koboldcpp/koboldcpp.py
2024-03-06 12:09:22 +08:00

2928 lines
145 KiB
Python

#!/usr/bin/env python3
#-*- coding: utf-8 -*-
# KoboldCpp is an easy-to-use AI text-generation software for GGML models.
# It's a single self contained distributable from Concedo, that builds off llama.cpp,
# and adds a versatile Kobold API endpoint, additional format support,
# backward compatibility, as well as a fancy UI with persistent stories,
# editing tools, save formats, memory, world info, author's note, characters,
# scenarios and everything Kobold and Kobold Lite have to offer.
import ctypes
import os
import argparse
import json, sys, http.server, time, asyncio, socket, threading
from concurrent.futures import ThreadPoolExecutor
sampler_order_max = 7
stop_token_max = 16
ban_token_max = 16
tensor_split_max = 16
logit_bias_max = 16
bias_min_value = -100.0
bias_max_value = 100.0
class logit_bias(ctypes.Structure):
_fields_ = [("token_id", ctypes.c_int32),
("bias", ctypes.c_float)]
class token_count_outputs(ctypes.Structure):
_fields_ = [("count", ctypes.c_int),
("ids", ctypes.POINTER(ctypes.c_int))]
class load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("blasthreads", ctypes.c_int),
("max_context_length", ctypes.c_int),
("low_vram", ctypes.c_bool),
("use_mmq", ctypes.c_bool),
("use_rowsplit", ctypes.c_bool),
("executable_path", ctypes.c_char_p),
("model_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_base", ctypes.c_char_p),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("use_smartcontext", ctypes.c_bool),
("use_contextshift", ctypes.c_bool),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("blasbatchsize", ctypes.c_int),
("debugmode", ctypes.c_int),
("forceversion", ctypes.c_int),
("gpulayers", ctypes.c_int),
("rope_freq_scale", ctypes.c_float),
("rope_freq_base", ctypes.c_float),
("banned_tokens", ctypes.c_char_p * ban_token_max),
("tensor_split", ctypes.c_float * tensor_split_max)]
class generation_inputs(ctypes.Structure):
_fields_ = [("seed", ctypes.c_int),
("prompt", ctypes.c_char_p),
("memory", ctypes.c_char_p),
("max_context_length", ctypes.c_int),
("max_length", ctypes.c_int),
("temperature", ctypes.c_float),
("top_k", ctypes.c_int),
("top_a", ctypes.c_float),
("top_p", ctypes.c_float),
("min_p", ctypes.c_float),
("typical_p", ctypes.c_float),
("tfs", ctypes.c_float),
("rep_pen", ctypes.c_float),
("rep_pen_range", ctypes.c_int),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("sampler_order", ctypes.c_int * sampler_order_max),
("sampler_len", ctypes.c_int),
("unban_tokens_rt", ctypes.c_bool),
("stop_sequence", ctypes.c_char_p * stop_token_max),
("stream_sse", ctypes.c_bool),
("grammar", ctypes.c_char_p),
("grammar_retain_state", ctypes.c_bool),
("quiet", ctypes.c_bool),
("dynatemp_range", ctypes.c_float),
("dynatemp_exponent", ctypes.c_float),
("smoothing_factor", ctypes.c_float),
("logit_biases", logit_bias * logit_bias_max)]
class generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("text", ctypes.c_char_p)]
class sd_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("cublas_info", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("threads", ctypes.c_int),
("quant", ctypes.c_int),
("debugmode", ctypes.c_int)]
class sd_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("negative_prompt", ctypes.c_char_p),
("cfg_scale", ctypes.c_float),
("sample_steps", ctypes.c_int),
("width", ctypes.c_int),
("height", ctypes.c_int),
("seed", ctypes.c_int),
("sample_method", ctypes.c_char_p)]
class sd_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
handle = None
def getdirpath():
return os.path.dirname(os.path.realpath(__file__))
def getabspath():
return os.path.dirname(os.path.abspath(__file__))
def file_exists(filename):
return os.path.exists(os.path.join(getdirpath(), filename))
def pick_existant_file(ntoption,nonntoption):
precompiled_prefix = "precompiled_"
ntexist = file_exists(ntoption)
nonntexist = file_exists(nonntoption)
precompiled_ntexist = file_exists(precompiled_prefix+ntoption)
precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption)
if os.name == 'nt':
if not ntexist and precompiled_ntexist:
return (precompiled_prefix+ntoption)
if nonntexist and not ntexist:
return nonntoption
return ntoption
else:
if not nonntexist and precompiled_nonntexist:
return (precompiled_prefix+nonntoption)
if ntexist and not nonntexist:
return ntoption
return nonntoption
lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so")
lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so")
lib_openblas = pick_existant_file("koboldcpp_openblas.dll","koboldcpp_openblas.so")
lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so")
lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so")
lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so")
lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so")
lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so")
lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so")
lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so")
libname = ""
def init_library():
global handle, args, libname
global lib_default,lib_failsafe,lib_openblas,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2
libname = ""
use_openblas = False # if true, uses OpenBLAS for acceleration. libopenblas.dll must exist in the same dir.
use_clblast = False #uses CLBlast instead
use_cublas = False #uses cublas instead
use_hipblas = False #uses hipblas instead
use_noavx2 = False #uses no avx2 instructions
use_failsafe = False #uses no intrinsics, failsafe mode
use_vulkan = False #uses vulkan (needs avx2)
if args.noavx2:
use_noavx2 = True
if args.useclblast:
if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: NoAVX2 CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan_noavx2):
print("Warning: NoAVX2 Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use NoAVX2 Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
else:
if not file_exists(lib_noavx2):
print("Warning: NoAVX2 library file not found. Failsafe library will be used.")
elif (args.noblas and args.nommap):
use_failsafe = True
print("!!! Attempting to use FAILSAFE MODE !!!")
else:
print("Attempting to use non-avx2 compatibility library.")
elif args.useclblast:
if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")):
print("Warning: CLBlast library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.")
use_clblast = True
elif (args.usecublas is not None):
if not file_exists(lib_cublas) and not file_exists(lib_hipblas):
print("Warning: CuBLAS library file not found. Non-BLAS library will be used.")
else:
if file_exists(lib_cublas):
print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.")
use_cublas = True
elif file_exists(lib_hipblas):
print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.")
use_hipblas = True
elif (args.usevulkan is not None):
if not file_exists(lib_vulkan):
print("Warning: Vulkan library file not found. Non-BLAS library will be used.")
else:
print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.")
use_vulkan = True
else:
if not file_exists(lib_openblas) or (os.name=='nt' and not file_exists("libopenblas.dll")):
print("Warning: OpenBLAS library file not found. Non-BLAS library will be used.")
elif args.noblas:
print("Attempting to library without OpenBLAS.")
else:
use_openblas = True
print("Attempting to use OpenBLAS library for faster prompt ingestion. A compatible libopenblas will be required.")
if sys.platform=="darwin":
print("Mac OSX note: Some people have found Accelerate actually faster than OpenBLAS. To compare, run Koboldcpp with --noblas instead.")
