["stop_sequence"].append(user_message_start.strip())
genparams["stop_sequence"].append(assistant_message_start.strip())
genparams["trim_stop"] = True
elif api_format==5:
firstimg = genparams.get('image', "")
genparams["images"] = [firstimg]
genparams["max_length"] = 42
genparams["prompt"] = "### Instruction: In one sentence, write a descriptive caption for this image.\n### Response:"
return genparams
class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
sys_version = ""
server_version = "ConcedoLlamaForKoboldServer"
def __init__(self, addr, port):
self.addr = addr
self.port = port
def __call__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def log_message(self, format, *args):
global showdebug
if showdebug:
super().log_message(format, *args)
pass
def extract_b64string_from_file_upload(self, body):
try:
if 'content-type' in self.headers and self.headers['content-type']:
boundary = self.headers['content-type'].split("=")[1].encode()
if boundary:
fparts = body.split(boundary)
for fpart in fparts:
detected_upload_filename = re.findall(r'Content-Disposition.*name="file"; filename="(.*)"', fpart.decode('utf-8',errors='ignore'))
if detected_upload_filename and len(detected_upload_filename)>0:
utfprint(f"Detected uploaded file: {detected_upload_filename[0]}")
file_data = fpart.split(b'\r\n\r\n')[1].rsplit(b'\r\n', 1)[0]
file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore")
base64_string = f"data:audio/wav;base64,{file_data_base64}"
return base64_string
print("Uploaded file not found.")
return None
except Exception as e:
print(f"File Upload Process Error: {e}")
return None
async def generate_text(self, genparams, api_format, stream_flag):
global friendlymodelname, chatcompl_adapter, currfinishreason
is_quiet = args.quiet
currfinishreason = "null"
def run_blocking(): # api format 1=basic,2=kai,3=oai,4=oai-chat
# flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
return generate(
prompt=genparams.get('prompt', ""),
memory=genparams.get('memory', ""),
images=genparams.get('images', []),
max_context_length=genparams.get('max_context_length', maxctx),
max_length=genparams.get('max_length', 150),
temperature=genparams.get('temperature', 0.7),
top_k=genparams.get('top_k', 100),
top_a=genparams.get('top_a', 0.0),
top_p=genparams.get('top_p', 0.92),
min_p=genparams.get('min_p', 0.0),
typical_p=genparams.get('typical', 1.0),
tfs=genparams.get('tfs', 1.0),
rep_pen=genparams.get('rep_pen', 1.0),
rep_pen_range=genparams.get('rep_pen_range', 256),
rep_pen_slope=genparams.get('rep_pen_slope', 1.0),
presence_penalty=genparams.get('presence_penalty', 0.0),
mirostat=genparams.get('mirostat', 0),
mirostat_tau=genparams.get('mirostat_tau', 5.0),
mirostat_eta=genparams.get('mirostat_eta', 0.1),
dry_multiplier=genparams.get('dry_multiplier', 0.0),
dry_base=genparams.get('dry_base', 1.75),
dry_allowed_length=genparams.get('dry_allowed_length', 2),
dry_penalty_last_n=genparams.get('dry_penalty_last_n', 0),
dry_sequence_breakers=genparams.get('dry_sequence_breakers', []),
sampler_order=genparams.get('sampler_order', [6,0,1,3,4,2,5]),
seed=tryparseint(genparams.get('sampler_seed', -1)),
stop_sequence=genparams.get('stop_sequence', []),
use_default_badwordsids=genparams.get('use_default_badwordsids', False),
stream_sse=stream_flag,
grammar=genparams.get('grammar', ''),
grammar_retain_state = genparams.get('grammar_retain_state', False),
genkey=genparams.get('genkey', ''),
trimstop=genparams.get('trim_stop', False),
quiet=is_quiet,
dynatemp_range=genparams.get('dynatemp_range', 0.0),
dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0),
smoothing_factor=genparams.get('smoothing_factor', 0.0),
logit_biases=genparams.get('logit_bias', {}),
render_special=genparams.get('render_special', False),
banned_tokens=genparams.get('banned_tokens', []),
bypass_eos_token=genparams.get('bypass_eos', False),
)
genout = {"text": "", "status": -1, "stopreason": -1}
if stream_flag:
loop = asyncio.get_event_loop()
executor = ThreadPoolExecutor()
genout = await loop.run_in_executor(executor, run_blocking)
else:
genout = run_blocking()
recvtxt = genout['text']
currfinishreason = ("length" if (genout['stopreason'] != 1) else "stop")
# flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
utfprint("\nOutput: " + recvtxt)
if api_format == 1:
res = {"data": {"seqs": [recvtxt]}}
elif api_format == 3:
res = {"id": "cmpl-1", "object": "text_completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100, "completion_tokens": 100, "total_tokens": 200},
"choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason}]}
elif api_format == 4:
using_openai_tools = genparams.get('using_openai_tools', False)
tool_calls = []
if using_openai_tools:
tool_calls = extract_json_from_string(recvtxt)
if tool_calls and len(tool_calls)>0:
recvtxt = None
res = {"id": "chatcmpl-1", "object": "chat.completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100, "completion_tokens": 100, "total_tokens": 200},
"choices": [{"index": 0, "message": {"role": "assistant", "content": recvtxt, "tool_calls": tool_calls}, "finish_reason": currfinishreason}]}
elif api_format == 5:
res = {"caption": end_trim_to_sentence(recvtxt)}
else:
res = {"results": [{"text": recvtxt, "finish_reason": currfinishreason}]}
try:
return res
except Exception as e:
print(f"Generate: Error while generating: {e}")
async def send_oai_sse_event(self, data):
if data=="[DONE]":
self.wfile.write(f'data: {data}'.encode())
else:
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def send_kai_sse_event(self, data):
self.wfile.write(f'event: message\n'.encode())
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def handle_sse_stream(self, genparams, api_format):
global friendlymodelname, currfinishreason
self.send_response(200)
self.send_header("cache-control", "no-cache")
self.send_header("connection", "keep-alive")
self.end_headers(content_type='text/event-stream')
current_token = 0
incomplete_token_buffer = bytearray()
async_sleep_short = 0.02
await asyncio.sleep(0.25) #anti race condition, prevent check from overtaking generate
try:
tokenReserve = "" #keeps fully formed tokens that we cannot send out yet
while True:
streamDone = handle.has_finished() #exit next loop on done
if streamDone:
sr = handle.get_last_stop_reason()
currfinishreason = ("length" if (sr!=1) else "stop")
tokenStr = ""
streamcount = handle.get_stream_count()
while current_token < streamcount:
token = handle.new_token(current_token)
if token is None: # Token isnt ready yet, received nullpointer
break
current_token += 1
newbyte = ctypes.string_at(token)
incomplete_token_buffer += bytearray(newbyte)
tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore")
if tokenSeg!="":
incomplete_token_buffer.clear()
tokenStr += tokenSeg
if tokenStr!="" or streamDone:
sseq = genparams.get('stop_sequence', [])
trimstop = genparams.get('trim_stop', False)
if trimstop and not streamDone and string_contains_sequence_substring(tokenStr,sseq):
tokenReserve += tokenStr
await asyncio.sleep(async_sleep_short) #if a stop sequence could trigger soon, do not send output
else:
if tokenStr!="":
tokenStr = tokenReserve + tokenStr
tokenReserve = ""
#apply trimming if needed
if trimstop:
for trim_str in sseq:
sindex = tokenStr.find(trim_str)
if sindex != -1 and trim_str!="":
tokenStr = tokenStr[:sindex]
if tokenStr!="" or streamDone:
if api_format == 4: # if oai chat, set format to expected openai streaming response
event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"delta":{'role':'assistant','content':tokenStr}}]})
await self.send_oai_sse_event(event_str)
elif api_format == 3: # non chat completions
event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"text":tokenStr}]})
await self.send_oai_sse_event(event_str)
else:
event_str = json.dumps({"token": tokenStr, "finish_reason":currfinishreason})
await self.send_kai_sse_event(event_str)
tokenStr = ""
else:
await asyncio.sleep(async_sleep_short)
else:
await asyncio.sleep(async_sleep_short) #this should keep things responsive
if streamDone:
if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format
await self.send_oai_sse_event('[DONE]')
break
except Exception as ex:
print("Token streaming was interrupted or aborted!")
print(ex)
handle.abort_generate()
time.sleep(0.2) #short delay
# flush buffers, sleep a bit to make sure all data sent, and then force close the connection
self.wfile.flush()
await asyncio.sleep(0.1)
self.close_connection = True
await asyncio.sleep(0.05)
async def handle_request(self, raw_genparams, api_format, stream_flag):
tasks = []
genparams = transform_genparams(raw_genparams, api_format)
try:
if stream_flag:
tasks.append(self.handle_sse_stream(genparams, api_format))
generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag))
tasks.append(generate_task)
await asyncio.gather(*tasks)
generate_result = generate_task.result()
return generate_result
except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost
print("An ongoing connection was aborted or interrupted!")
print(cae)
handle.abort_generate()
time.sleep(0.2) #short delay
except Exception as e:
print(e)
def secure_endpoint(self): #returns false if auth fails. caller should exit
#handle password stuff
if password and password !="":
auth_header = None
auth_ok = False
if 'Authorization' in self.headers:
auth_header = self.headers['Authorization']
elif 'authorization' in self.headers:
auth_header = self.headers['authorization']
if auth_header != None and auth_header.startswith('Bearer '):
token = auth_header[len('Bearer '):].strip()
if token==password:
auth_ok = True
if auth_ok==False:
self.send_response(401)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"error": "Unauthorized",
"msg": "Authentication key is missing or invalid.",
"type": "unauthorized",
}}).encode())
return False
return True
def noscript_webui(self):
global modelbusy
import html
import urllib.parse as urlparse
parsed_url = urlparse.urlparse(self.path)
parsed_dict = urlparse.parse_qs(parsed_url.query)
reply = ""
status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate"
prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else ""
max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100
temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.7
top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100
top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9
rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0
use_default_badwordsids = int(parsed_dict['use_default_badwordsids'][0]) if 'use_default_badwordsids' in parsed_dict else 0
gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate"
if modelbusy.locked():
status = "Model is currently busy, try again later."
elif gencommand:
if prompt=="" or max_length<=0:
status = "Need a valid prompt and length to generate."
else:
if max_length>512:
max_length = 512
epurl = f"http://localhost:{args.port}"
if args.host!="":
epurl = f"http://{args.host}:{args.port}"
gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"prompt": prompt,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"use_default_badwordsids":use_default_badwordsids}
respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload)
reply = html.escape(respjson["results"][0]["text"])
status = "Generation Completed"
if "generate" in parsed_dict:
del parsed_dict["generate"]
parsed_dict["prompt"] = prompt + reply
parsed_dict["status"] = status
updated_query_string = urlparse.urlencode(parsed_dict, doseq=True)
updated_path = parsed_url._replace(query=updated_query_string).geturl()
self.path = updated_path
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return
finalhtml = f'''<!doctype html>
<html lang="en"><head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>KoboldCpp NoScript Mode</title></head><body>
<h2>KoboldCpp NoScript Mode</h2>
<div>
<p>KoboldCpp can be used without Javascript enabled, however this is not recommended.