if use_noavx2:
if use_failsafe:
libname = lib_failsafe
elif use_clblast:
libname = lib_clblast_noavx2
elif use_vulkan:
libname = lib_vulkan_noavx2
else:
libname = lib_noavx2
else:
if use_clblast:
libname = lib_clblast
elif use_cublas:
libname = lib_cublas
elif use_hipblas:
libname = lib_hipblas
elif use_openblas:
libname = lib_openblas
elif use_vulkan:
libname = lib_vulkan
else:
libname = lib_default
print("Initializing dynamic library: " + libname)
dir_path = getdirpath()
abs_path = getabspath()
#add all potential paths
if os.name=='nt':
os.add_dll_directory(dir_path)
os.add_dll_directory(abs_path)
os.add_dll_directory(os.getcwd())
if libname == lib_hipblas and "HIP_PATH" in os.environ:
os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "bin"))
if args.debugmode == 1:
print(f"HIP/ROCm SDK at {os.environ['HIP_PATH']} included in .DLL load path")
handle = ctypes.CDLL(os.path.join(dir_path, libname))
handle.load_model.argtypes = [load_model_inputs]
handle.load_model.restype = ctypes.c_bool
handle.generate.argtypes = [generation_inputs]
handle.generate.restype = generation_outputs
handle.new_token.restype = ctypes.c_char_p
handle.new_token.argtypes = [ctypes.c_int]
handle.get_stream_count.restype = ctypes.c_int
handle.has_finished.restype = ctypes.c_bool
handle.get_last_eval_time.restype = ctypes.c_float
handle.get_last_process_time.restype = ctypes.c_float
handle.get_last_token_count.restype = ctypes.c_int
handle.get_last_seed.restype = ctypes.c_int
handle.get_total_gens.restype = ctypes.c_int
handle.get_last_stop_reason.restype = ctypes.c_int
handle.abort_generate.restype = ctypes.c_bool
handle.token_count.restype = token_count_outputs
handle.get_pending_output.restype = ctypes.c_char_p
handle.sd_load_model.argtypes = [sd_load_model_inputs]
handle.sd_load_model.restype = ctypes.c_bool
handle.sd_generate.argtypes = [sd_generation_inputs]
handle.sd_generate.restype = sd_generation_outputs
def set_backend_props(inputs):
clblastids = 0
if args.useclblast:
clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1])
inputs.clblast_info = clblastids
# we must force an explicit tensor split
# otherwise the default will divide equally and multigpu crap will slow it down badly
inputs.cublas_info = 0
if not args.tensor_split:
if (args.usecublas and "0" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["HIP_VISIBLE_DEVICES"] = "0"
elif (args.usecublas and "1" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["HIP_VISIBLE_DEVICES"] = "1"
elif (args.usecublas and "2" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["HIP_VISIBLE_DEVICES"] = "2"
elif (args.usecublas and "3" in args.usecublas):
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["HIP_VISIBLE_DEVICES"] = "3"
else:
if (args.usecublas and "0" in args.usecublas):
inputs.cublas_info = 0
elif (args.usecublas and "1" in args.usecublas):
inputs.cublas_info = 1
elif (args.usecublas and "2" in args.usecublas):
inputs.cublas_info = 2
elif (args.usecublas and "3" in args.usecublas):
inputs.cublas_info = 3
if args.usevulkan:
s = ""
for l in range(0,len(args.usevulkan)):
s += str(args.usevulkan[l])
if s=="":
s = "0"
inputs.vulkan_info = s.encode("UTF-8")
else:
inputs.vulkan_info = "0".encode("UTF-8")
return inputs
def load_model(model_filename):
global args
inputs = load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten
inputs.threads = args.threads
inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False)
inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False)
inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False)
inputs.vulkan_info = "0".encode("UTF-8")
inputs.blasthreads = args.blasthreads
inputs.use_mmap = (not args.nommap)
inputs.use_mlock = args.usemlock
inputs.lora_filename = "".encode("UTF-8")
inputs.lora_base = "".encode("UTF-8")
if args.lora:
inputs.lora_filename = args.lora[0].encode("UTF-8")
inputs.use_mmap = False
if len(args.lora) > 1:
inputs.lora_base = args.lora[1].encode("UTF-8")
inputs.use_smartcontext = args.smartcontext
inputs.use_contextshift = (0 if args.noshift else 1)
inputs.blasbatchsize = args.blasbatchsize
inputs.forceversion = args.forceversion
inputs.gpulayers = args.gpulayers
inputs.rope_freq_scale = args.ropeconfig[0]
if len(args.ropeconfig)>1:
inputs.rope_freq_base = args.ropeconfig[1]
else:
inputs.rope_freq_base = 10000
for n in range(tensor_split_max):
if args.tensor_split and n < len(args.tensor_split):
inputs.tensor_split[n] = float(args.tensor_split[n])
else:
inputs.tensor_split[n] = 0
inputs = set_backend_props(inputs)
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
inputs.debugmode = args.debugmode
banned_tokens = args.bantokens
for n in range(ban_token_max):
if not banned_tokens or n >= len(banned_tokens):
inputs.banned_tokens[n] = "".encode("UTF-8")
else:
inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8")
ret = handle.load_model(inputs)
return ret
def generate(prompt, memory="", max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
inputs = generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.memory = memory.encode("UTF-8")
if max_length >= (max_context_length-1):
max_length = max_context_length-1
print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.")
global showmaxctxwarning
if max_context_length > maxctx:
if showmaxctxwarning:
print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)")
showmaxctxwarning = False
max_context_length = maxctx
inputs.max_context_length = max_context_length # this will resize the context buffer if changed
inputs.max_length = max_length
inputs.temperature = temperature
inputs.top_k = top_k
inputs.top_a = top_a
inputs.top_p = top_p
inputs.min_p = min_p
inputs.typical_p = typical_p
inputs.tfs = tfs
inputs.rep_pen = rep_pen
inputs.rep_pen_range = rep_pen_range
inputs.presence_penalty = presence_penalty
inputs.stream_sse = stream_sse
inputs.quiet = quiet
inputs.dynatemp_range = dynatemp_range
inputs.dynatemp_exponent = dynatemp_exponent
inputs.smoothing_factor = smoothing_factor
inputs.grammar = grammar.encode("UTF-8")
inputs.grammar_retain_state = grammar_retain_state
inputs.unban_tokens_rt = not use_default_badwordsids
if mirostat in (1, 2):
inputs.mirostat = mirostat
inputs.mirostat_tau = mirostat_tau
inputs.mirostat_eta = mirostat_eta
else:
inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0
if sampler_order and 0 < len(sampler_order) <= sampler_order_max:
try:
for i, sampler in enumerate(sampler_order):
inputs.sampler_order[i] = sampler
inputs.sampler_len = len(sampler_order)
global showsamplerwarning
if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5):
print("\n(Note: Sub-optimal sampler_order detected. You may have reduced quality. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)")
showsamplerwarning = False
except TypeError as e:
print("ERROR: sampler_order must be a list of integers: " + str(e))
inputs.seed = seed
for n in range(stop_token_max):
if not stop_sequence or n >= len(stop_sequence):
inputs.stop_sequence[n] = "".encode("UTF-8")
elif stop_sequence[n]==None:
inputs.stop_sequence[n] = "".encode("UTF-8")
else:
inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8")
bias_list = []
try:
if logit_biases and len(logit_biases) > 0:
bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()]
except Exception as ex:
print(f"Logit bias dictionary is invalid: {ex}")
for n in range(logit_bias_max):
if n >= len(bias_list):
inputs.logit_biases[n] = logit_bias(-1, 0.0)
else:
try:
t_id = int(bias_list[n]['key'])
bias = float(bias_list[n]['value'])
t_id = -1 if t_id < 0 else t_id
bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias))
inputs.logit_biases[n] = logit_bias(t_id, bias)
except Exception as ex:
inputs.logit_biases[n] = logit_bias(-1, 0.0)
print(f"Skipped unparsable logit bias:{ex}")
currentusergenkey = genkey
totalgens += 1
#early exit if aborted
if pendingabortkey!="" and pendingabortkey==genkey:
print(f"\nDeferred Abort for GenKey: {pendingabortkey}")
pendingabortkey = ""
return ""
else:
ret = handle.generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.text.decode("UTF-8","ignore")
if trimstop:
for trim_str in stop_sequence:
sindex = outstr.find(trim_str)
if sindex != -1 and trim_str!="":
outstr = outstr[:sindex]
return outstr
def sd_load_model(model_filename):
global args
inputs = sd_load_model_inputs()
inputs.debugmode = args.debugmode
inputs.model_filename = model_filename.encode("UTF-8")
thds = args.threads
quant = 0
if len(args.sdconfig) > 2:
sdt = int(args.sdconfig[2])
if sdt > 0:
thds = sdt
if len(args.sdconfig) > 3:
quant = (1 if args.sdconfig[3]=="quant" else 0)
inputs.threads = thds
inputs.quant = quant
inputs = set_backend_props(inputs)
ret = handle.sd_load_model(inputs)
return ret
def sd_generate(genparams):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
prompt = genparams.get("prompt", "high quality")
negative_prompt = genparams.get("negative_prompt", "")
cfg_scale = genparams.get("cfg_scale", 5)
sample_steps = genparams.get("steps", 20)
width = genparams.get("width", 512)
height = genparams.get("height", 512)
seed = genparams.get("seed", -1)
sample_method = genparams.get("sampler_name", "euler a")
#clean vars
width = width - (width%64)
height = height - (height%64)
cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale))
sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps))
width = (128 if width < 128 else (1024 if width > 1024 else width))
height = (128 if height < 128 else (1024 if height > 1024 else height))
#quick mode
if args.sdconfig and len(args.sdconfig)>1:
if args.sdconfig[1]=="quick":
cfg_scale = 1
sample_steps = 7
sample_method = "dpm++ 2m karras"
width = (512 if width > 512 else width)
height = (512 if height > 512 else height)
print("Image generation set to Quick Mode (Low Quality). Step counts, resolution, sampler, and cfg scale are fixed.")
elif args.sdconfig[1]=="clamped":
sample_steps = (40 if sample_steps > 40 else sample_steps)
width = (512 if width > 512 else width)
height = (512 if height > 512 else height)
print("Image generation set to Clamped Mode (For Shared Use). Step counts and resolution are clamped.")
inputs = sd_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.negative_prompt = negative_prompt.encode("UTF-8")
inputs.cfg_scale = cfg_scale
inputs.sample_steps = sample_steps
inputs.width = width
inputs.height = height
inputs.seed = seed
inputs.sample_method = sample_method.lower().encode("UTF-8")
ret = handle.sd_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def utfprint(str):
try:
print(str)
except UnicodeEncodeError:
# Replace or omit the problematic character
utf_string = str.encode('ascii', 'ignore').decode('ascii')
utf_string = utf_string.replace('\a', '') #remove bell characters
print(utf_string)
def bring_terminal_to_foreground():
if os.name=='nt':
ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9)
ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow())
#################################################################
### A hacky simple HTTP server simulating a kobold api by Concedo
### we are intentionally NOT using flask, because we want MINIMAL dependencies
#################################################################
friendlymodelname = "inactive"
friendlysdmodelname = "inactive"
fullsdmodelpath = "" #if empty, it's not initialized
maxctx = 2048
maxhordectx = 2048
maxhordelen = 256
modelbusy = threading.Lock()
requestsinqueue = 0
defaultport = 5001
KcppVersion = "1.60.1"
showdebug = True
showsamplerwarning = True
showmaxctxwarning = True
session_kudos_earned = 0
session_jobs = 0
session_starttime = None
exitcounter = -1
punishcounter = 0 #causes a timeout if too many errors
rewardcounter = 0 #reduces error counts for successful jobs
totalgens = 0
currentusergenkey = "" #store a special key so polled streaming works even in multiuser
pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later
args = None #global args
gui_layers_untouched = True
runmode_untouched = True
preloaded_story = None
sslvalid = False
nocertify = False
start_time = time.time()
class ServerRequestHandler(http.server.SimpleHTTPRequestHandler):
sys_version = ""
server_version = "ConcedoLlamaForKoboldServer"
def __init__(self, addr, port, embedded_kailite, embedded_kcpp_docs):
self.addr = addr
self.port = port
self.embedded_kailite = embedded_kailite
self.embedded_kcpp_docs = embedded_kcpp_docs
def __call__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def log_message(self, format, *args):
global showdebug
if showdebug:
super().log_message(format, *args)
pass
async def generate_text(self, genparams, api_format, stream_flag):
global friendlymodelname
is_quiet = args.quiet
def run_blocking(): #api format 1=basic,2=kai,3=oai,4=oai-chat
#alias all nonstandard alternative names for rep pen.
rp1 = genparams.get('repeat_penalty', 1.0)
rp2 = genparams.get('repetition_penalty', 1.0)
rp3 = genparams.get('rep_pen', 1.0)
rp_max = max(rp1,rp2,rp3)
genparams["rep_pen"] = rp_max
if api_format==1:
genparams["prompt"] = genparams.get('text', "")
genparams["top_k"] = int(genparams.get('top_k', 120))
genparams["max_length"] = genparams.get('max', 100)
elif api_format==3 or api_format==4:
genparams["max_length"] = genparams.get('max_tokens', 100)
presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0))
genparams["presence_penalty"] = presence_penalty
# openai allows either a string or a list as a stop sequence
if isinstance(genparams.get('stop',[]), list):
genparams["stop_sequence"] = genparams.get('stop', [])
else:
genparams["stop_sequence"] = [genparams.get('stop')]
genparams["sampler_seed"] = genparams.get('seed', -1)
genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False)
genparams["mirostat"] = genparams.get('mirostat_mode', 0)
if api_format==4:
# translate openai chat completion messages format into one big string.
messages_array = genparams.get('messages', [])
adapter_obj = genparams.get('adapter', {})
messages_string = ""
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
system_message_end = adapter_obj.get("system_end", "")
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
user_message_end = adapter_obj.get("user_end", "")
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
assistant_message_end = adapter_obj.get("assistant_end", "")
for message in messages_array:
if message['role'] == "system":
messages_string += system_message_start
elif message['role'] == "user":
messages_string += user_message_start
elif message['role'] == "assistant":
messages_string += assistant_message_start
messages_string += message['content']
if message['role'] == "system":
messages_string += system_message_end
elif message['role'] == "user":
messages_string += user_message_end
elif message['role'] == "assistant":
messages_string += assistant_message_end
messages_string += assistant_message_start
genparams["prompt"] = messages_string
return generate(
prompt=genparams.get('prompt', ""),
memory=genparams.get('memory', ""),
max_context_length=genparams.get('max_context_length', maxctx),
max_length=genparams.get('max_length', 100),
temperature=genparams.get('temperature', 0.7),
top_k=genparams.get('top_k', 100),
top_a=genparams.get('top_a', 0.0),
top_p=genparams.get('top_p', 0.92),
min_p=genparams.get('min_p', 0.0),
typical_p=genparams.get('typical', 1.0),
tfs=genparams.get('tfs', 1.0),
rep_pen=genparams.get('rep_pen', 1.0),
rep_pen_range=genparams.get('rep_pen_range', 256),
presence_penalty=genparams.get('presence_penalty', 0.0),
mirostat=genparams.get('mirostat', 0),
mirostat_tau=genparams.get('mirostat_tau', 5.0),
mirostat_eta=genparams.get('mirostat_eta', 0.1),
sampler_order=genparams.get('sampler_order', [6,0,1,3,4,2,5]),
seed=genparams.get('sampler_seed', -1),
stop_sequence=genparams.get('stop_sequence', []),
use_default_badwordsids=genparams.get('use_default_badwordsids', False),
stream_sse=stream_flag,
grammar=genparams.get('grammar', ''),
grammar_retain_state = genparams.get('grammar_retain_state', False),
genkey=genparams.get('genkey', ''),
trimstop=genparams.get('trim_stop', False),
quiet=is_quiet,
dynatemp_range=genparams.get('dynatemp_range', 0.0),
dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0),
smoothing_factor=genparams.get('smoothing_factor', 0.0),
logit_biases=genparams.get('logit_bias', {})
)
recvtxt = ""
if stream_flag:
loop = asyncio.get_event_loop()
executor = ThreadPoolExecutor()
recvtxt = await loop.run_in_executor(executor, run_blocking)
else:
recvtxt = run_blocking()
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
utfprint("\nOutput: " + recvtxt)
if api_format==1:
res = {"data": {"seqs":[recvtxt]}}
elif api_format==3:
res = {"id": "cmpl-1", "object": "text_completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200},
"choices": [{"text": recvtxt, "index": 0, "finish_reason": "length"}]}
elif api_format==4:
res = {"id": "chatcmpl-1", "object": "chat.completion", "created": 1, "model": friendlymodelname,
"usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200},
"choices": [{"index": 0, "message":{"role": "assistant", "content": recvtxt,}, "finish_reason": "length"}]}
else:
res = {"results": [{"text": recvtxt}]}
try:
return res
except Exception as e:
print(f"Generate: Error while generating: {e}")
async def send_oai_sse_event(self, data):
if data=="[DONE]":
self.wfile.write(f'data: {data}'.encode())
else:
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def send_kai_sse_event(self, data):
self.wfile.write(f'event: message\n'.encode())
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def handle_sse_stream(self, api_format):
global friendlymodelname
self.send_response(200)
self.send_header("cache-control", "no-cache")
self.send_header("connection", "keep-alive")
self.end_headers(content_type='text/event-stream')
current_token = 0
incomplete_token_buffer = bytearray()
await asyncio.sleep(0.25) #anti race condition, prevent check from overtaking generate
try:
while True:
streamDone = handle.has_finished() #exit next loop on done
tokenStr = ""
streamcount = handle.get_stream_count()
while current_token < streamcount:
token = handle.new_token(current_token)
if token is None: # Token isnt ready yet, received nullpointer
break
current_token += 1
newbyte = ctypes.string_at(token)
incomplete_token_buffer += bytearray(newbyte)
tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore")
if tokenSeg!="":
incomplete_token_buffer.clear()
tokenStr += tokenSeg
if tokenStr!="":
if api_format == 4: # if oai chat, set format to expected openai streaming response
event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":"length","delta":{'role':'assistant','content':tokenStr}}]})
await self.send_oai_sse_event(event_str)
elif api_format == 3: # non chat completions
event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":"length","text":tokenStr}]})
await self.send_oai_sse_event(event_str)
else:
event_str = json.dumps({"token": tokenStr})
await self.send_kai_sse_event(event_str)
tokenStr = ""
else:
await asyncio.sleep(0.02) #this should keep things responsive
if streamDone:
if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format
await self.send_oai_sse_event('[DONE]')
break
except Exception as ex:
print("Token streaming was interrupted or aborted!")