<br>If you have Javascript, please use <a href="/">KoboldAI Lite WebUI</a> instead.</p><hr>
<form action="/noscript">
Enter Prompt:<br>
<textarea name="prompt" cols="60" rows="8" wrap="soft" placeholder="Enter Prompt Here">{prompt}</textarea>
<hr>
<b>{status}</b><br>
<hr>
<label>Gen. Amount</label> <input type="text" size="4" value="{max_length}" name="max_length"><br>
<label>Temperature</label> <input type="text" size="4" value="{temperature}" name="temperature"><br>
<label>Top-K</label> <input type="text" size="4" value="{top_k}" name="top_k"><br>
<label>Top-P</label> <input type="text" size="4" value="{top_p}" name="top_p"><br>
<label>Rep. Pen</label> <input type="text" size="4" value="{rep_pen}" name="rep_pen"><br>
<label>Ignore EOS</label> <input type="checkbox" name="use_default_badwordsids" value="1" {"checked" if use_default_badwordsids else ""}><br>
<input type="submit" name="generate" value="Generate"> (Please be patient)
</form>
<form action="/noscript">
<input type="submit" value="Reset">
</form>
</div>
</body></html>'''
finalhtml = finalhtml.encode('utf-8')
self.send_response(200)
self.send_header('content-length', str(len(finalhtml)))
self.end_headers(content_type='text/html')
self.wfile.write(finalhtml)
def do_GET(self):
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath
self.path = self.path.rstrip('/')
response_body = None
content_type = 'application/json'
if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
content_type = 'text/html'
if embedded_kailite is None:
response_body = (f"Embedded KoboldAI Lite is not found.<br>You will have to connect via the main KoboldAI client, or <a href='https://lite.koboldai.net?local=1&port={self.port}'>use this URL</a> to connect.").encode()
else:
response_body = embedded_kailite
elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without /
self.noscript_webui()
return
elif self.path.endswith(('/manifest.json')):
response_body = (json.dumps({"name":"KoboldAI Lite","short_name":"KoboldAI Lite","description":"Progressive Web App for KoboldAI Lite","start_url":"./","scope":".","display":"standalone","background_color":"#303030","theme_color":"#337ab7","orientation":"portrait-primary","icons":[{"src":"","type":"image/png","sizes":"150x150"}]}).encode())
elif self.path.endswith(('/api/v1/model', '/api/latest/model')):
response_body = (json.dumps({'result': friendlymodelname }).encode())
elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')):
response_body = (json.dumps({"value": maxhordelen}).encode())
elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')):
response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')):
response_body = (json.dumps({"value":""}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')):
response_body = (json.dumps({"values": []}).encode())
elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')):
response_body = (json.dumps({"result":"1.2.5"}).encode())
elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde
response_body = (json.dumps({"value": maxctx}).encode())
elif self.path.endswith(('/api/extra/version')):
has_txt2img = not (friendlysdmodelname=="inactive" or fullsdmodelpath=="")
has_vision = (mmprojpath!="")
has_password = (password!="")
has_whisper = (fullwhispermodelpath!="")
response_body = (json.dumps({"result":"KoboldCpp","version":KcppVersion, "protected":has_password ,"txt2img":has_txt2img,"vision":has_vision,"transcribe":has_whisper}).encode())
elif self.path.endswith(('/api/extra/perf')):
global last_req_time, start_time
lastp = handle.get_last_process_time()
laste = handle.get_last_eval_time()
lastc = handle.get_last_token_count()
totalgens = handle.get_total_gens()
totalimggens = handle.get_total_img_gens()
stopreason = handle.get_last_stop_reason()
lastseed = handle.get_last_seed()
uptime = time.time() - start_time
idletime = time.time() - last_req_time
response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "total_gens":totalgens, "stop_reason":stopreason, "total_img_gens":totalimggens, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime, "idletime":idletime}).encode())
elif self.path.endswith('/api/extra/generate/check'):
if not self.secure_endpoint():
return
pendtxtStr = ""
if requestsinqueue==0 and totalgens>0 and currentusergenkey=="":
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
elif self.path.endswith('/v1/models'):
response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
elif self.path.endswith('/sdapi/v1/sd-models'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode())
elif self.path.endswith('/sdapi/v1/options'):
response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode())
elif self.path.endswith('/sdapi/v1/samplers'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode())
elif self.path.endswith('/sdapi/v1/latent-upscale-modes'):
response_body = (json.dumps([]).encode())
elif self.path.endswith('/sdapi/v1/upscalers'):
response_body = (json.dumps([]).encode())
elif self.path.endswith(('/api/tags')): #ollama compatible
response_body = (json.dumps({"models":[{"name":"koboldcpp","model":friendlymodelname,"modified_at":"2024-07-19T15:26:55.6122841+08:00","size":394998579,"digest":"b5dc5e784f2a3ee1582373093acf69a2f4e2ac1710b253a001712b86a61f88bb","details":{"parent_model":"","format":"gguf","family":"koboldcpp","families":["koboldcpp"],"parameter_size":"128M","quantization_level":"Q4_0"}}]}).encode())
elif self.path=="/api" or self.path=="/docs" or self.path.startswith(('/api/?json=','/api?json=','/docs/?json=','/docs?json=')):
content_type = 'text/html'
if embedded_kcpp_docs is None:
response_body = (f"KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode()
else:
response_body = embedded_kcpp_docs
elif self.path.startswith(("/sdui")):
content_type = 'text/html'
if embedded_kcpp_sdui is None:
response_body = (f"KoboldCpp API is running, but KCPP SDUI is not loaded").encode()
else:
response_body = embedded_kcpp_sdui
elif self.path=="/v1":
content_type = 'text/html'
response_body = (f"KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode()
elif self.path=="/api/extra/preloadstory":
if preloaded_story is None:
response_body = (json.dumps({}).encode())
else:
response_body = preloaded_story
elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
self.path = "/api"
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return None
if response_body is None:
self.send_response(404)
self.end_headers(content_type='text/html')
rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.'
self.wfile.write(rp.encode())
else:
self.send_response(200)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type=content_type)
self.wfile.write(response_body)
return
def do_POST(self):
global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey
contlenstr = self.headers['content-length']
content_length = 0
body = None
if contlenstr:
content_length = int(contlenstr)
if content_length > (1024*1024*32): #32mb payload limit
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Payload is too big. Max payload size is 32MB.",
"type": "bad_input",
}}).encode())
return
body = self.rfile.read(content_length)
self.path = self.path.rstrip('/')
response_body = None
response_code = 200
if self.path.endswith(('/api/extra/tokencount')):
if not self.secure_endpoint():
return
try:
genparams = json.loads(body)
countprompt = genparams.get('prompt', "")
tcaddspecial = genparams.get('special', True)
rawcountdata = handle.token_count(countprompt.encode("UTF-8"),tcaddspecial)
countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0
# the above protects the server in case the count limit got corrupted
countdata = [rawcountdata.ids[i] for i in range(countlimit)]
response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode())
except Exception as e:
utfprint("Count Tokens - Body Error: " + str(e))
response_code = 400
response_body = (json.dumps({"value": -1}).encode())
elif self.path.endswith('/api/extra/abort'):
if not self.secure_endpoint():
return
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception as e:
multiuserkey = ""
pass
if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey):
ag = handle.abort_generate()
time.sleep(0.1) #short delay before replying
response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode())
print("\nGeneration Aborted")
elif (multiuserkey!="" and requestsinqueue>0):
pendingabortkey = multiuserkey
response_body = (json.dumps({"success": "true", "done":"false"}).encode())
else:
response_body = (json.dumps({"success": "false", "done":"false"}).encode())
elif self.path.endswith('/api/extra/generate/check'):
if not self.secure_endpoint():
return
pendtxtStr = ""
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception as e:
multiuserkey = ""
if totalgens>0:
if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
if response_body is not None:
self.send_response(response_code)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type='application/json')
self.wfile.write(response_body)
return
reqblocking = False
muint = int(args.multiuser)
multiuserlimit = ((muint-1) if muint > 1 else 6)
#backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1
if muint > 0 and requestsinqueue < multiuserlimit:
reqblocking = True
requestsinqueue += 1
if not modelbusy.acquire(blocking=reqblocking):
self.send_response(503)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Server is busy; please try again later.",
"type": "service_unavailable",
}}).encode())
return
if reqblocking:
requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0
try:
sse_stream_flag = False
api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat,5=interrogate
is_imggen = False
is_transcribe = False
if self.path.endswith('/request'):
api_format = 1
if self.path.endswith(('/api/v1/generate', '/api/latest/generate')):
api_format = 2
if self.path.endswith('/api/extra/generate/stream'):
api_format = 2
sse_stream_flag = True
if self.path.endswith('/v1/completions') or self.path.endswith('/v1/completion'):
api_format = 3
if self.path.endswith('/v1/chat/completions'):
api_format = 4
if self.path.endswith('/sdapi/v1/interrogate'):
has_vision = (mmprojpath!="")
if not has_vision:
self.send_response(503)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "No LLaVA model loaded",
"type": "service_unavailable",
}}).encode())
return
api_format = 5
if self.path.endswith('/sdapi/v1/txt2img') or self.path.endswith('/sdapi/v1/img2img'):
is_imggen = True
if self.path.endswith('/api/extra/transcribe') or self.path.endswith('/v1/audio/transcriptions'):
is_transcribe = True
if is_imggen or is_transcribe or api_format > 0:
global last_req_time
last_req_time = time.time()
if not is_imggen and not is_transcribe and api_format<5:
if not self.secure_endpoint():
return
genparams = None
try:
genparams = json.loads(body)
except Exception as e:
genparams = None
if is_transcribe: #fallback handling of file uploads
b64wav = self.extract_b64string_from_file_upload(body)
if b64wav:
genparams = {"audio_data":b64wav}
if not genparams:
utfprint("Body Err: " + str(body))
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Error parsing input.",
"type": "bad_input",
}}).encode())
return
is_quiet = args.quiet
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
utfprint("\nInput: " + json.dumps(genparams))
if args.foreground:
bring_terminal_to_foreground()
if api_format > 0:#text gen
# Check if streaming chat completions, if so, set stream mode to true
if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]:
sse_stream_flag = True
gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag))
try:
# Headers are already sent when streaming
if not sse_stream_flag:
self.send_response(200)
genresp = (json.dumps(gen).encode())
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
if args.debugmode:
print(ex)
print("Generate: The response could not be sent, maybe connection was terminated?")
handle.abort_generate()
time.sleep(0.2) #short delay
return
elif is_imggen: #image gen
try:
gen = sd_generate(genparams)
genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
if args.debugmode:
print(ex)
print("Generate Image: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
elif is_transcribe:
try:
gen = whisper_generate(genparams)
genresp = (json.dumps({"text":gen}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
if args.debugmode:
print(ex)
print("Transcribe: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
finally:
modelbusy.release()
self.send_response(404)
self.end_headers(content_type='text/html')
def do_OPTIONS(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def do_HEAD(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def end_headers(self, content_type=None):
self.send_header('access-control-allow-origin', '*')
self.send_header('access-control-allow-methods', '*')
self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey')
self.send_header("cache-control", "no-store")
if content_type is not None:
self.send_header('content-type', content_type)
return super(ServerRequestHandler, self).end_headers()
def is_port_in_use(portNum):
try:
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', portNum)) == 0
except Exception as ex:
return True
def RunServerMultiThreaded(addr, port):
global exitcounter, sslvalid
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
if is_port_in_use(port):
print(f"Warning: Port {port} already appears to be in use by another program.")
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
if args.ssl and sslvalid:
import ssl
certpath = os.path.abspath(args.ssl[0])
keypath = os.path.abspath(args.ssl[1])
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain(certfile=certpath, keyfile=keypath)
sock = context.wrap_socket(sock, server_side=True)
sock.bind((addr, port))
numThreads = 20
sock.listen(numThreads)
class Thread(threading.Thread):
def __init__(self, i):
threading.Thread.__init__(self)
self.i = i
self.daemon = True
self.start()
def run(self):
global exitcounter
handler = ServerRequestHandler(addr, port)
with http.server.HTTPServer((addr, port), handler, False) as self.httpd:
try:
self.httpd.socket = sock
self.httpd.server_bind = self.server_close = lambda self: None
self.httpd.serve_forever()
except (KeyboardInterrupt,SystemExit):
exitcounter = 999
self.httpd.server_close()
sys.exit(0)
finally:
exitcounter = 999
self.httpd.server_close()
sys.exit(0)
def stop(self):
global exitcounter
exitcounter = 999
self.httpd.server_close()
threadArr = []
for i in range(numThreads):
threadArr.append(Thread(i))
while 1:
try:
time.sleep(10)
except KeyboardInterrupt:
global exitcounter
exitcounter = 999
for i in range(numThreads):
threadArr[i].stop()
sys.exit(0)
# note: customtkinter-5.2.0
def show_gui():
global guimode
guimode = True
from tkinter.filedialog import askopenfilename
from tkinter.filedialog import asksaveasfile
# if args received, launch
if len(sys.argv) != 1:
import tkinter as tk
root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar
root.attributes("-alpha", 0)
args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config")
root.withdraw()
root.quit()
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt')):
load_config_cli(args.model_param)
if not args.model_param and not args.sdmodel and not args.whispermodel:
global exitcounter
exitcounter = 999
exit_with_error(2,"No ggml model or kcpps file was selected. Exiting.")