print(ex)
handle.abort_generate()
time.sleep(0.2) #short delay
# flush buffers, sleep a bit to make sure all data sent, and then force close the connection
self.wfile.flush()
await asyncio.sleep(0.1)
self.close_connection = True
await asyncio.sleep(0.05)
async def handle_request(self, genparams, api_format, stream_flag):
tasks = []
try:
if stream_flag:
tasks.append(self.handle_sse_stream(api_format))
generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag))
tasks.append(generate_task)
await asyncio.gather(*tasks)
generate_result = generate_task.result()
return generate_result
except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost
print("An ongoing connection was aborted or interrupted!")
print(cae)
handle.abort_generate()
time.sleep(0.2) #short delay
except Exception as e:
print(e)
def noscript_webui(self):
global modelbusy
import html
import urllib.parse as urlparse
parsed_url = urlparse.urlparse(self.path)
parsed_dict = urlparse.parse_qs(parsed_url.query)
reply = ""
status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate"
prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else ""
max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100
temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.7
top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100
top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9
rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0
use_default_badwordsids = int(parsed_dict['use_default_badwordsids'][0]) if 'use_default_badwordsids' in parsed_dict else 0
gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate"
if modelbusy.locked():
status = "Model is currently busy, try again later."
elif gencommand:
if prompt=="" or max_length<=0:
status = "Need a valid prompt and length to generate."
else:
if max_length>512:
max_length = 512
epurl = f"http://localhost:{args.port}"
if args.host!="":
epurl = f"http://{args.host}:{args.port}"
gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"prompt": prompt,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"use_default_badwordsids":use_default_badwordsids}
respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload)
reply = html.escape(respjson["results"][0]["text"])
status = "Generation Completed"
if "generate" in parsed_dict:
del parsed_dict["generate"]
parsed_dict["prompt"] = prompt + reply
parsed_dict["status"] = status
updated_query_string = urlparse.urlencode(parsed_dict, doseq=True)
updated_path = parsed_url._replace(query=updated_query_string).geturl()
self.path = updated_path
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return
finalhtml = f'''<!doctype html>
<html lang="en"><head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>KoboldCpp NoScript Mode</title></head><body>
<h2>KoboldCpp NoScript Mode</h2>
<div>
<p>KoboldCpp can be used without Javascript enabled, however this is not recommended.
<br>If you have Javascript, please use <a href="/">Kobold Lite WebUI</a> instead.</p><hr>
<form action="/noscript">
Enter Prompt:<br>
<textarea name="prompt" cols="60" rows="8" wrap="soft" placeholder="Enter Prompt Here">{prompt}</textarea>
<hr>
<b>{status}</b><br>
<hr>
<label>Gen. Amount</label> <input type="text" size="4" value="{max_length}" name="max_length"><br>
<label>Temperature</label> <input type="text" size="4" value="{temperature}" name="temperature"><br>
<label>Top-K</label> <input type="text" size="4" value="{top_k}" name="top_k"><br>
<label>Top-P</label> <input type="text" size="4" value="{top_p}" name="top_p"><br>
<label>Rep. Pen</label> <input type="text" size="4" value="{rep_pen}" name="rep_pen"><br>
<label>Ignore EOS</label> <input type="checkbox" name="use_default_badwordsids" value="1" {"checked" if use_default_badwordsids else ""}><br>
<input type="submit" name="generate" value="Generate"> (Please be patient)
</form>
<form action="/noscript">
<input type="submit" value="Reset">
</form>
</div>
</body></html>'''
finalhtml = finalhtml.encode('utf-8')
self.send_response(200)
self.send_header('content-length', str(len(finalhtml)))
self.end_headers(content_type='text/html')
self.wfile.write(finalhtml)
def do_GET(self):
global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath
self.path = self.path.rstrip('/')
response_body = None
content_type = 'application/json'
if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
content_type = 'text/html'
if self.embedded_kailite is None:
response_body = (f"Embedded Kobold Lite is not found.<br>You will have to connect via the main KoboldAI client, or <a href='https://lite.koboldai.net?local=1&port={self.port}'>use this URL</a> to connect.").encode()
else:
response_body = self.embedded_kailite
elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without /
self.noscript_webui()
return
elif self.path.endswith(('/api/v1/model', '/api/latest/model')):
response_body = (json.dumps({'result': friendlymodelname }).encode())
elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')):
response_body = (json.dumps({"value": maxhordelen}).encode())
elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')):
response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')):
response_body = (json.dumps({"value":""}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')):
response_body = (json.dumps({"values": []}).encode())
elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')):
response_body = (json.dumps({"result":"1.2.5"}).encode())
elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde
response_body = (json.dumps({"value": maxctx}).encode())
elif self.path.endswith(('/api/extra/version')):
response_body = (json.dumps({"result":"KoboldCpp","version":KcppVersion}).encode())
elif self.path.endswith(('/api/extra/perf')):
lastp = handle.get_last_process_time()
laste = handle.get_last_eval_time()
lastc = handle.get_last_token_count()
totalgens = handle.get_total_gens()
stopreason = handle.get_last_stop_reason()
lastseed = handle.get_last_seed()
uptime = time.time() - start_time
response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "total_gens":totalgens, "stop_reason":stopreason, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime}).encode())
elif self.path.endswith('/api/extra/generate/check'):
pendtxtStr = ""
if requestsinqueue==0 and totalgens>0 and currentusergenkey=="":
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
elif self.path.endswith('/v1/models'):
response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
elif self.path.endswith('/sdapi/v1/sd-models'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode())
elif self.path.endswith('/sdapi/v1/options'):
response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode())
elif self.path.endswith('/sdapi/v1/samplers'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode())
elif self.path.endswith('/sdapi/v1/latent-upscale-modes'):
response_body = (json.dumps([]).encode())
elif self.path.endswith('/sdapi/v1/upscalers'):
response_body = (json.dumps([]).encode())
elif self.path=="/api":
content_type = 'text/html'
if self.embedded_kcpp_docs is None:
response_body = (f"KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode()
else:
response_body = self.embedded_kcpp_docs
elif self.path=="/v1":
content_type = 'text/html'
response_body = (f"KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode()
elif self.path=="/api/extra/preloadstory":
if preloaded_story is None:
response_body = (json.dumps({}).encode())
else:
response_body = preloaded_story
elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
self.path = "/api"
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return None
if response_body is None:
self.send_response(404)
self.end_headers(content_type='text/html')
rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.'