return
import customtkinter as ctk
nextstate = 0 #0=exit, 1=launch
original_windowwidth = 550
original_windowheight = 550
windowwidth = original_windowwidth
windowheight = original_windowheight
ctk.set_appearance_mode("dark")
root = ctk.CTk()
root.geometry(str(windowwidth) + "x" + str(windowheight))
root.title(f"KoboldCpp v{KcppVersion}")
gtooltip_box = None
gtooltip_label = None
window_reference_width = None
window_reference_height = None
previous_event_width = None
previous_event_height = None
def on_resize(event):
if not event.widget.master:
nonlocal window_reference_width, window_reference_height, previous_event_width,previous_event_height
if not window_reference_width and not window_reference_height:
window_reference_width = event.width
window_reference_height = event.height
previous_event_width = window_reference_width
previous_event_height = window_reference_height
else:
new_width = event.width
new_height = event.height
incr_w = new_width/window_reference_width
incr_h = new_height/window_reference_height
smallratio = min(incr_w,incr_h)
smallratio = round(smallratio,2)
if new_width != previous_event_width or new_height!=previous_event_height:
lastpos = root.geometry()
lparr = lastpos.split('+', 1)
lastpos = ("+"+str(lparr[1])) if (len(lparr)==2) else ""
previous_event_width = new_width
previous_event_height = new_height
windowwidth = math.floor(original_windowwidth*smallratio)
windowwidth = max(256, min(1024, windowwidth))
windowheight = math.floor(original_windowheight*smallratio)
windowheight = max(256, min(1024, windowheight))
root.geometry(str(windowwidth) + "x" + str(windowheight) + str(lastpos))
ctk.set_widget_scaling(smallratio)
changerunmode(1,1,1)
togglerope(1,1,1)
toggleflashattn(1,1,1)
togglectxshift(1,1,1)
togglehorde(1,1,1)
togglesdquant(1,1,1)
toggletaesd(1,1,1)
if sys.platform=="darwin":
root.resizable(False,False)
else:
root.resizable(True,True)
root.bind("<Configure>", on_resize)
global using_gui_launcher
using_gui_launcher = True
kcpp_exporting_template = False
# trigger empty tooltip then remove it
def show_tooltip(event, tooltip_text=None):
nonlocal gtooltip_box, gtooltip_label
if not gtooltip_box and not gtooltip_label:
gtooltip_box = ctk.CTkToplevel(root)
gtooltip_box.configure(fg_color="#ffffe0")
gtooltip_box.withdraw()
gtooltip_box.overrideredirect(True)
gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0")
gtooltip_label.pack(expand=True, padx=2, pady=1)
else:
gtooltip_label.configure(text=tooltip_text)
x, y = root.winfo_pointerxy()
gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}")
gtooltip_box.deiconify()
def hide_tooltip(event):
nonlocal gtooltip_box
if gtooltip_box:
gtooltip_box.withdraw()
show_tooltip(None,"") #initialize tooltip objects
hide_tooltip(None)
default_threads = get_default_threads()
tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50)
tabs.grid(row=0, stick="nsew")
tabnames= ["Quick Launch", "Hardware", "Tokens", "Model Files", "Network", "Horde Worker","Image Gen","Audio","Extra"]
navbuttons = {}
navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height")))
navbuttonframe.grid(row=0, column=0, padx=2,pady=2)
navbuttonframe.grid_propagate(False)
tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height")))
tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2)
tabcontentframe.grid_propagate(False)
tabcontent = {}
# slider data
blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"]
blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"]
contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536", "98304", "131072"]
antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if not (opt in runopts)]
quantkv_text = ["F16 (Off)","8-Bit","4-Bit"]
if not any(runopts):
exitcounter = 999
exit_with_error(2,"KoboldCPP couldn't locate any backends to use (i.e Default, OpenBLAS, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.","No Backends Available!")
# Vars - should be in scope to be used by multiple widgets
gpulayers_var = ctk.StringVar(value="0")
threads_var = ctk.StringVar(value=str(default_threads))
runopts_var = ctk.StringVar()
gpu_choice_var = ctk.StringVar(value="1")
launchbrowser = ctk.IntVar(value=1)
highpriority = ctk.IntVar()
disablemmap = ctk.IntVar()
usemlock = ctk.IntVar()
debugmode = ctk.IntVar()
keepforeground = ctk.IntVar()
quietmode = ctk.IntVar(value=0)
nocertifymode = ctk.IntVar(value=0)
lowvram_var = ctk.IntVar()
mmq_var = ctk.IntVar(value=1)
quantkv_var = ctk.IntVar(value=0)
blas_threads_var = ctk.StringVar()
blas_size_var = ctk.IntVar()
version_var = ctk.StringVar(value="0")
tensor_split_str_vars = ctk.StringVar(value="")
rowsplit_var = ctk.IntVar()
contextshift = ctk.IntVar(value=1)
remotetunnel = ctk.IntVar(value=0)
smartcontext = ctk.IntVar()
flashattention = ctk.IntVar(value=0)
context_var = ctk.IntVar()
customrope_var = ctk.IntVar()
customrope_scale = ctk.StringVar(value="1.0")
customrope_base = ctk.StringVar(value="10000")
chatcompletionsadapter_var = ctk.StringVar()
model_var = ctk.StringVar()
lora_var = ctk.StringVar()
lora_base_var = ctk.StringVar()
preloadstory_var = ctk.StringVar()
mmproj_var = ctk.StringVar()
port_var = ctk.StringVar(value=defaultport)
host_var = ctk.StringVar(value="")
multiuser_var = ctk.IntVar(value=1)
horde_name_var = ctk.StringVar(value="koboldcpp")
horde_gen_var = ctk.StringVar(value=maxhordelen)
horde_context_var = ctk.StringVar(value=maxhordectx)
horde_apikey_var = ctk.StringVar(value="")
horde_workername_var = ctk.StringVar(value="")
usehorde_var = ctk.IntVar()
ssl_cert_var = ctk.StringVar()
ssl_key_var = ctk.StringVar()
password_var = ctk.StringVar()
sd_model_var = ctk.StringVar()
sd_lora_var = ctk.StringVar()
sd_loramult_var = ctk.StringVar(value="1.0")
sd_vae_var = ctk.StringVar()
sd_vaeauto_var = ctk.IntVar(value=0)
sd_clamped_var = ctk.StringVar(value="0")
sd_threads_var = ctk.StringVar(value=str(default_threads))
sd_quant_var = ctk.IntVar(value=0)
whisper_model_var = ctk.StringVar()
def tabbuttonaction(name):
for t in tabcontent:
if name == t:
tabcontent[t].grid(row=0, column=0)
navbuttons[t].configure(fg_color="#6f727b")
else:
tabcontent[t].grid_remove()
navbuttons[t].configure(fg_color="transparent")
# Dynamically create tabs + buttons based on values of [tabnames]
for idx, name in enumerate(tabnames):
tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent")
tabcontent[name].grid_propagate(False)
if idx == 0:
tabcontent[name].grid(row=idx, sticky="nsew")
ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw')
navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" )
navbuttons[name].grid(row=idx)
tabbuttonaction(tabnames[0])
# Quick Launch Tab
quick_tab = tabcontent["Quick Launch"]
# helper functions
def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""):
temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue)
if command is not None and variable is not None:
variable.trace("w", command)
temp.grid(row=row,column=column, padx=8, pady=1, stick="nw")
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makelabel(parent, text, row, column=0, tooltiptxt="", columnspan=1, padx=8):
temp = ctk.CTkLabel(parent, text=text)
temp.grid(row=row, column=column, padx=padx, pady=1, stick="nw", columnspan=columnspan)
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""):
sliderLabel = makelabel(parent, options[set], row + 1, 0, columnspan=2, padx=(width+12))
titleLabel = makelabel(parent, label, row,0,tooltip)
def sliderUpdate(a,b,c):
sliderLabel.configure(text = options[int(var.get())])
var.trace("w", sliderUpdate)
slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1)
slider.grid(row=row+1, column=0, padx = 8, stick="w", columnspan=2)
slider.set(set)
return slider, sliderLabel, titleLabel
def makelabelentry(parent, text, var, row=0, width=50, padx=8, singleline=False, tooltip=""):
label = makelabel(parent, text, row, 0, tooltip)
entry = ctk.CTkEntry(parent, width=width, textvariable=var)
entry.grid(row=row, column=(0 if singleline else 1), padx=padx, sticky="nw")
return entry, label
def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, singlecol=True, tooltiptxt=""):
label = makelabel(parent, text, row,0,tooltiptxt,columnspan=3)
def getfilename(var, text):
initialDir = os.path.dirname(var.get())
initialDir = initialDir if os.path.isdir(initialDir) else None
fnam = askopenfilename(title=text,filetypes=filetypes, initialdir=initialDir)
if fnam:
var.set(fnam)
if onchoosefile:
onchoosefile(var.get())
entry = ctk.CTkEntry(parent, width, textvariable=var)
button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b))
if singlerow:
entry.grid(row=row, column=1, padx=8, stick="w")
button.grid(row=row, column=1, padx=(width+12), stick="nw")
else:
if singlecol:
entry.grid(row=row+1, column=0, columnspan=3, padx=8, stick="nw")
button.grid(row=row+1, column=0, columnspan=3, padx=(width+12), stick="nw")
else:
entry.grid(row=row+1, column=0, columnspan=1, padx=8, stick="nw")
button.grid(row=row+1, column=1, columnspan=1, padx=8, stick="nw")
return label, entry, button
# decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers
# run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI
def auto_set_backend_gui(manual_select=False):
global exitcounter, runmode_untouched
if manual_select:
print("\nA .kcppt template was selected from GUI - automatically selecting your backend...")
runmode_untouched = True
fetch_gpu_properties(False,True,True)
else:
fetch_gpu_properties(True,True,True)
#autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick
#we do not want to autoselect hip/cublas if the user has already changed their desired backend!
if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched:
if "Use CuBLAS" in runopts:
runopts_var.set("Use CuBLAS")
gpu_choice_var.set("1")
print("Auto Selected CUDA Backend...\n")
elif "Use hipBLAS (ROCm)" in runopts:
runopts_var.set("Use hipBLAS (ROCm)")
gpu_choice_var.set("1")
print("Auto Selected HIP Backend...\n")
elif exitcounter < 100 and (1 in VKIsDGPU) and runmode_untouched and "Use Vulkan" in runopts:
for i in range(0,len(VKIsDGPU)):
if VKIsDGPU[i]==1:
runopts_var.set("Use Vulkan")
gpu_choice_var.set(str(i+1))
print("Auto Selected Vulkan Backend...\n")
break
changed_gpu_choice_var()
def on_picked_model_file(filepath):
global gui_layers_untouched
if filepath.lower().endswith('.kcpps') or filepath.lower().endswith('.kcppt'):
#load it as a config file instead
with open(filepath, 'r') as f:
dict = json.load(f)
import_vars(dict)
else:
layerlimit = autoset_gpu_layers(filepath,int(contextsize_text[context_var.get()]),MaxMemory[0])
old_gui_layers_untouched = gui_layers_untouched
gui_layers_zeroed = gpulayers_var.get()=="" or gpulayers_var.get()=="0"
if (gui_layers_untouched or gui_layers_zeroed) and layerlimit>0:
gpulayers_var.set(str(layerlimit))
gui_layers_untouched = old_gui_layers_untouched
if gui_layers_zeroed:
gui_layers_untouched = True
def setup_backend_tooltip(parent):
# backend count label with the tooltip function
nl = '\n'
tooltxt = f"Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) != 6 else "")
num_backends_built = makelabel(parent, str(len(runopts)) + f"/9", 5, 2,tooltxt)
num_backends_built.grid(row=1, column=1, padx=195, pady=0)
num_backends_built.configure(text_color="#00ff00")
def changed_gpulayers(*args):
global gui_layers_untouched
gui_layers_untouched = False
pass
def changed_gpu_choice_var(*args):
global exitcounter
if exitcounter > 100:
return
if gpu_choice_var.get()!="All":
try:
s = int(gpu_choice_var.get())-1
v = runopts_var.get()
if v == "Use Vulkan" or v == "Vulkan NoAVX2 (Old CPU)":
quick_gpuname_label.configure(text=VKDevicesNames[s])
gpuname_label.configure(text=VKDevicesNames[s])
elif v == "Use CLBlast" or v == "CLBlast NoAVX2 (Old CPU)":
quick_gpuname_label.configure(text=CLDevicesNames[s])
gpuname_label.configure(text=CLDevicesNames[s])
else:
quick_gpuname_label.configure(text=CUDevicesNames[s])
gpuname_label.configure(text=CUDevicesNames[s])
except Exception as ex:
pass
else:
quick_gpuname_label.configure(text="")
gpuname_label.configure(text="")
gpu_choice_var.trace("w", changed_gpu_choice_var)
gpulayers_var.trace("w", changed_gpulayers)
def togglectxshift(a,b,c):
if contextshift.get()==0:
smartcontextbox.grid()
else:
smartcontextbox.grid_remove()
if contextshift.get()==0 and flashattention.get()==1:
qkvslider.grid()
qkvlabel.grid()
noqkvlabel.grid_remove()
else:
qkvslider.grid_remove()
qkvlabel.grid_remove()
noqkvlabel.grid()
def toggleflashattn(a,b,c):
if contextshift.get()==0 and flashattention.get()==1:
qkvslider.grid()
qkvlabel.grid()
noqkvlabel.grid_remove()
else:
qkvslider.grid_remove()
qkvlabel.grid_remove()
noqkvlabel.grid()
def guibench():
args.benchmark = "stdout"
launchbrowser.set(0)
guilaunch()
def changerunmode(a,b,c):
global runmode_untouched
runmode_untouched = False
index = runopts_var.get()
if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
if index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)":
gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
CUDA_gpu_selector_box.grid_remove()
CUDA_quick_gpu_selector_box.grid_remove()
if gpu_choice_var.get()=="All":
gpu_choice_var.set("1")
elif index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
gpu_selector_box.grid_remove()
quick_gpu_selector_box.grid_remove()
CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
else:
quick_gpuname_label.grid_remove()
gpuname_label.grid_remove()
gpu_selector_label.grid_remove()
gpu_selector_box.grid_remove()
CUDA_gpu_selector_box.grid_remove()
quick_gpu_selector_label.grid_remove()
quick_gpu_selector_box.grid_remove()
CUDA_quick_gpu_selector_box.grid_remove()
if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw")
mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw")
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
else:
lowvram_box.grid_remove()
mmq_box.grid_remove()
quick_mmq_box.grid_remove()
tensor_split_label.grid_remove()
tensor_split_entry.grid_remove()
splitmode_box.grid_remove()
if index == "Use Vulkan":
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
else:
gpu_layers_label.grid_remove()
gpu_layers_entry.grid_remove()
quick_gpu_layers_label.grid_remove()
quick_gpu_layers_entry.grid_remove()
changed_gpu_choice_var()
# presets selector
makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(quick_tab)
# gpu options
quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
quick_gpuname_label = ctk.CTkLabel(quick_tab, text="")
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
quick_gpuname_label.configure(text_color="#ffff00")
quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81")
quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.")
# quick boxes
quick_boxes = {
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
"Disable MMAP": [disablemmap, "Avoids using mmap to load models if enabled"],
"Use ContextShift": [contextshift, "Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info."],
"Remote Tunnel": [remotetunnel, "Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."],
"Use FlashAttention": [flashattention, "Enable flash attention for GGUF models."],
"Quiet Mode": [quietmode, "Prevents all generation related terminal output from being displayed."]
}
for idx, (name, properties) in enumerate(quick_boxes.items()):
makecheckbox(quick_tab, name, properties[0], int(idx/2) + 20, idx % 2, tooltiptxt=properties[1])
# context size
makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
# load model
makefileentry(quick_tab, "Model:", "Select GGML Model File", model_var, 40, 280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
# Hardware Tab
hardware_tab = tabcontent["Hardware"]
# presets selector
makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(hardware_tab)
# gpu options
gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
gpuname_label = ctk.CTkLabel(hardware_tab, text="")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.configure(text_color="#ffff00")
gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81")
tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.')
lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.')
mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.")
splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.")
# threads
makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,tooltip="How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.")
# hardware checkboxes
hardware_boxes = {
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
"High Priority": [highpriority, "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended."],
"Disable MMAP": [disablemmap, "Avoids using mmap to load models if enabled"],
"Use mlock": [usemlock, "Enables mlock, preventing the RAM used to load the model from being paged out."],
"Debug Mode": [debugmode, "Enables debug mode, with extra info printed to the terminal."],
"Keep Foreground": [keepforeground, "Bring KoboldCpp to the foreground every time there is a new generation."]
}
for idx, (name, properties) in enumerate(hardware_boxes.items()):
makecheckbox(hardware_tab, name, properties[0], int(idx/2) + 30, idx % 2, tooltiptxt=properties[1])
# blas thread specifier
makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,tooltip="How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.")
# blas batch size
makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16,width=200, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.")
# force version
makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,tooltip="If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.")
ctk.CTkButton(hardware_tab , text = "Run Benchmark", command = guibench ).grid(row=110,column=0, stick="se", padx= 0, pady=2)
runopts_var.trace('w', changerunmode)
changerunmode(1,1,1)
global runmode_untouched
runmode_untouched = True
# Tokens Tab
tokens_tab = tabcontent["Tokens"]
# tokens checkboxes
smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.")
makecheckbox(tokens_tab, "Use ContextShift", contextshift, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift)
# context size
makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, width=280, set=5,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale, row=23, padx=100, singleline=True, tooltip="For Linear RoPE scaling. RoPE frequency scale.")
customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base, row=24, padx=100, singleline=True, tooltip="For NTK Aware Scaling. RoPE frequency base.")
def togglerope(a,b,c):
items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry]
for idx, item in enumerate(items):
if customrope_var.get() == 1:
item.grid()
else:
item.grid_remove()
makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.")
makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.")
noqkvlabel = makelabel(tokens_tab,"Requirments Not Met",31,0,"Requires FlashAttention ENABLED and ContextShift DISABLED.")
noqkvlabel.configure(text_color="#ff5555")
qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention and disables ContextShift.")
makefileentry(tokens_tab, "ChatCompletions Adapter:", "Select ChatCompletions Adapter File", chatcompletionsadapter_var, 32, width=250, filetypes=[("JSON Adapter", "*.json")], tooltiptxt="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.")
def pickpremadetemplate():
initialDir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
initialDir = initialDir if os.path.isdir(initialDir) else None
fnam = askopenfilename(title="Pick Premade ChatCompletions Adapter",filetypes=[("JSON Adapter", "*.json")], initialdir=initialDir)
if fnam:
chatcompletionsadapter_var.set(fnam)
ctk.CTkButton(tokens_tab, 64, text="Pick Premade", command=pickpremadetemplate).grid(row=33, column=0, padx=322, stick="nw")
togglerope(1,1,1)
toggleflashattn(1,1,1)
togglectxshift(1,1,1)
# Model Tab
model_tab = tabcontent["Model Files"]
makefileentry(model_tab, "Model:", "Select GGML Model File", model_var, 1,width=280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
makefileentry(model_tab, "Lora:", "Select Lora File",lora_var, 3,width=280,tooltiptxt="Select an optional GGML LoRA adapter to use.\nLeave blank to skip.")
makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,width=280,tooltiptxt="Select an optional F16 GGML LoRA base file to use.\nLeave blank to skip.")
makefileentry(model_tab, "LLaVA mmproj:", "Select LLaVA mmproj File", mmproj_var, 7,width=280,tooltiptxt="Select a mmproj file to use for LLaVA.\nLeave blank to skip.")
makefileentry(model_tab, "Preloaded Story:", "Select Preloaded Story File", preloadstory_var, 9,width=280,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.")
# Network Tab
network_tab = tabcontent["Network"]
# interfaces
makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip="Select the port to host the KoboldCPP webserver.\n(Defaults to 5001)")
makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)")
makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.")
makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.")
makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.")
makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.")
makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 5, width=200 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.")
makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 7, width=200, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.")
makelabelentry(network_tab, "Password: ", password_var, 8, 200,tooltip="Enter a password required to use this instance.\nThis key will be required for all text endpoints.\nImage endpoints are not secured.")
# Horde Tab
horde_tab = tabcontent["Horde Worker"]
makelabel(horde_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10)
horde_name_entry, horde_name_label = makelabelentry(horde_tab, "Horde Model Name:", horde_name_var, 20, 180,tooltip="The model name to be displayed on the AI Horde.")
horde_gen_entry, horde_gen_label = makelabelentry(horde_tab, "Gen. Length:", horde_gen_var, 21, 50,tooltip="The maximum amount to generate per request \nthat this worker will accept jobs for.")
horde_context_entry, horde_context_label = makelabelentry(horde_tab, "Max Context:",horde_context_var, 22, 50,tooltip="The maximum context length \nthat this worker will accept jobs for.")
horde_apikey_entry, horde_apikey_label = makelabelentry(horde_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,tooltip="Your AI Horde API Key that you have registered.")
horde_workername_entry, horde_workername_label = makelabelentry(horde_tab, "Horde Worker Name:",horde_workername_var, 24, 180,tooltip="Your worker's name to be displayed.")
def togglehorde(a,b,c):
horde_items = zip([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry],
[horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label])
for item, label in horde_items:
if usehorde_var.get() == 1:
item.grid()
label.grid()
else:
item.grid_remove()
label.grid_remove()
if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="":
basefile = os.path.basename(model_var.get())
horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0]))
makecheckbox(horde_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.")
togglehorde(1,1,1)
# Image Gen Tab
images_tab = tabcontent["Image Gen"]
makefileentry(images_tab, "Stable Diffusion Model (safetensors/gguf):", "Select Stable Diffusion Model File", sd_model_var, 1, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Stable Diffusion model file on disk to be loaded.")
makelabelentry(images_tab, "Clamped Mode (Limit Resolution)", sd_clamped_var, 4, 50,tooltip="Limit generation steps and resolution settings for shared use.\nSet to 0 to disable, otherwise value is the size limit (min 512px).")
makelabelentry(images_tab, "Image Threads:" , sd_threads_var, 6, 50,tooltip="How many threads to use during image generation.\nIf left blank, uses same value as threads.")
sdloritem1,sdloritem2,sdloritem3 = makefileentry(images_tab, "Image LoRA (Must be non-quant):", "Select SD lora file",sd_lora_var, 10, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD LoRA model file to be loaded.")
sdloritem4,sdloritem5 = makelabelentry(images_tab, "Image LoRA Multiplier:" , sd_loramult_var, 12, 50,tooltip="What mutiplier value to apply the SD LoRA with.")
def togglesdquant(a,b,c):
if sd_quant_var.get()==1:
sdloritem1.grid_remove()
sdloritem2.grid_remove()
sdloritem3.grid_remove()
sdloritem4.grid_remove()
sdloritem5.grid_remove()
else:
sdloritem1.grid()
sdloritem2.grid()
sdloritem3.grid()
sdloritem4.grid()
sdloritem5.grid()
makecheckbox(images_tab, "Compress Weights (Saves Memory)", sd_quant_var, 8,command=togglesdquant,tooltiptxt="Quantizes the SD model weights to save memory. May degrade quality.")
sdvaeitem1,sdvaeitem2,sdvaeitem3 = makefileentry(images_tab, "Image VAE:", "Select SD VAE file",sd_vae_var, 14, width=280, singlecol=False, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD VAE file to be loaded.")
def toggletaesd(a,b,c):
if sd_vaeauto_var.get()==1:
sdvaeitem1.grid_remove()
sdvaeitem2.grid_remove()
sdvaeitem3.grid_remove()
else:
sdvaeitem1.grid()
sdvaeitem2.grid()
sdvaeitem3.grid()
makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 16,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.")
# audio tab
audio_tab = tabcontent["Audio"]
makefileentry(audio_tab, "Whisper Model (Speech-To-Text):", "Select Whisper .bin Model File", whisper_model_var, 1, width=280, filetypes=[("*.bin","*.bin")], tooltiptxt="Select a Whisper .bin model file on disk to be loaded.")
def kcpp_export_template():
nonlocal kcpp_exporting_template
kcpp_exporting_template = True
export_vars()
kcpp_exporting_template = False
savdict = json.loads(json.dumps(args.__dict__))
file_type = [("KoboldCpp LaunchTemplate", "*.kcppt")]
#remove blacklisted fields
savdict["istemplate"] = True
savdict["gpulayers"] = -1
savdict["threads"] = -1
savdict["hordekey"] = ""
savdict["hordeworkername"] = ""
savdict["sdthreads"] = 0
savdict["password"] = None
savdict["nommap"] = False
savdict["usemlock"] = False
savdict["debugmode"] = 0
savdict["ssl"] = None
savdict["useclblast"] = None
savdict["usecublas"] = None
savdict["usevulkan"] = None
savdict["tensor_split"] = None
savdict["config"] = None
filename = asksaveasfile(filetypes=file_type, defaultextension=file_type)
if filename == None:
return
file = open(str(filename.name), 'a')
file.write(json.dumps(savdict))
file.close()
pass
# extra tab
extra_tab = tabcontent["Extra"]
makelabel(extra_tab, "Unpack KoboldCpp to a local directory to modify its files.", 1, 0)
makelabel(extra_tab, "You can also launch via koboldcpp.py for faster startup.", 2, 0)
ctk.CTkButton(extra_tab , text = "Unpack KoboldCpp To Folder", command = unpack_to_dir ).grid(row=3,column=0, stick="w", padx= 8, pady=2)
makelabel(extra_tab, "Export as launcher .kcppt template (Expert Only)", 4, 0,tooltiptxt="Creates a KoboldCpp launch template for others to use.\nEmbeds JSON files directly into exported file when saving.\nWhen loaded, forces the backend to be automatically determined.\nWarning! Not recommended for beginners!")