self.wfile.write(rp.encode())
else:
self.send_response(200)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type=content_type)
self.wfile.write(response_body)
return
def do_POST(self):
global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey
content_length = int(self.headers['content-length'])
body = self.rfile.read(content_length)
self.path = self.path.rstrip('/')
response_body = None
response_code = 200
if self.path.endswith(('/api/extra/tokencount')):
try:
genparams = json.loads(body)
countprompt = genparams.get('prompt', "")
rawcountdata = handle.token_count(countprompt.encode("UTF-8"))
countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0
# the above protects the server in case the count limit got corrupted
countdata = [rawcountdata.ids[i] for i in range(countlimit)]
response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode())
except Exception as e:
utfprint("Count Tokens - Body Error: " + str(e))
response_code = 400
response_body = (json.dumps({"value": -1}).encode())
elif self.path.endswith('/api/extra/abort'):
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception as e:
multiuserkey = ""
pass
if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey):
ag = handle.abort_generate()
time.sleep(0.1) #short delay before replying
response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode())
print("\nGeneration Aborted")
elif (multiuserkey!="" and requestsinqueue>0):
pendingabortkey = multiuserkey
response_body = (json.dumps({"success": "true", "done":"false"}).encode())
else:
response_body = (json.dumps({"success": "false", "done":"false"}).encode())
elif self.path.endswith('/api/extra/generate/check'):
pendtxtStr = ""
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception as e:
multiuserkey = ""
if totalgens>0:
if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
if response_body is not None:
self.send_response(response_code)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type='application/json')
self.wfile.write(response_body)
return
reqblocking = False
muint = int(args.multiuser)
multiuserlimit = ((muint-1) if muint > 1 else 6)
#backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1
if muint > 0 and requestsinqueue < multiuserlimit:
reqblocking = True
requestsinqueue += 1
if not modelbusy.acquire(blocking=reqblocking):
self.send_response(503)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Server is busy; please try again later.",
"type": "service_unavailable",
}}).encode())
return
if reqblocking:
requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0
try:
sse_stream_flag = False
api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat
is_txt2img = False
if self.path.endswith('/request'):
api_format = 1
if self.path.endswith(('/api/v1/generate', '/api/latest/generate')):
api_format = 2
if self.path.endswith('/api/extra/generate/stream'):
api_format = 2
sse_stream_flag = True
if self.path.endswith('/v1/completions'):
api_format = 3
if self.path.endswith('/v1/chat/completions'):
api_format = 4
if self.path.endswith('/sdapi/v1/txt2img'):
is_txt2img = True
if is_txt2img or api_format > 0:
genparams = None
try:
genparams = json.loads(body)
except Exception as e:
utfprint("Body Err: " + str(body))
return self.send_response(503)
is_quiet = args.quiet
if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1:
utfprint("\nInput: " + json.dumps(genparams))
if args.foreground:
bring_terminal_to_foreground()
if api_format > 0:#text gen
# Check if streaming chat completions, if so, set stream mode to true
if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]:
sse_stream_flag = True
gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag))
try:
# Headers are already sent when streaming
if not sse_stream_flag:
self.send_response(200)
genresp = (json.dumps(gen).encode())
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
if args.debugmode:
print(ex)
print("Generate: The response could not be sent, maybe connection was terminated?")
handle.abort_generate()
time.sleep(0.2) #short delay
return
elif is_txt2img: #image gen
try:
gen = sd_generate(genparams)
genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
if args.debugmode:
print(ex)
print("Generate Image: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
finally:
modelbusy.release()
self.send_response(404)
self.end_headers(content_type='text/html')
def do_OPTIONS(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def do_HEAD(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def end_headers(self, content_type=None):
self.send_header('access-control-allow-origin', '*')
self.send_header('access-control-allow-methods', '*')
self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey')
self.send_header("cache-control", "no-store")
if content_type is not None:
self.send_header('content-type', content_type)
return super(ServerRequestHandler, self).end_headers()
def RunServerMultiThreaded(addr, port, embedded_kailite = None, embedded_kcpp_docs = None):
global exitcounter, sslvalid
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
if args.ssl and sslvalid:
import ssl
certpath = os.path.abspath(args.ssl[0])
keypath = os.path.abspath(args.ssl[1])
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain(certfile=certpath, keyfile=keypath)
sock = context.wrap_socket(sock, server_side=True)
sock.bind((addr, port))
numThreads = 20
sock.listen(numThreads)
class Thread(threading.Thread):
def __init__(self, i):
threading.Thread.__init__(self)
self.i = i
self.daemon = True
self.start()
def run(self):
global exitcounter
handler = ServerRequestHandler(addr, port, embedded_kailite, embedded_kcpp_docs)
with http.server.HTTPServer((addr, port), handler, False) as self.httpd:
try:
self.httpd.socket = sock
self.httpd.server_bind = self.server_close = lambda self: None
self.httpd.serve_forever()
except (KeyboardInterrupt,SystemExit):
exitcounter = 999
self.httpd.server_close()
sys.exit(0)
finally:
exitcounter = 999
self.httpd.server_close()
sys.exit(0)
def stop(self):
global exitcounter
exitcounter = 999
self.httpd.server_close()
threadArr = []
for i in range(numThreads):
threadArr.append(Thread(i))
while 1:
try:
time.sleep(10)
except KeyboardInterrupt:
global exitcounter
exitcounter = 999
for i in range(numThreads):
threadArr[i].stop()
sys.exit(0)
# note: customtkinter-5.2.0
def show_new_gui():
from tkinter.filedialog import askopenfilename
from tkinter.filedialog import asksaveasfile
# if args received, launch
if len(sys.argv) != 1:
import tkinter as tk
root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar
root.attributes("-alpha", 0)
args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config")
root.destroy()
if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'):
loadconfigfile(args.model_param)
if not args.model_param and not args.sdconfig:
global exitcounter
exitcounter = 999
print("\nNo ggml model or kcpps file was selected. Exiting.")
time.sleep(3)
sys.exit(2)
return
import customtkinter as ctk
nextstate = 0 #0=exit, 1=launch
windowwidth = 540
windowheight = 500
ctk.set_appearance_mode("dark")
root = ctk.CTk()
root.geometry(str(windowwidth) + "x" + str(windowheight))
root.title("KoboldCpp v"+KcppVersion)
root.resizable(False,False)
gtooltip_box = None
gtooltip_label = None
# trigger empty tooltip then remove it
def show_tooltip(event, tooltip_text=None):
nonlocal gtooltip_box, gtooltip_label
if not gtooltip_box and not gtooltip_label:
gtooltip_box = ctk.CTkToplevel(root)
gtooltip_box.configure(fg_color="#ffffe0")
gtooltip_box.withdraw()
gtooltip_box.overrideredirect(True)
gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0")
gtooltip_label.pack(expand=True, padx=2, pady=1)
else:
gtooltip_label.configure(text=tooltip_text)
x, y = root.winfo_pointerxy()
gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}")
gtooltip_box.deiconify()
def hide_tooltip(event):
nonlocal gtooltip_box
if gtooltip_box:
gtooltip_box.withdraw()
show_tooltip(None,"") #initialize tooltip objects
hide_tooltip(None)
tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50)
tabs.grid(row=0, stick="nsew")
tabnames= ["Quick Launch", "Hardware", "Tokens", "Model", "Network","Image Gen"]
navbuttons = {}
navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height")))
navbuttonframe.grid(row=0, column=0, padx=2,pady=2)
navbuttonframe.grid_propagate(False)
tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height")))
tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2)
tabcontentframe.grid_propagate(False)
CLDevices = ["1","2","3","4"]
CUDevices = ["1","2","3","4","All"]
CLDevicesNames = ["","","",""]
CUDevicesNames = ["","","","",""]
VKDevicesNames = ["","","",""]
MaxMemory = [0]
tabcontent = {}
lib_option_pairs = [
(lib_openblas, "Use OpenBLAS"),
(lib_clblast, "Use CLBlast"),
(lib_cublas, "Use CuBLAS"),
(lib_hipblas, "Use hipBLAS (ROCm)"),
(lib_vulkan, "Use Vulkan"),
(lib_default, "Use No BLAS"),
(lib_clblast_noavx2, "CLBlast NoAVX2 (Old CPU)"),
(lib_vulkan_noavx2, "Vulkan NoAVX2 (Old CPU)"),
(lib_noavx2, "NoAVX2 Mode (Old CPU)"),
(lib_failsafe, "Failsafe Mode (Old CPU)")]
openblas_option, clblast_option, cublas_option, hipblas_option, vulkan_option, default_option, clblast_noavx2_option, vulkan_noavx2_option, noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs)
# slider data
blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"]
blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"]
contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536"]
runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)]
antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if not (opt in runopts)]
if not any(runopts):
exitcounter = 999
show_gui_msgbox("No Backends Available!","KoboldCPP couldn't locate any backends to use (i.e Default, OpenBLAS, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.")
time.sleep(3)
sys.exit(2)
# Vars - should be in scope to be used by multiple widgets
gpulayers_var = ctk.StringVar(value="0")
threads_var = ctk.StringVar(value=str(default_threads))
runopts_var = ctk.StringVar()
gpu_choice_var = ctk.StringVar(value="1")
launchbrowser = ctk.IntVar(value=1)
highpriority = ctk.IntVar()
disablemmap = ctk.IntVar()
usemlock = ctk.IntVar()
debugmode = ctk.IntVar()
keepforeground = ctk.IntVar()
quietmode = ctk.IntVar(value=0)
nocertifymode = ctk.IntVar(value=0)
lowvram_var = ctk.IntVar()
mmq_var = ctk.IntVar(value=1)
blas_threads_var = ctk.StringVar()
blas_size_var = ctk.IntVar()
version_var = ctk.StringVar(value="0")
tensor_split_str_vars = ctk.StringVar(value="")
rowsplit_var = ctk.IntVar()
contextshift = ctk.IntVar(value=1)
remotetunnel = ctk.IntVar(value=0)
smartcontext = ctk.IntVar()
context_var = ctk.IntVar()
customrope_var = ctk.IntVar()
customrope_scale = ctk.StringVar(value="1.0")
customrope_base = ctk.StringVar(value="10000")
model_var = ctk.StringVar()
lora_var = ctk.StringVar()
lora_base_var = ctk.StringVar()
preloadstory_var = ctk.StringVar()
port_var = ctk.StringVar(value=defaultport)
host_var = ctk.StringVar(value="")
multiuser_var = ctk.IntVar(value=1)
horde_name_var = ctk.StringVar(value="koboldcpp")
horde_gen_var = ctk.StringVar(value=maxhordelen)
horde_context_var = ctk.StringVar(value=maxhordectx)
horde_apikey_var = ctk.StringVar(value="")
horde_workername_var = ctk.StringVar(value="")
usehorde_var = ctk.IntVar()
ssl_cert_var = ctk.StringVar()
ssl_key_var = ctk.StringVar()
sd_model_var = ctk.StringVar()
sd_quick_var = ctk.IntVar(value=0)
sd_threads_var = ctk.StringVar(value=str(default_threads))
sd_quant_var = ctk.IntVar(value=0)
def tabbuttonaction(name):
for t in tabcontent:
if name == t:
tabcontent[t].grid(row=0, column=0)
navbuttons[t].configure(fg_color="#6f727b")
else:
tabcontent[t].grid_forget()
navbuttons[t].configure(fg_color="transparent")
# Dynamically create tabs + buttons based on values of [tabnames]
for idx, name in enumerate(tabnames):
tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent")
tabcontent[name].grid_propagate(False)
if idx == 0:
tabcontent[name].grid(row=idx, sticky="nsew")
ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw')
navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" )
navbuttons[name].grid(row=idx)
tabbuttonaction(tabnames[0])
# Quick Launch Tab
quick_tab = tabcontent["Quick Launch"]
# helper functions
def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""):
temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue)
if command is not None and variable is not None:
variable.trace("w", command)
temp.grid(row=row,column=column, padx=8, pady=1, stick="nw")
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makelabel(parent, text, row, column=0, tooltiptxt=""):
temp = ctk.CTkLabel(parent, text=text)
temp.grid(row=row, column=column, padx=8, pady=1, stick="nw")
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""):
sliderLabel = makelabel(parent, options[set], row + 1, 1)
makelabel(parent, label, row,0,tooltip)
def sliderUpdate(a,b,c):
sliderLabel.configure(text = options[int(var.get())])
var.trace("w", sliderUpdate)
slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1)
slider.grid(row=row+1, column=0, padx = 8, stick="w")
slider.set(set)
return slider
def makelabelentry(parent, text, var, row=0, width= 50,tooltip=""):
label = makelabel(parent, text, row,0,tooltip)
entry = ctk.CTkEntry(parent, width=width, textvariable=var) #you cannot set placeholder text for SHARED variables
entry.grid(row=row, column=1, padx= 8, stick="nw")
return entry, label
def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, tooltiptxt=""):
makelabel(parent, text, row,0,tooltiptxt)
def getfilename(var, text):
fnam = askopenfilename(title=text,filetypes=filetypes)
if fnam:
var.set(fnam)
if onchoosefile:
onchoosefile(var.get())
entry = ctk.CTkEntry(parent, width, textvariable=var)
button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b))
if singlerow:
entry.grid(row=row, column=1, padx=8, stick="w")
button.grid(row=row, column=1, padx=144, stick="nw")
else:
entry.grid(row=row+1, column=0, padx=8, stick="nw")
button.grid(row=row+1, column=1, stick="nw")
return
# decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers
# todo: autopick the right number of layers when a model is selected.
# run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI
def auto_gpu_heuristics():
from subprocess import run, CalledProcessError
FetchedCUdevices = []
FetchedCUdeviceMem = []
AMDgpu = None
try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found.
basepath = os.path.abspath(os.path.dirname(__file__))
output = ""
data = None
try:
output = run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout
data = json.loads(output)
except Exception as e1:
output = run([((os.path.join(basepath, "winclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout
data = json.loads(output)
plat = 0
dev = 0
lowestclmem = 0
for platform in data["devices"]:
dev = 0
for device in platform["online"]:
dname = device["CL_DEVICE_NAME"]
dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"])
idx = plat+dev*2
if idx<len(CLDevices):
CLDevicesNames[idx] = dname
lowestclmem = dmem if lowestclmem==0 else (dmem if dmem<lowestclmem else lowestclmem)
dev += 1
plat += 1
MaxMemory[0] = lowestclmem
except Exception as e:
pass
try: # Get NVIDIA GPU names
output = run(['nvidia-smi','--query-gpu=name,memory.total','--format=csv,noheader'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
FetchedCUdevices = [line.split(",")[0].strip() for line in output.splitlines()]
FetchedCUdeviceMem = [line.split(",")[1].strip().split(" ")[0].strip() for line in output.splitlines()]
except Exception as e:
pass
if len(FetchedCUdevices)==0:
try: # Get AMD ROCm GPU names
output = run(['rocminfo'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
device_name = None
for line in output.splitlines(): # read through the output line by line
line = line.strip()
if line.startswith("Marketing Name:"): device_name = line.split(":", 1)[1].strip() # if we find a named device, temporarily save the name
elif line.startswith("Device Type:") and "GPU" in line and device_name is not None: # if the following Device Type is a GPU (not a CPU) then add it to devices list
FetchedCUdevices.append(device_name)
AMDgpu = True
elif line.startswith("Device Type:") and "GPU" not in line: device_name = None
if FetchedCUdevices:
getamdvram = run(['rocm-smi', '--showmeminfo', 'vram', '--csv'], capture_output=True, text=True, check=True, encoding='utf-8').stdout # fetch VRAM of devices
FetchedCUdeviceMem = [line.split(",")[1].strip() for line in getamdvram.splitlines()[1:] if line.strip()]
except Exception as e:
pass
try: # Get Vulkan names
output = run(['vulkaninfo','--summary'], capture_output=True, text=True, check=True, encoding='utf-8').stdout
devicelist = [line.split("=")[1].strip() for line in output.splitlines() if "deviceName" in line]
idx = 0
for dname in devicelist:
if idx<len(VKDevicesNames):
VKDevicesNames[idx] = dname
idx += 1
except Exception as e:
pass
for idx in range(0,4):
if(len(FetchedCUdevices)>idx):
CUDevicesNames[idx] = FetchedCUdevices[idx]
if AMDgpu:
MaxMemory[0] = max(int(FetchedCUdeviceMem[idx]),MaxMemory[0])
else:
MaxMemory[0] = max(int(FetchedCUdeviceMem[idx])*1024*1024,MaxMemory[0])
#autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick
global exitcounter, runmode_untouched
#we do not want to autoselect hip/cublas if the user has already changed their desired backend!