ctk.CTkButton(extra_tab , text = "Generate LaunchTemplate", command = kcpp_export_template ).grid(row=5,column=0, stick="w", padx= 8, pady=2)
# launch
def guilaunch():
if model_var.get() == "" and sd_model_var.get() == "" and whisper_model_var.get() == "":
tmp = askopenfilename(title="Select ggml model .bin or .gguf file")
model_var.set(tmp)
nonlocal nextstate
nextstate = 1
root.withdraw()
root.quit()
pass
def export_vars():
nonlocal kcpp_exporting_template
args.threads = int(threads_var.get())
args.usemlock = usemlock.get() == 1
args.debugmode = debugmode.get()
args.launch = launchbrowser.get()==1
args.highpriority = highpriority.get()==1
args.nommap = disablemmap.get()==1
args.smartcontext = smartcontext.get()==1
args.flashattention = flashattention.get()==1
args.noshift = contextshift.get()==0
args.remotetunnel = remotetunnel.get()==1
args.foreground = keepforeground.get()==1
args.quiet = quietmode.get()==1
args.nocertify = nocertifymode.get()==1
if contextshift.get()==0 and flashattention.get()==1:
args.quantkv = quantkv_var.get()
else:
args.quantkv = 0
gpuchoiceidx = 0
if gpu_choice_var.get()!="All":
gpuchoiceidx = int(gpu_choice_var.get())-1
if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "CLBlast NoAVX2 (Old CPU)":
args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx]
if runopts_var.get() == "CLBlast NoAVX2 (Old CPU)":
args.noavx2 = True
if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)":
if gpu_choice_var.get()=="All":
args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"]
else:
args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)]
if mmq_var.get()==1:
args.usecublas.append("mmq")
if rowsplit_var.get()==1:
args.usecublas.append("rowsplit")
if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Vulkan NoAVX2 (Old CPU)":
if gpu_choice_var.get()=="All":
args.usevulkan = []
else:
args.usevulkan = [int(gpuchoiceidx)]
if runopts_var.get() == "Vulkan NoAVX2 (Old CPU)":
args.noavx2 = True
if gpulayers_var.get():
args.gpulayers = int(gpulayers_var.get())
if runopts_var.get()=="Use No BLAS":
args.noblas = True
if runopts_var.get()=="NoAVX2 Mode (Old CPU)":
args.noavx2 = True
if runopts_var.get()=="Failsafe Mode (Old CPU)":
args.noavx2 = True
args.noblas = True
args.nommap = True
if tensor_split_str_vars.get()!="":
tssv = tensor_split_str_vars.get()
if "," in tssv:
args.tensor_split = [float(x) for x in tssv.split(",")]
else:
args.tensor_split = [float(x) for x in tssv.split(" ")]
args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get())
args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())])
args.forceversion = 0 if version_var.get()=="" else int(version_var.get())
args.contextsize = int(contextsize_text[context_var.get()])
if customrope_var.get()==1:
args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())]
args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get()
try:
if kcpp_exporting_template and isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="" and os.path.exists(args.chatcompletionsadapter):
print(f"Embedding chat completions adapter...") # parse and save embedded preload story
with open(args.chatcompletionsadapter, 'r') as f:
args.chatcompletionsadapter = json.load(f)
except Exception as ex2:
pass
args.model_param = None if model_var.get() == "" else model_var.get()
args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()])
args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get()
try:
if kcpp_exporting_template and isinstance(args.preloadstory, str) and args.preloadstory!="" and os.path.exists(args.preloadstory):
print(f"Embedding preload story...") # parse and save embedded preload story
with open(args.preloadstory, 'r') as f:
args.preloadstory = json.load(f)
except Exception as ex2:
pass
args.mmproj = None if mmproj_var.get() == "" else mmproj_var.get()
args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()])
args.password = None if (password_var.get() == "") else (password_var.get())
args.port_param = defaultport if port_var.get()=="" else int(port_var.get())
args.host = host_var.get()
args.multiuser = multiuser_var.get()
if usehorde_var.get() != 0:
args.hordemodelname = horde_name_var.get()
args.hordegenlen = int(horde_gen_var.get())
args.hordemaxctx = int(horde_context_var.get())
if horde_apikey_var.get()!="" and horde_workername_var.get()!="":
args.hordekey = horde_apikey_var.get()
args.hordeworkername = horde_workername_var.get()
if sd_model_var.get() != "":
args.sdmodel = sd_model_var.get()
args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get()))
args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get()))
if sd_vaeauto_var.get()==1:
args.sdvaeauto = True
args.sdvae = ""
else:
args.sdvaeauto = False
args.sdvae = ""
if sd_vae_var.get() != "":
args.sdvae = sd_vae_var.get()
if sd_quant_var.get()==1:
args.sdquant = True
args.sdlora = ""
else:
if sd_lora_var.get() != "":
args.sdlora = sd_lora_var.get()
args.sdloramult = float(sd_loramult_var.get())
else:
args.sdlora = ""
if whisper_model_var.get() != "":
args.whispermodel = whisper_model_var.get()
def import_vars(dict):
dict = convert_outdated_args(dict)
if "threads" in dict:
threads_var.set(dict["threads"])
usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0)
if "debugmode" in dict:
debugmode.set(dict["debugmode"])
launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0)
highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0)
disablemmap.set(1 if "nommap" in dict and dict["nommap"] else 0)
smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0)
flashattention.set(1 if "flashattention" in dict and dict["flashattention"] else 0)
contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1)
remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0)
keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0)
quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0)
nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0)
if "quantkv" in dict:
quantkv_var.set(dict["quantkv"])
if "useclblast" in dict and dict["useclblast"]:
if "noavx2" in dict and dict["noavx2"]:
if clblast_noavx2_option is not None:
runopts_var.set(clblast_noavx2_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
else:
if clblast_option is not None:
runopts_var.set(clblast_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
elif "usecublas" in dict and dict["usecublas"]:
if cublas_option is not None or hipblas_option is not None:
if cublas_option:
runopts_var.set(cublas_option)
elif hipblas_option:
runopts_var.set(hipblas_option)
lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0)
mmq_var.set(1 if "mmq" in dict["usecublas"] else 0)
rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0)
gpu_choice_var.set("All")
for g in range(4):
if str(g) in dict["usecublas"]:
gpu_choice_var.set(str(g+1))
break
elif "usevulkan" in dict and dict['usevulkan'] is not None:
if "noavx2" in dict and dict["noavx2"]:
if vulkan_noavx2_option is not None:
runopts_var.set(vulkan_noavx2_option)
gpu_choice_var.set("All")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
else:
if vulkan_option is not None:
runopts_var.set(vulkan_option)
gpu_choice_var.set("All")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
elif "noavx2" in dict and "noblas" in dict and dict["noblas"] and dict["noavx2"]:
if failsafe_option is not None:
runopts_var.set(failsafe_option)
elif "noavx2" in dict and dict["noavx2"]:
if noavx2_option is not None:
runopts_var.set(noavx2_option)
elif "noblas" in dict and dict["noblas"]:
if default_option is not None:
runopts_var.set(default_option)
elif openblas_option is not None:
runopts_var.set(openblas_option)
if "gpulayers" in dict and dict["gpulayers"]:
gpulayers_var.set(dict["gpulayers"])
else:
gpulayers_var.set("0")
if "tensor_split" in dict and dict["tensor_split"]:
tssep = ','.join(map(str, dict["tensor_split"]))
tensor_split_str_vars.set(tssep)
if "blasthreads" in dict and dict["blasthreads"]:
blas_threads_var.set(str(dict["blasthreads"]))
else:
blas_threads_var.set("")
if "contextsize" in dict and dict["contextsize"]:
context_var.set(contextsize_text.index(str(dict["contextsize"])))
if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1:
if dict["ropeconfig"][0]>0:
customrope_var.set(1)
customrope_scale.set(str(dict["ropeconfig"][0]))
customrope_base.set(str(dict["ropeconfig"][1]))
else:
customrope_var.set(0)
if "blasbatchsize" in dict and dict["blasbatchsize"]:
blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"])))
version_var.set(str(dict["forceversion"]) if ("forceversion" in dict and dict["forceversion"]) else "0")
model_var.set(dict["model_param"] if ("model_param" in dict and dict["model_param"]) else "")
lora_var.set("")
lora_base_var.set("")
if "lora" in dict and dict["lora"]:
if len(dict["lora"]) > 1:
lora_var.set(dict["lora"][0])
lora_base_var.set(dict["lora"][1])
else:
lora_var.set(dict["lora"][0])
mmproj_var.set(dict["mmproj"] if ("mmproj" in dict and dict["mmproj"]) else "")
ssl_cert_var.set("")
ssl_key_var.set("")
if "ssl" in dict and dict["ssl"]:
if len(dict["ssl"]) == 2:
ssl_cert_var.set(dict["ssl"][0])
ssl_key_var.set(dict["ssl"][1])
password_var.set(dict["password"] if ("password" in dict and dict["password"]) else "")
preloadstory_var.set(dict["preloadstory"] if ("preloadstory" in dict and dict["preloadstory"]) else "")
chatcompletionsadapter_var.set(dict["chatcompletionsadapter"] if ("chatcompletionsadapter" in dict and dict["chatcompletionsadapter"]) else "")
port_var.set(dict["port_param"] if ("port_param" in dict and dict["port_param"]) else defaultport)
host_var.set(dict["host"] if ("host" in dict and dict["host"]) else "")
multiuser_var.set(dict["multiuser"] if ("multiuser" in dict) else 1)
horde_name_var.set(dict["hordemodelname"] if ("hordemodelname" in dict and dict["hordemodelname"]) else "koboldcpp")
horde_context_var.set(dict["hordemaxctx"] if ("hordemaxctx" in dict and dict["hordemaxctx"]) else maxhordectx)
horde_gen_var.set(dict["hordegenlen"] if ("hordegenlen" in dict and dict["hordegenlen"]) else maxhordelen)
horde_apikey_var.set(dict["hordekey"] if ("hordekey" in dict and dict["hordekey"]) else "")
horde_workername_var.set(dict["hordeworkername"] if ("hordeworkername" in dict and dict["hordeworkername"]) else "")
usehorde_var.set(1 if ("hordekey" in dict and dict["hordekey"]) else 0)
sd_model_var.set(dict["sdmodel"] if ("sdmodel" in dict and dict["sdmodel"]) else "")
sd_clamped_var.set(int(dict["sdclamped"]) if ("sdclamped" in dict and dict["sdclamped"]) else 0)
sd_threads_var.set(str(dict["sdthreads"]) if ("sdthreads" in dict and dict["sdthreads"]) else str(default_threads))
sd_quant_var.set(1 if ("sdquant" in dict and dict["sdquant"]) else 0)
sd_vae_var.set(dict["sdvae"] if ("sdvae" in dict and dict["sdvae"]) else "")
sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0)
sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "")
sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0")
whisper_model_var.set(dict["whispermodel"] if ("whispermodel" in dict and dict["whispermodel"]) else "")
if "istemplate" in dict and dict["istemplate"]:
auto_set_backend_gui(True)
def save_config_gui():
nonlocal kcpp_exporting_template
kcpp_exporting_template = False
export_vars()
savdict = json.loads(json.dumps(args.__dict__))
file_type = [("KoboldCpp Settings", "*.kcpps")]
filename = asksaveasfile(filetypes=file_type, defaultextension=file_type)
if filename == None: return
file = open(str(filename.name), 'a')
file.write(json.dumps(savdict))
file.close()
pass
def load_config_gui(): #this is used to populate the GUI with a config file, whereas load_config_cli simply overwrites cli args
file_type = [("KoboldCpp Settings", "*.kcpps *.kcppt")]
global runmode_untouched
runmode_untouched = False
filename = askopenfilename(filetypes=file_type, defaultextension=file_type, initialdir=None)
if not filename or filename=="":
return
with open(filename, 'r') as f:
dict = json.load(f)
import_vars(dict)
pass
def display_help():
try:
import webbrowser as wb
wb.open("https://github.com/LostRuins/koboldcpp/wiki")
except:
print("Cannot launch help in browser.")
def display_updates():
try:
import webbrowser as wb
wb.open("https://github.com/LostRuins/koboldcpp/releases/latest")
except:
print("Cannot launch updates in browser.")
ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5)
ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5)
ctk.CTkButton(tabs , text = "Help", fg_color="#992222", hover_color="#bb3333", command = display_help, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5)
# start a thread that tries to get actual gpu names and layer counts
gpuinfo_thread = threading.Thread(target=auto_set_backend_gui)
gpuinfo_thread.start() #submit job in new thread so nothing is waiting
# runs main loop until closed or launch clicked
root.mainloop()
if nextstate==0:
exitcounter = 999
print("Exiting by user request.")
sys.exit(0)
else:
# processing vars
kcpp_exporting_template = False
export_vars()
if not args.model_param and not args.sdmodel and not args.whispermodel:
exitcounter = 999
exit_with_error(2,"No text or image model file was selected. Exiting.")
def show_gui_msgbox(title,message):
print(title + ": " + message, flush=True)
try:
from tkinter import messagebox
import tkinter as tk
root = tk.Tk()
root.attributes("-alpha", 0)
messagebox.showerror(title=title, message=message)
root.withdraw()
root.quit()
except Exception as ex2:
pass
def print_with_time(txt):
from datetime import datetime
print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True)
def make_url_request(url, data, method='POST', headers={}):
import urllib.request, ssl
global nocertify
try:
request = None
ssl_cert_dir = os.environ.get('SSL_CERT_DIR')
if not ssl_cert_dir and not nocertify and os.name != 'nt':
os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs'
ssl_context = ssl.create_default_context()
if nocertify:
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
if method=='POST':
json_payload = json.dumps(data).encode('utf-8')
request = urllib.request.Request(url, data=json_payload, headers=headers, method=method)
request.add_header('content-type', 'application/json')
else:
request = urllib.request.Request(url, headers=headers, method=method)
response_data = ""
with urllib.request.urlopen(request,context=ssl_context) as response:
response_data = response.read().decode('utf-8',"ignore")
json_response = json.loads(response_data)
return json_response
except urllib.error.HTTPError as e:
try:
errmsg = e.read().decode('utf-8',"ignore")
print_with_time(f"Error: {e} - {errmsg}")
except Exception as e:
print_with_time(f"Error: {e}")
return None
except Exception as e:
print_with_time(f"Error: {e} - {response_data}")
return None
#A very simple and stripped down embedded horde worker with no dependencies
def run_horde_worker(args, api_key, worker_name):
from datetime import datetime
import random
global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime
epurl = f"http://localhost:{args.port}"
if args.host!="":
epurl = f"http://{args.host}:{args.port}"
def submit_completed_generation(url, jobid, sessionstart, submit_dict):
global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter
reply = make_url_request_horde(url, submit_dict)
if not reply:
punishcounter += 1
print_with_time(f"Error, Job submit failed.")
else:
reward = reply["reward"]
session_kudos_earned += reward
session_jobs += 1
curtime = datetime.now()
elapsedtime=curtime-sessionstart
hrs = int(elapsedtime.total_seconds()) // 3600
mins = elapsedtime.seconds // 60 % 60
secs = elapsedtime.seconds % 60
elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s"
earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600)
print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]')
rewardcounter += 1
if rewardcounter > 50:
rewardcounter = 0
if exitcounter > 1:
exitcounter -= 1
def make_url_request_horde(url, data, method='POST'):
headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'}
ret = make_url_request(url, data, method, headers)
if not ret:
print("Make sure your Horde API key and worker name is valid!")
return ret
current_id = None
current_payload = None
current_generation = None
session_starttime = datetime.now()
sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower)
exitcounter = 0
print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own Horde Bridge/Scribe worker instead, don't set your API key)")
BRIDGE_AGENT = f"KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp"
cluster = "https://aihorde.net"
while exitcounter < 10:
time.sleep(3)
readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET')
if readygo:
print_with_time(f"Embedded Horde Worker '{worker_name}' is started.")
break
while exitcounter < 10:
currentjob_attempts = 0
current_generation = None
if punishcounter >= 5:
punishcounter = 0
exitcounter += 1
if exitcounter < 10:
penaltytime = (2 ** exitcounter)
print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.")
print_with_time(f"Caution: Too many failed jobs may lead to entering maintenance mode.")
time.sleep(60 * penaltytime)
else:
print_with_time(f"Horde Worker Exit limit reached, too many errors.")
global last_non_horde_req_time
sec_since_non_horde = time.time() - last_non_horde_req_time
no_recent_local_usage = sec_since_non_horde>20
if not no_recent_local_usage:
#print_with_time(f"Recent Local Usage - Horde Worker Waiting...")
time.sleep(1)
continue
#first, make sure we are not generating
if modelbusy.locked():
time.sleep(0.2)
continue
#pop new request
gen_dict = {
"name": worker_name,
"models": [friendlymodelname],
"max_length": maxhordelen,
"max_context_length": maxhordectx,
"priority_usernames": [],
"softprompts": [],
"bridge_agent": BRIDGE_AGENT,
}
pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict)
if not pop:
punishcounter += 1
print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...")
time.sleep(10)
continue
if not pop["id"]:
slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3))
time.sleep(slp)
sleepy_counter += 1
if sleepy_counter==20:
print_with_time(f"No recent jobs, entering low power mode...")
continue
sleepy_counter = 0
current_id = pop['id']
current_payload = pop['payload']
print(f"") #empty newline
print_with_time(f"Job received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...")
#do gen
while exitcounter < 10:
if not modelbusy.locked():
#horde gets a genkey to avoid KCPP overlap
current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}"
current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload)
if current_generation:
break
else:
currentjob_attempts += 1
if currentjob_attempts>5:
break
print_with_time(f"Server Busy - Not ready to generate...")
time.sleep(5)
#submit reply
print(f"") #empty newline
if current_generation:
submit_dict = {
"id": current_id,
"generation": current_generation["results"][0]["text"],
"state": "ok"
}
submiturl = cluster + '/api/v2/generate/text/submit'
submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict))
submit_thread.start() #submit job in new thread so nothing is waiting
else:
print_with_time(f"Error, Abandoned current job due to errors. Getting new job.")
current_id = None
current_payload = None
time.sleep(0.1)
if exitcounter<100:
print_with_time(f"Horde Worker Shutdown - Too many errors.")
else:
print_with_time(f"Horde Worker Shutdown - Server Closing.")
exitcounter = 999
time.sleep(3)
sys.exit(2)
def convert_outdated_args(args):
dict = args
if isinstance(args, argparse.Namespace):
dict = vars(args)
global using_outdated_flags
using_outdated_flags = False
if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"])>0:
using_outdated_flags = True
dict["sdmodel"] = dict["sdconfig"][0]
if dict["sdconfig"] and len(dict["sdconfig"]) > 1:
dict["sdclamped"] = 512
if dict["sdconfig"] and len(dict["sdconfig"]) > 2:
dict["sdthreads"] = int(dict["sdconfig"][2])
if dict["sdconfig"] and len(dict["sdconfig"]) > 3:
dict["sdquant"] = (True if dict["sdconfig"][3]=="quant" else False)
if "hordeconfig" in dict and dict["hordeconfig"] and dict["hordeconfig"][0]!="":
using_outdated_flags = True
dict["hordemodelname"] = dict["hordeconfig"][0]
if len(dict["hordeconfig"]) > 1:
dict["hordegenlen"] = int(dict["hordeconfig"][1])
if len(dict["hordeconfig"]) > 2:
dict["hordemaxctx"] = int(dict["hordeconfig"][2])
if len(dict["hordeconfig"]) > 4:
dict["hordekey"] = dict["hordeconfig"][3]
dict["hordeworkername"] = dict["hordeconfig"][4]
check_deprecation_warning()
return args
def check_deprecation_warning():
# slightly naggy warning to encourage people to switch to new flags
# if you want you can remove this at your own risk,
# but i am not going to troubleshoot or provide support for deprecated flags.
global using_outdated_flags
if using_outdated_flags:
print(f"\n=== !!! IMPORTANT WARNING !!! ===")
print("You are using one or more OUTDATED config files or launch flags!")
print("The flags --hordeconfig and --sdconfig have been DEPRECATED, and MAY be REMOVED in future!")
print("They will still work for now, but you SHOULD switch to the updated flags instead, to avoid future issues!")
print("New flags are: --hordemodelname --hordeworkername --hordekey --hordemaxctx --hordegenlen --sdmodel --sdthreads --sdquant --sdclamped")
print("For more information on these flags, please check --help")
print(">>> If you are using the GUI launcher, simply re-saving your config again will get rid of this warning.")
print("=== !!! IMPORTANT WARNING !!! ===\n")
def setuptunnel(has_sd):
# This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet
# It should work out of the box on both linux and windows
try:
import subprocess, re
def run_tunnel():
tunnelproc = None
tunneloutput = ""
tunnelrawlog = ""
time.sleep(0.2)
if os.name == 'nt':
print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
elif sys.platform=="darwin":
print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"./cloudflared tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
else:
print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
time.sleep(10)
def tunnel_reader():
nonlocal tunnelproc,tunneloutput,tunnelrawlog
pattern = r'https://[\w\.-]+\.trycloudflare\.com'
while True:
line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason
tunnelrawlog += line+"\n"
if not line:
return
found = re.findall(pattern, line)
for x in found:
tunneloutput = x
print(f"Your remote Kobold API can be found at {tunneloutput}/api")
print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1")
if has_sd:
print(f"StableUI is available at {tunneloutput}/sdui/")
print("======\n")
print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True)
return
tunnel_reader_thread = threading.Thread(target=tunnel_reader)
tunnel_reader_thread.start()
time.sleep(5)
if tunneloutput=="":
print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True)
time.sleep(0.5)
tunnelproc.wait()
if os.name == 'nt':
if os.path.exists("cloudflared.exe") and os.path.getsize("cloudflared.exe") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for Windows...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe -o cloudflared.exe", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
elif sys.platform=="darwin":
if os.path.exists("cloudflared") and os.path.getsize("cloudflared") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for MacOS...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz -o cloudflared-darwin-amd64.tgz", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True)
subprocess.run("chmod +x 'cloudflared'", shell=True)
else:
if os.path.exists("cloudflared-linux-amd64") and os.path.getsize("cloudflared-linux-amd64") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for Linux...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared-linux-amd64", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True)
print("Attempting to start tunnel thread...", flush=True)
tunnel_thread = threading.Thread(target=run_tunnel)
tunnel_thread.start()
except Exception as ex:
print("Remote Tunnel Failed!")
print(str(ex))
return None
def unload_libs():
global handle
OS = platform.system()
dll_close = None
if OS == "Windows": # pragma: Windows
from ctypes import wintypes
dll_close = ctypes.windll.kernel32.FreeLibrary
dll_close.argtypes = [wintypes.HMODULE]
dll_close.restype = ctypes.c_int
elif OS == "Darwin":
try:
try: # macOS 11 (Big Sur). Possibly also later macOS 10s.
stdlib = ctypes.CDLL("libc.dylib")
except OSError:
stdlib = ctypes.CDLL("libSystem")
except OSError:
# Older macOSs. Not only is the name inconsistent but it's
# not even in PATH.
stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif OS == "Linux":
try:
stdlib = ctypes.CDLL("")
except OSError:
stdlib = ctypes.CDLL("libc.so") # Alpine Linux.
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif sys.platform == "msys":
# msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`.
stdlib = ctypes.CDLL("msys-2.0.dll")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif sys.platform == "cygwin":
stdlib = ctypes.CDLL("cygwin1.dll")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif OS == "FreeBSD":
# FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number.
# It is not in PATH but using its name instead of its path is somehow the
# only way to open it. The name must include the .so.7 suffix.
stdlib = ctypes.CDLL("libc.so.7")
dll_close = stdlib.close
if handle and dll_close:
print("Unloading Libraries...")
dll_close(handle._handle)
del handle.load_model
del handle.generate
del handle.new_token
del handle.get_stream_count
del handle.has_finished
del handle.get_last_eval_time
del handle.get_last_process_time
del handle.get_last_token_count
del handle.get_last_seed
del handle.get_total_gens
del handle.get_last_stop_reason
del handle.abort_generate
del handle.token_count
del handle.get_pending_output
del handle
handle = None
def load_config_cli(filename):
print("Loading .kcpps configuration file...")
with open(filename, 'r') as f:
config = json.load(f)
args.istemplate = False
for key, value in config.items():
setattr(args, key, value)
if args.istemplate:
auto_set_backend_cli()
def delete_old_pyinstaller():
try:
base_path = sys._MEIPASS
except Exception:
return # not running from pyinstaller
if not base_path:
return
import time, os, shutil
selfdirpath = os.path.abspath(base_path)
temp_parentdir_path = os.path.abspath(os.path.join(base_path, '..'))
for dirname in os.listdir(temp_parentdir_path):
absdirpath = os.path.abspath(os.path.join(temp_parentdir_path, dirname))
if os.path.isdir(absdirpath) and os.path.basename(absdirpath).startswith('_MEI'): #only delete kobold pyinstallers
if absdirpath!=selfdirpath and (time.time() - os.path.getctime(absdirpath)) > 14400: # remove if older than 4 hours
kobold_itemcheck1 = os.path.join(absdirpath, 'koboldcpp_default.dll')
kobold_itemcheck2 = os.path.join(absdirpath, 'koboldcpp_default.so')
kobold_itemcheck3 = os.path.join(absdirpath, 'klite.embd')
kobold_itemcheck4 = os.path.join(absdirpath, 'cublasLt64_11.dll')
kobold_itemcheck5 = os.path.join(absdirpath, 'cublas64_11.dll')
kobold_itemcheck6 = os.path.join(absdirpath, 'clblast.dll')
if os.path.exists(kobold_itemcheck1) or os.path.exists(kobold_itemcheck2) or os.path.exists(kobold_itemcheck3) or (os.path.exists(kobold_itemcheck4) and os.path.exists(kobold_itemcheck5) and os.path.exists(kobold_itemcheck6)):
try:
shutil.rmtree(absdirpath)
print(f"Deleted orphaned pyinstaller dir: {absdirpath}")
except Exception as e:
print(f"Error deleting orphaned pyinstaller dir: {absdirpath}: {e}")
def sanitize_string(input_string):
# alphanumeric characters, dots, dashes, and underscores
import re
sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string)
return sanitized_string
def download_model_from_url(url): #returns path to downloaded model when done
import subprocess
mdlfilename = os.path.basename(url)
#check if file already exists
if mdlfilename:
if os.path.exists(mdlfilename) and os.path.getsize(mdlfilename) > 10000000: #10MB trigger
print(f"File {mdlfilename} already exists, not redownloading.")
return mdlfilename
else:
dl_url = url
if "https://huggingface.co/" in dl_url and "/blob/main/" in dl_url:
dl_url = dl_url.replace("/blob/main/", "/resolve/main/")
print(f"Downloading file from external URL at {dl_url} now...")
subprocess.run(f"curl -fL {dl_url} -o {mdlfilename}", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
print(f"Download {mdlfilename} completed.", flush=True)
return mdlfilename
return None
def main(launch_args,start_server=True):
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
global libname, args, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath
#perform some basic cleanup of old temporary directories
try:
delete_old_pyinstaller()
except Exception as e:
print(f"Error cleaning up orphaned pyinstaller dirs: {e}")
args = launch_args
if args.unpack:
unpack_to_dir(args.unpack)
return
if args.config and len(args.config)==1:
cfgname = args.config[0]
if cfgname.endswith("?download=true"):
cfgname = cfgname.replace("?download=true","")
if isinstance(cfgname, str) and (cfgname.startswith("http://") or cfgname.startswith("https://")) and (cfgname.endswith(".kcpps") or cfgname.endswith(".kcppt")):
dlfile = download_model_from_url(cfgname)
if dlfile:
cfgname = dlfile
if isinstance(cfgname, str) and os.path.exists(cfgname):
load_config_cli(cfgname)
elif args.ignoremissing:
print("Ignoring missing kcpp config file...")
else:
global exitcounter
exitcounter = 999
exit_with_error(2,"Specified kcpp config file invalid or not found.")
args = convert_outdated_args(args)
#positional handling for kcpps files (drag and drop)
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt')):
load_config_cli(args.model_param)
#prevent quantkv from being used without flash attn
if args.quantkv and args.quantkv>0 and not args.flashattention:
exit_with_error(1, "Error: Using --quantkv requires --flashattention")
if not args.model_param:
args.model_param = args.model
if not args.model_param and not args.sdmodel and not args.whispermodel:
#give them a chance to pick a file
print("For command line arguments, please refer to --help")
print("***")
try:
show_gui()
except Exception as ex:
exitcounter = 999
ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\nPlease check command line: script.py --help"
show_gui_msgbox("Warning, GUI failed to start",ermsg)
if args.skiplauncher:
print(f"Note: In order to use --skiplauncher, you need to specify a model with --model")
time.sleep(3)
sys.exit(2)
#try to read story if provided
if args.preloadstory:
global preloaded_story
canload = False
if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory):
print(f"Preloading saved story {args.preloadstory} into server...")
with open(args.preloadstory, mode='rb') as f:
preloaded_story = f.read()
canload = True
elif isinstance(args.preloadstory, str):
print(f"Preloading saved story as JSON into server...")
try:
import ast
parsed = ast.literal_eval(args.preloadstory)
preloaded_story = json.dumps(parsed).encode()
canload = True
except Exception as ex:
print(ex)
elif isinstance(args.preloadstory, dict):
try:
preloaded_story = json.dumps(args.preloadstory).encode()
canload = True
except Exception as ex:
print(ex)
if canload:
print("Saved story preloaded.")
else:
print(f"Warning: Saved story file invalid or not found. No story will be preloaded into server.")
# try to read chat completions adapter
if args.chatcompletionsadapter:
global chatcompl_adapter
ccadapter_path = None
canload = False
adapt_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
adapt_dir = adapt_dir if os.path.isdir(adapt_dir) else None
if isinstance(args.chatcompletionsadapter, str) and os.path.exists(args.chatcompletionsadapter):
ccadapter_path = os.path.abspath(args.chatcompletionsadapter)
elif isinstance(args.chatcompletionsadapter, str) and adapt_dir:
filename = args.chatcompletionsadapter
if not filename.endswith(".json"):
filename += ".json"
premade_adapt_path = os.path.join(adapt_dir,filename)
if os.path.exists(premade_adapt_path):
ccadapter_path = os.path.abspath(premade_adapt_path)
if ccadapter_path:
print(f"Loading Chat Completions Adapter: {ccadapter_path}")
with open(ccadapter_path, 'r') as f:
chatcompl_adapter = json.load(f)
canload = True
else:
if isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="":
try:
import ast
parsed = ast.literal_eval(args.chatcompletionsadapter)
chatcompl_adapter = json.loads(json.dumps(parsed))
canload = True
except Exception as ex:
print(ex)
elif isinstance(args.chatcompletionsadapter, dict):
try:
chatcompl_adapter = json.loads(json.dumps(args.chatcompletionsadapter))
canload = True
except Exception as ex:
print(ex)
if canload:
print(f"Chat Completions Adapter Loaded")
else:
print(f"Warning: Chat Completions Adapter invalid or not found.")
# handle model downloads if needed
if args.model_param and args.model_param!="":
if args.model_param.endswith("?download=true"):
args.model_param = args.model_param.replace("?download=true","")
if (args.model_param.startswith("http://") or args.model_param.startswith("https://")) and (args.model_param.endswith(".gguf") or args.model_param.endswith(".bin")):
dlfile = download_model_from_url(args.model_param)
if dlfile:
args.model_param = dlfile
if args.sdmodel and args.sdmodel!="":
if args.sdmodel.endswith("?download=true"):
args.sdmodel = args.sdmodel.replace("?download=true","")
if (args.sdmodel.startswith("http://") or args.sdmodel.startswith("https://")) and (args.sdmodel.endswith(".gguf") or args.sdmodel.endswith(".safetensors")):
dlfile = download_model_from_url(args.sdmodel)
if dlfile:
args.sdmodel = dlfile
if args.mmproj and args.mmproj!="":
if args.mmproj.endswith("?download=true"):
args.mmproj = args.mmproj.replace("?download=true","")
if (args.mmproj.startswith("http://") or args.mmproj.startswith("https://")) and (args.mmproj.endswith(".gguf")):
dlfile = download_model_from_url(args.mmproj)
if dlfile:
args.mmproj = dlfile
if args.whispermodel and args.whispermodel!="":
if args.whispermodel.endswith("?download=true"):
args.whispermodel = args.whispermodel.replace("?download=true","")
if (args.whispermodel.startswith("http://") or args.whispermodel.startswith("https://")) and (args.whispermodel.endswith(".gguf") or args.whispermodel.endswith(".bin")):
dlfile = download_model_from_url(args.whispermodel)
if dlfile:
args.whispermodel = dlfile
# sanitize and replace the default vanity name. remember me....
if args.model_param and args.model_param!="":
newmdldisplayname = os.path.basename(args.model_param)
newmdldisplayname = os.path.splitext(newmdldisplayname)[0]
friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname)
# horde worker settings
global maxhordelen, maxhordectx, showdebug
if args.hordemodelname and args.hordemodelname!="":
friendlymodelname = args.hordemodelname
if args.debugmode == 1:
friendlymodelname = "debug-" + friendlymodelname
if not friendlymodelname.startswith("koboldcpp/"):
friendlymodelname = "koboldcpp/" + friendlymodelname
if (args.hordemodelname and args.hordemodelname!="") or (args.hordeworkername and args.hordeworkername!="") or (args.hordekey and args.hordekey!=""):
if args.debugmode == 0:
args.debugmode = -1
if args.hordegenlen and args.hordegenlen > 0:
maxhordelen = int(args.hordegenlen)
if args.hordemaxctx and args.hordemaxctx > 0:
maxhordectx = int(args.hordemaxctx)
if args.debugmode != 1:
showdebug = False
if args.highpriority:
print("Setting process to Higher Priority - Use Caution")
try:
import psutil
os_used = sys.platform
process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU
oldprio = process.nice()
if os_used == "win32": # Windows (either 32-bit or 64-bit)
process.nice(psutil.REALTIME_PRIORITY_CLASS)
print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice()))
elif os_used == "linux": # linux
process.nice(psutil.IOPRIO_CLASS_RT)
print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice()))
else: # MAC OS X or other
process.nice(-18)
print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice()))
except Exception as ex:
print("Error, Could not change process priority: " + str(ex))
if args.contextsize:
global maxctx
maxctx = args.contextsize
if args.nocertify:
global nocertify
nocertify = True
if args.gpulayers:
global libname, lib_default, lib_openblas, lib_failsafe, lib_noavx2
nogood = [lib_default,lib_openblas,lib_failsafe,lib_noavx2]
shouldavoidgpu = False
if libname in nogood and sys.platform!="darwin":
shouldavoidgpu = True
if args.gpulayers>0:
if shouldavoidgpu:
print("WARNING: GPU layers is set, but a GPU backend was not selected!")
pass
elif args.gpulayers==-1 and not shouldavoidgpu and os.path.exists(args.model_param):
print("Trying to automatically determine GPU layers...")
if MaxMemory[0] == 0: #try to get gpu vram for cuda if not picked yet
fetch_gpu_properties(False,True,True)
pass
if MaxMemory[0] > 0:
layeramt = autoset_gpu_layers(args.model_param, args.contextsize, MaxMemory[0])
print(f"Auto Recommended Layers: {layeramt}")
args.gpulayers = layeramt
else:
print(f"Could not automatically determine layers. Please set it manually.")
args.gpulayers = 0
if args.threads == -1:
args.threads = get_default_threads()
print(f"Auto Set Threads: {args.threads}")
init_library() # Note: if blas does not exist and is enabled, program will crash.
print("==========")
time.sleep(1)
#handle loading text model
if args.model_param:
if not os.path.exists(args.model_param):
if args.ignoremissing:
print(f"Ignoring missing model file: {args.model_param}")
args.model_param = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find text model file: {args.model_param}")
if args.lora and args.lora[0]!="":
if not os.path.exists(args.lora[0]):
if args.ignoremissing:
print(f"Ignoring missing lora file: {args.lora[0]}")
args.lora = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find lora file: {args.lora[0]}")
else:
args.lora[0] = os.path.abspath(args.lora[0])
if len(args.lora) > 1:
if not os.path.exists(args.lora[1]):
if args.ignoremissing:
print(f"Ignoring missing lora base: {args.lora[1]}")
args.lora = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find lora base: {args.lora[1]}")
else:
args.lora[1] = os.path.abspath(args.lora[1])
if args.mmproj and args.mmproj!="":
if not os.path.exists(args.mmproj):
if args.ignoremissing:
print(f"Ignoring missing mmproj file: {args.mmproj}")
args.mmproj = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find mmproj file: {args.mmproj}")
else:
global mmprojpath
args.mmproj = os.path.abspath(args.mmproj)
mmprojpath = args.mmproj
if args.password and args.password!="":
password = args.password.strip()
if not args.blasthreads or args.blasthreads <= 0:
args.blasthreads = args.threads
modelname = os.path.abspath(args.model_param)
print(args)
# Flush stdout for win32 issue with regards to piping in terminals,
# especially before handing over to C++ context.
print(f"==========\nLoading model: {modelname}", flush=True)
loadok = load_model(modelname)
print("Load Text Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load text model: " + modelname)
#handle loading image model
if args.sdmodel and args.sdmodel!="":
imgmodel = args.sdmodel
if not imgmodel or not os.path.exists(imgmodel):
if args.ignoremissing:
print(f"Ignoring missing img model file: {imgmodel}")
args.sdmodel = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find image model file: {imgmodel}")
else:
imglora = ""
imgvae = ""
if args.sdlora:
if os.path.exists(args.sdlora):
imglora = os.path.abspath(args.sdlora)
else:
print(f"Missing SD LORA model file...")
if args.sdvae:
if os.path.exists(args.sdvae):
imgvae = os.path.abspath(args.sdvae)
else:
print(f"Missing SD VAE model file...")