if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched:
if "Use CuBLAS" in runopts:
runopts_var.set("Use CuBLAS")
elif "Use hipBLAS (ROCm)" in runopts:
runopts_var.set("Use hipBLAS (ROCm)")
changed_gpu_choice_var()
return
def on_picked_model_file(filepath):
if filepath.lower().endswith('.kcpps'):
#load it as a config file instead
with open(filepath, 'r') as f:
dict = json.load(f)
import_vars(dict)
else:
autoset_gpu_layers(filepath)
def autoset_gpu_layers(filepath): #shitty algo to determine how many layers to use
try:
global gui_layers_untouched
fsize = os.path.getsize(filepath)
if fsize>10000000: #dont bother with models < 10mb
cs = int(contextsize_text[context_var.get()])
mem = MaxMemory[0]
layerlimit = 0
if cs and cs > 4096:
fsize *= 1.2
elif cs and cs > 2048:
fsize *= 1.1
if mem < fsize*1.6:
sizeperlayer = fsize*0.052
layerlimit = int(min(200,mem/sizeperlayer))
else:
layerlimit = 200 #assume full offload
old_gui_layers_untouched = gui_layers_untouched
gui_layers_zeroed = gpulayers_var.get()=="" or gpulayers_var.get()=="0"
if (gui_layers_untouched or gui_layers_zeroed) and layerlimit>0:
gpulayers_var.set(str(layerlimit))
gui_layers_untouched = old_gui_layers_untouched
if gui_layers_zeroed:
gui_layers_untouched = True
except Exception as ex:
pass
def setup_backend_tooltip(parent):
# backend count label with the tooltip function
nl = '\n'
tooltxt = f"Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) != 6 else "")
num_backends_built = makelabel(parent, str(len(runopts)) + f"/9", 5, 2,tooltxt)
num_backends_built.grid(row=1, column=1, padx=195, pady=0)
num_backends_built.configure(text_color="#00ff00")
def changed_gpulayers(*args):
global gui_layers_untouched
gui_layers_untouched = False
pass
def changed_gpu_choice_var(*args):
global exitcounter
if exitcounter > 100:
return
if gpu_choice_var.get()!="All":
try:
s = int(gpu_choice_var.get())-1
v = runopts_var.get()
if v == "Use Vulkan" or v == "Vulkan NoAVX2 (Old CPU)":
quick_gpuname_label.configure(text=VKDevicesNames[s])
gpuname_label.configure(text=VKDevicesNames[s])
elif v == "Use CLBlast" or v == "CLBlast NoAVX2 (Old CPU)":
quick_gpuname_label.configure(text=CLDevicesNames[s])
gpuname_label.configure(text=CLDevicesNames[s])
else:
quick_gpuname_label.configure(text=CUDevicesNames[s])
gpuname_label.configure(text=CUDevicesNames[s])
except Exception as ex:
pass
else:
quick_gpuname_label.configure(text="")
gpuname_label.configure(text="")
gpu_choice_var.trace("w", changed_gpu_choice_var)
gpulayers_var.trace("w", changed_gpulayers)
def togglectxshift(a,b,c):
if contextshift.get()==0:
smartcontextbox.grid(row=1, column=0, padx=8, pady=1, stick="nw")
else:
smartcontextbox.grid_forget()
def changerunmode(a,b,c):
global runmode_untouched
runmode_untouched = False
index = runopts_var.get()
if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)":
gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
if gpu_choice_var.get()=="All":
gpu_choice_var.set("1")
elif index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
else:
quick_gpuname_label.grid_forget()
gpuname_label.grid_forget()
gpu_selector_label.grid_forget()
gpu_selector_box.grid_forget()
CUDA_gpu_selector_box.grid_forget()
quick_gpu_selector_label.grid_forget()
quick_gpu_selector_box.grid_forget()
CUDA_quick_gpu_selector_box.grid_forget()
if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw")
quick_lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw")
mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw")
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
else:
lowvram_box.grid_forget()
quick_lowvram_box.grid_forget()
mmq_box.grid_forget()
quick_mmq_box.grid_forget()
tensor_split_label.grid_forget()
tensor_split_entry.grid_forget()
splitmode_box.grid_forget()
if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)":
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
else:
gpu_layers_label.grid_forget()
gpu_layers_entry.grid_forget()
quick_gpu_layers_label.grid_forget()
quick_gpu_layers_entry.grid_forget()
changed_gpu_choice_var()
# presets selector
makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(quick_tab)
# gpu options
quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
quick_gpuname_label = ctk.CTkLabel(quick_tab, text="")
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
quick_gpuname_label.configure(text_color="#ffff00")
quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.")
quick_lowvram_box = makecheckbox(quick_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0,tooltiptxt="Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.")
quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.")
# quick boxes
quick_boxes = {"Launch Browser": launchbrowser , "Disable MMAP":disablemmap,"Use ContextShift":contextshift,"Remote Tunnel":remotetunnel}
quick_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete",
"Disable MMAP":"Avoids using mmap to load models if enabled",
"Use ContextShift":"Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.",
"Remote Tunnel":"Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."}
for idx, name, in enumerate(quick_boxes):
makecheckbox(quick_tab, name, quick_boxes[name], int(idx/2) +20, idx%2,tooltiptxt=quick_boxes_desc[name])
# context size
makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
# load model
makefileentry(quick_tab, "Model:", "Select GGML Model File", model_var, 40, 170, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
# Hardware Tab
hardware_tab = tabcontent["Hardware"]
# presets selector
makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(hardware_tab)
# gpu options
gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
gpuname_label = ctk.CTkLabel(hardware_tab, text="")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.configure(text_color="#ffff00")
gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.")
tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.')
lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.')
mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.")
splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.")
# threads
makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,"How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.")
# hardware checkboxes
hardware_boxes = {"Launch Browser": launchbrowser, "High Priority" : highpriority, "Disable MMAP":disablemmap, "Use mlock":usemlock, "Debug Mode":debugmode, "Keep Foreground":keepforeground}
hardware_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete",
"High Priority": "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended.",
"Disable MMAP": "Avoids using mmap to load models if enabled",
"Use mlock": "Enables mlock, preventing the RAM used to load the model from being paged out.",
"Debug Mode": "Enables debug mode, with extra info printed to the terminal.",
"Keep Foreground": "Bring KoboldCpp to the foreground every time there is a new generation."}
for idx, name, in enumerate(hardware_boxes):
makecheckbox(hardware_tab, name, hardware_boxes[name], int(idx/2) +30, idx%2, tooltiptxt=hardware_boxes_desc[name])
# blas thread specifier
makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,"How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.")
# blas batch size
makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.")
# force version
makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,"If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.")
runopts_var.trace('w', changerunmode)
changerunmode(1,1,1)
global runmode_untouched
runmode_untouched = True
# Tokens Tab
tokens_tab = tabcontent["Tokens"]
# tokens checkboxes
smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.")
makecheckbox(tokens_tab, "Use ContextShift", contextshift, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift)
togglectxshift(1,1,1)
# context size
makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale,tooltip="For Linear RoPE scaling. RoPE frequency scale.")
customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base,tooltip="For NTK Aware Scaling. RoPE frequency base.")
def togglerope(a,b,c):
items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry]
for idx, item in enumerate(items):
if customrope_var.get() == 1:
item.grid(row=23 + int(idx/2), column=idx%2, padx=8, stick="nw")
else:
item.grid_forget()
makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.")
togglerope(1,1,1)
# Model Tab
model_tab = tabcontent["Model"]
makefileentry(model_tab, "Model:", "Select GGML Model File", model_var, 1, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
makefileentry(model_tab, "Lora:", "Select Lora File",lora_var, 3,tooltiptxt="Select an optional GGML LoRA adapter to use.\nLeave blank to skip.")
makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,tooltiptxt="Select an optional F16 GGML LoRA base file to use.\nLeave blank to skip.")
makefileentry(model_tab, "Preloaded Story:", "Select Preloaded Story File", preloadstory_var, 7,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.")
# Network Tab
network_tab = tabcontent["Network"]
# interfaces
makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip="Select the port to host the KoboldCPP webserver.\n(Defaults to 5001)")
makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)")
makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.")
makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.")
makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.")
makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.")
makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 5, width=130 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.")
makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 7, width=130, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.")
# horde
makelabel(network_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10)
horde_name_entry, horde_name_label = makelabelentry(network_tab, "Horde Model Name:", horde_name_var, 20, 180,"The model name to be displayed on the AI Horde.")
horde_gen_entry, horde_gen_label = makelabelentry(network_tab, "Gen. Length:", horde_gen_var, 21, 50,"The maximum amount to generate per request \nthat this worker will accept jobs for.")
horde_context_entry, horde_context_label = makelabelentry(network_tab, "Max Context:",horde_context_var, 22, 50,"The maximum context length \nthat this worker will accept jobs for.")
horde_apikey_entry, horde_apikey_label = makelabelentry(network_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,"Your AI Horde API Key that you have registered.")
horde_workername_entry, horde_workername_label = makelabelentry(network_tab, "Horde Worker Name:",horde_workername_var, 24, 180,"Your worker's name to be displayed.")
def togglehorde(a,b,c):
labels = [horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label]
for idx, item in enumerate([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry]):
if usehorde_var.get() == 1:
item.grid(row=20 + idx, column = 1, padx=8, pady=1, stick="nw")
labels[idx].grid(row=20 + idx, padx=8, pady=1, stick="nw")
else:
item.grid_forget()
labels[idx].grid_forget()
if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="":
basefile = os.path.basename(model_var.get())
horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0]))
makecheckbox(network_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.")
togglehorde(1,1,1)
# Image Gen Tab
images_tab = tabcontent["Image Gen"]
makefileentry(images_tab, "Stable Diffusion Model (safetensors/gguf):", "Select Stable Diffusion Model File", sd_model_var, 1, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Stable Diffusion model file on disk to be loaded.")
makecheckbox(images_tab, "Quick Mode (Low Quality)", sd_quick_var, 4,tooltiptxt="Force optimal generation settings for speed.")
makelabelentry(images_tab, "Image threads:" , sd_threads_var, 6, 50,"How many threads to use during image generation.\nIf left blank, uses same value as threads.")
makecheckbox(images_tab, "Compress Weights (Saves Memory)", sd_quant_var, 8,tooltiptxt="Quantizes the SD model weights to save memory. May degrade quality.")