imgmodel = os.path.abspath(imgmodel)
fullsdmodelpath = imgmodel
friendlysdmodelname = os.path.basename(imgmodel)
friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0]
friendlysdmodelname = sanitize_string(friendlysdmodelname)
loadok = sd_load_model(imgmodel,imgvae,imglora)
print("Load Image Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load image model: " + imgmodel)
#handle whisper model
if args.whispermodel and args.whispermodel!="":
whispermodel = args.whispermodel
if not whispermodel or not os.path.exists(whispermodel):
if args.ignoremissing:
print(f"Ignoring missing whisper model file: {whispermodel}")
args.whispermodel = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find whisper model file: {whispermodel}")
else:
whispermodel = os.path.abspath(whispermodel)
fullwhispermodelpath = whispermodel
loadok = whisper_load_model(whispermodel)
print("Load Whisper Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load whisper model: " + whispermodel)
#load embedded lite
try:
basepath = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(basepath, "klite.embd"), mode='rb') as f:
embedded_kailite = f.read()
# patch it with extra stuff
origStr = "Sorry, KoboldAI Lite requires Javascript to function."
patchedStr = "Sorry, KoboldAI Lite requires Javascript to function.<br>You can use <a class=\"color_blueurl\" href=\"/noscript\">KoboldCpp NoScript mode</a> instead."
embedded_kailite = embedded_kailite.decode("UTF-8","ignore")
embedded_kailite = embedded_kailite.replace(origStr, patchedStr)
embedded_kailite = embedded_kailite.encode()
print("Embedded KoboldAI Lite loaded.")
except Exception as e:
print("Could not find KoboldAI Lite. Embedded KoboldAI Lite will not be available.")
try:
basepath = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f:
embedded_kcpp_docs = f.read()
print("Embedded API docs loaded.")
except Exception as e:
print("Could not find Embedded KoboldCpp API docs.")
try:
basepath = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(basepath, "kcpp_sdui.embd"), mode='rb') as f:
embedded_kcpp_sdui = f.read()
if args.sdmodel:
print("Embedded SDUI loaded.")
except Exception as e:
print("Could not find Embedded SDUI.")
if args.port_param!=defaultport:
args.port = args.port_param
global sslvalid
if args.ssl:
if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]):
sslvalid = True
print("SSL configuration is valid and will be used.")
else:
print("Your SSL configuration is INVALID. SSL will not be used.")
epurl = ""
httpsaffix = ("https" if sslvalid else "http")
if args.host=="":
epurl = f"{httpsaffix}://localhost:{args.port}"
else:
epurl = f"{httpsaffix}://{args.host}:{args.port}"
if not args.remotetunnel:
print(f"Starting Kobold API on port {args.port} at {epurl}/api/")
print(f"Starting OpenAI Compatible API on port {args.port} at {epurl}/v1/")
if args.sdmodel:
print(f"StableUI is available at {epurl}/sdui/")
if args.launch:
try:
import webbrowser as wb
wb.open(epurl)
except:
print("--launch was set, but could not launch web browser automatically.")
if args.hordekey and args.hordekey!="":
if args.hordeworkername and args.hordeworkername!="":
horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordekey,args.hordeworkername))
horde_thread.daemon = True
horde_thread.start()
else:
print("Horde worker could not start. You need to specify a horde worker name with --hordeworkername")
#if post-ready script specified, execute it
if args.onready:
def onready_subprocess():
import subprocess
print("Starting Post-Load subprocess...")
subprocess.run(args.onready[0], shell=True)
timer_thread = threading.Timer(1, onready_subprocess) #1 second delay
timer_thread.start()
if args.model_param and args.benchmark:
from datetime import datetime, timezone
start_server = False
save_to_file = (args.benchmark!="stdout" and args.benchmark!="")
benchmaxctx = maxctx
benchlen = 100
benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0])
if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000:
print(f"\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.")
save_to_file = False
if save_to_file:
print(f"\nRunning benchmark (Save to File: {args.benchmark})...")
else:
print(f"\nRunning benchmark (Not Saved)...")
benchprompt = "1111111111111111"
for i in range(0,14): #generate massive prompt
benchprompt += benchprompt
genout = generate(benchprompt,memory="",images=[],max_length=benchlen,max_context_length=benchmaxctx,temperature=0.1,top_k=1,rep_pen=1,use_default_badwordsids=True)
result = genout['text']
result = (result[:5] if len(result)>5 else "")
t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001
t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001
s_pp = float(benchmaxctx-benchlen)/t_pp
s_gen = float(benchlen)/t_gen
datetimestamp = datetime.now(timezone.utc)
benchflagstr = f"NoAVX2={args.noavx2} Threads={args.threads} HighPriority={args.highpriority} NoBlas={args.noblas} Cublas_Args={args.usecublas} Tensor_Split={args.tensor_split} BlasThreads={args.blasthreads} BlasBatchSize={args.blasbatchsize} FlashAttention={args.flashattention} KvCache={args.quantkv}"
print(f"\nBenchmark Completed - v{KcppVersion} Results:\n======")
print(f"Flags: {benchflagstr}")
print(f"Timestamp: {datetimestamp}")
print(f"Backend: {libname}")
print(f"Layers: {args.gpulayers}")
print(f"Model: {benchmodel}")
print(f"MaxCtx: {benchmaxctx}")
print(f"GenAmount: {benchlen}\n-----")
print(f"ProcessingTime: {t_pp:.3f}s")
print(f"ProcessingSpeed: {s_pp:.2f}T/s")
print(f"GenerationTime: {t_gen:.3f}s")
print(f"GenerationSpeed: {s_gen:.2f}T/s")
print(f"TotalTime: {(t_pp+t_gen):.3f}s")
print(f"Output: {result}\n-----")
if save_to_file:
try:
with open(args.benchmark, "a") as file:
file.seek(0, 2)
if file.tell() == 0: #empty file
file.write(f"Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Output,Flags")
file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{result},{benchflagstr}")
except Exception as e:
print(f"Error writing benchmark to file: {e}")
global using_gui_launcher
if using_gui_launcher and not save_to_file:
print("===")
print("Press ENTER key to exit.", flush=True)
input()
check_deprecation_warning()
if start_server:
if args.remotetunnel:
setuptunnel(True if args.sdmodel else False)
else:
# Flush stdout for previous win32 issue so the client can see output.
print(f"======\nPlease connect to custom endpoint at {epurl}", flush=True)
asyncio.run(RunServerMultiThreaded(args.host, args.port))
else:
# Flush stdout for previous win32 issue so the client can see output.
print(f"Server was not started, main function complete. Idling.", flush=True)
def run_in_queue(launch_args, input_queue, output_queue):
main(launch_args, start_server=False)
output_queue.put({'command': 'complete'})
while True:
if not input_queue.empty():
while not input_queue.empty():
data = input_queue.get()
if data['command'] == 'generate':
(args, kwargs) = data['data']
genout = generate(*args, **kwargs)
result = genout['text']
output_queue.put({'command': 'generated text', 'data': result})
time.sleep(0.2)
def start_in_seperate_process(launch_args):
import multiprocessing
input_queue = multiprocessing.Queue()
output_queue = multiprocessing.Queue()
p = multiprocessing.Process(target=run_in_queue, args=(launch_args, input_queue, output_queue))
p.start()
return (output_queue, input_queue, p)
if __name__ == '__main__':
def check_range(value_type, min_value, max_value):
def range_checker(arg: str):
try:
f = value_type(arg)
except ValueError:
raise argparse.ArgumentTypeError(f'must be a valid {value_type}')
if f < min_value or f > max_value:
raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]')
return f
return range_checker
print(f"***\nWelcome to KoboldCpp - Version {KcppVersion}") # just update version manually
# print("Python version: " + sys.version)
parser = argparse.ArgumentParser(description='KoboldCpp Server')
modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
modelgroup.add_argument("--model", metavar=('[filename]'), help="Model file to load", type=str, default="")
modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?")
portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
portgroup.add_argument("--port", metavar=('[portnumber]'), help="Port to listen on", default=defaultport, type=int, action='store')
portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store')
parser.add_argument("--host", metavar=('[ipaddr]'), help="Host IP to listen on. If empty, all routable interfaces are accepted.", default="")
parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true')
parser.add_argument("--config", metavar=('[filename]'), help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1)
parser.add_argument("--threads", metavar=('[threads]'), help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=get_default_threads())
compatgroup = parser.add_mutually_exclusive_group()
compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit'])
compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None)
compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2)
compatgroup.add_argument("--noblas", help="Do not use any accelerated prompt ingestion", action='store_true')
parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 4096). Supported values are [256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]'), type=check_range(int,256,262144), default=4096)
parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU. Set to -1 to try autodetect (experimental)",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=0)
parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+')
#more advanced params
advparser = parser.add_argument_group('Advanced Commands')
advparser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+')
advparser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512)
advparser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0)
advparser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+')
advparser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true')
advparser.add_argument("--nommap", help="If set, do not use mmap to load newer models", action='store_true')
advparser.add_argument("--usemlock", help="Enables mlock, preventing the RAM used to load the model from being paged out. Not usually recommended.", action='store_true')
advparser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true')
advparser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0)
advparser.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true')
advparser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1)
advparser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None)
advparser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=0)
advparser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true')
advparser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true')
advparser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true')
advparser.add_argument("--preloadstory", help="Configures a prepared story json save file to be hosted on the server, which frontends (such as KoboldAI Lite) can access over the API.", default="")
advparser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running a horde worker.", action='store_true')
advparser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+')
advparser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true')
advparser.add_argument("--mmproj", help="Select a multimodal projector file for LLaVA.", default="")
advparser.add_argument("--password", help="Enter a password required to use this instance. This key will be required for all text endpoints. Image endpoints are not secured.", default=None)
advparser.add_argument("--ignoremissing", help="Ignores all missing non-essential files, just skipping them instead.", action='store_true')
advparser.add_argument("--chatcompletionsadapter", help="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.", default="")
advparser.add_argument("--flashattention", help="Enables flash attention.", action='store_true')
advparser.add_argument("--quantkv", help="Sets the KV cache data type quantization, 0=f16, 1=q8, 2=q4. Requires Flash Attention, and disables context shifting.",metavar=('[quantization level 0/1/2]'), type=int, choices=[0,1,2], default=0)
advparser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0)
advparser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently. Outdated. Not recommended.", action='store_true')
advparser.add_argument("--unpack", help="Extracts the file contents of the KoboldCpp binary into a target directory.", metavar=('destination'), type=str, default="")
hordeparsergroup = parser.add_argument_group('Horde Worker Commands')
hordeparsergroup.add_argument("--hordemodelname", metavar=('[name]'), help="Sets your AI Horde display model name.", default="")
hordeparsergroup.add_argument("--hordeworkername", metavar=('[name]'), help="Sets your AI Horde worker name.", default="")
hordeparsergroup.add_argument("--hordekey", metavar=('[apikey]'), help="Sets your AI Horde API key.", default="")
hordeparsergroup.add_argument("--hordemaxctx", metavar=('[amount]'), help="Sets the maximum context length your worker will accept from an AI Horde job.", type=int, default=0)
hordeparsergroup.add_argument("--hordegenlen", metavar=('[amount]'), help="Sets the maximum number of tokens your worker will generate from an AI horde job.", type=int, default=0)
sdparsergroup = parser.add_argument_group('Image Generation Commands')
sdparsergroup.add_argument("--sdmodel", metavar=('[filename]'), help="Specify a stable diffusion safetensors or gguf model to enable image generation.", default="")
sdparsergroup.add_argument("--sdthreads", metavar=('[threads]'), help="Use a different number of threads for image generation if specified. Otherwise, has the same value as --threads.", type=int, default=0)
sdparsergroup.add_argument("--sdclamped", help="If specified, limit generation steps and resolution settings for shared use. Accepts an extra optional parameter that indicates maximum resolution (eg. 768 clamps to 768x768, min 512px, disabled if 0).", nargs='?', const=512, type=int, default=0)
sdparsergroupvae = sdparsergroup.add_mutually_exclusive_group()
sdparsergroupvae.add_argument("--sdvae", metavar=('[filename]'), help="Specify a stable diffusion safetensors VAE which replaces the one in the model.", default="")
sdparsergroupvae.add_argument("--sdvaeauto", help="Uses a built-in VAE via TAE SD, which is very fast, and fixed bad VAEs.", action='store_true')
sdparsergrouplora = sdparsergroup.add_mutually_exclusive_group()
sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true')
sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="")
sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0)
whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands')
whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper bin model to enable Speech-To-Text transcription.", default="")
deprecatedgroup = parser.add_argument_group('Deprecated Commands, DO NOT USE!')
deprecatedgroup.add_argument("--hordeconfig", help=argparse.SUPPRESS, nargs='+')
deprecatedgroup.add_argument("--sdconfig", help=argparse.SUPPRESS, nargs='+')
main(parser.parse_args(),start_server=True)