# launch
def guilaunch():
if model_var.get() == "" and sd_model_var.get() == "":
tmp = askopenfilename(title="Select ggml model .bin or .gguf file")
model_var.set(tmp)
nonlocal nextstate
nextstate = 1
root.destroy()
pass
def export_vars():
args.threads = int(threads_var.get())
args.usemlock = usemlock.get() == 1
args.debugmode = debugmode.get()
args.launch = launchbrowser.get()==1
args.highpriority = highpriority.get()==1
args.nommap = disablemmap.get()==1
args.smartcontext = smartcontext.get()==1
args.noshift = contextshift.get()==0
args.remotetunnel = remotetunnel.get()==1
args.foreground = keepforeground.get()==1
args.quiet = quietmode.get()==1
args.nocertify = nocertifymode.get()==1
gpuchoiceidx = 0
if gpu_choice_var.get()!="All":
gpuchoiceidx = int(gpu_choice_var.get())-1
if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "CLBlast NoAVX2 (Old CPU)":
args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx]
if runopts_var.get() == "CLBlast NoAVX2 (Old CPU)":
args.noavx2 = True
if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)":
if gpu_choice_var.get()=="All":
args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"]
else:
args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)]
if mmq_var.get()==1:
args.usecublas.append("mmq")
if rowsplit_var.get()==1:
args.usecublas.append("rowsplit")
if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Vulkan NoAVX2 (Old CPU)":
args.usevulkan = [int(gpuchoiceidx)]
if runopts_var.get() == "Vulkan NoAVX2 (Old CPU)":
args.noavx2 = True
if gpulayers_var.get():
args.gpulayers = int(gpulayers_var.get())
if runopts_var.get()=="Use No BLAS":
args.noblas = True
if runopts_var.get()=="NoAVX2 Mode (Old CPU)":
args.noavx2 = True
if runopts_var.get()=="Failsafe Mode (Old CPU)":
args.noavx2 = True
args.noblas = True
args.nommap = True
if tensor_split_str_vars.get()!="":
tssv = tensor_split_str_vars.get()
if "," in tssv:
args.tensor_split = [float(x) for x in tssv.split(",")]
else:
args.tensor_split = [float(x) for x in tssv.split(" ")]
args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get())
args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())])
args.forceversion = 0 if version_var.get()=="" else int(version_var.get())
args.contextsize = int(contextsize_text[context_var.get()])
if customrope_var.get()==1:
args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())]
args.model_param = None if model_var.get() == "" else model_var.get()
args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()])
args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get()
args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()])
args.port_param = defaultport if port_var.get()=="" else int(port_var.get())
args.host = host_var.get()
args.multiuser = multiuser_var.get()
if horde_apikey_var.get()=="" or horde_workername_var.get()=="":
args.hordeconfig = None if usehorde_var.get() == 0 else [horde_name_var.get(), horde_gen_var.get(), horde_context_var.get()]
else:
args.hordeconfig = None if usehorde_var.get() == 0 else [horde_name_var.get(), horde_gen_var.get(), horde_context_var.get(), horde_apikey_var.get(), horde_workername_var.get()]
args.sdconfig = None if sd_model_var.get() == "" else [sd_model_var.get(), ("quick" if sd_quick_var.get()==1 else "normal"),(int(threads_var.get()) if sd_threads_var.get()=="" else int(sd_threads_var.get())),("quant" if sd_quant_var.get()==1 else "noquant")]
def import_vars(dict):
if "threads" in dict:
threads_var.set(dict["threads"])
usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0)
if "debugmode" in dict:
debugmode.set(dict["debugmode"])
launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0)
highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0)
disablemmap.set(1 if "nommap" in dict and dict["nommap"] else 0)
smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0)
contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1)
remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0)
keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0)
quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0)
nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0)
if "useclblast" in dict and dict["useclblast"]:
if "noavx2" in dict and dict["noavx2"]:
if clblast_noavx2_option is not None:
runopts_var.set(clblast_noavx2_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
else:
if clblast_option is not None:
runopts_var.set(clblast_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
elif "usecublas" in dict and dict["usecublas"]:
if cublas_option is not None or hipblas_option is not None:
if cublas_option:
runopts_var.set(cublas_option)
elif hipblas_option:
runopts_var.set(hipblas_option)
lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0)
mmq_var.set(1 if "mmq" in dict["usecublas"] else 0)
rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0)
gpu_choice_var.set("All")
for g in range(4):
if str(g) in dict["usecublas"]:
gpu_choice_var.set(str(g+1))
break
elif "usevulkan" in dict:
if "noavx2" in dict and dict["noavx2"]:
if vulkan_noavx2_option is not None:
runopts_var.set(vulkan_noavx2_option)
gpu_choice_var.set("1")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
else:
if vulkan_option is not None:
runopts_var.set(vulkan_option)
gpu_choice_var.set("1")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
elif "noavx2" in dict and "noblas" in dict and dict["noblas"] and dict["noavx2"]:
if failsafe_option is not None:
runopts_var.set(failsafe_option)
elif "noavx2" in dict and dict["noavx2"]:
if noavx2_option is not None:
runopts_var.set(noavx2_option)
elif "noblas" in dict and dict["noblas"]:
if default_option is not None:
runopts_var.set(default_option)
elif openblas_option is not None:
runopts_var.set(openblas_option)
if "gpulayers" in dict and dict["gpulayers"]:
gpulayers_var.set(dict["gpulayers"])
if "tensor_split" in dict and dict["tensor_split"]:
tssep = ','.join(map(str, dict["tensor_split"]))
tensor_split_str_vars.set(tssep)
if "blasthreads" in dict and dict["blasthreads"]:
blas_threads_var.set(str(dict["blasthreads"]))
else:
blas_threads_var.set("")
if "contextsize" in dict and dict["contextsize"]:
context_var.set(contextsize_text.index(str(dict["contextsize"])))
if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1:
if dict["ropeconfig"][0]>0:
customrope_var.set(1)
customrope_scale.set(str(dict["ropeconfig"][0]))
customrope_base.set(str(dict["ropeconfig"][1]))
else:
customrope_var.set(0)
if "blasbatchsize" in dict and dict["blasbatchsize"]:
blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"])))
if "forceversion" in dict and dict["forceversion"]:
version_var.set(str(dict["forceversion"]))
if "model_param" in dict and dict["model_param"]:
model_var.set(dict["model_param"])
if "lora" in dict and dict["lora"]:
if len(dict["lora"]) > 1:
lora_var.set(dict["lora"][0])
lora_base_var.set(dict["lora"][1])
else:
lora_var.set(dict["lora"][0])
if "ssl" in dict and dict["ssl"]:
if len(dict["ssl"]) == 2:
ssl_cert_var.set(dict["ssl"][0])
ssl_key_var.set(dict["ssl"][1])
if "preloadstory" in dict and dict["preloadstory"]:
preloadstory_var.set(dict["preloadstory"])
if "port_param" in dict and dict["port_param"]:
port_var.set(dict["port_param"])
if "host" in dict and dict["host"]:
host_var.set(dict["host"])
if "multiuser" in dict:
multiuser_var.set(dict["multiuser"])
if "hordeconfig" in dict and dict["hordeconfig"] and len(dict["hordeconfig"]) > 1:
horde_name_var.set(dict["hordeconfig"][0])
horde_gen_var.set(dict["hordeconfig"][1])
horde_context_var.set(dict["hordeconfig"][2])
if len(dict["hordeconfig"]) > 4:
horde_apikey_var.set(dict["hordeconfig"][3])
horde_workername_var.set(dict["hordeconfig"][4])
usehorde_var.set("1")
if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"]) > 0:
sd_model_var.set(dict["sdconfig"][0])
if len(dict["sdconfig"]) > 1:
sd_quick_var.set(1 if dict["sdconfig"][1]=="quick" else 0)
if len(dict["sdconfig"]) > 2:
sd_threads_var.set(str(dict["sdconfig"][2]))
if len(dict["sdconfig"]) > 3:
sd_quant_var.set(str(dict["sdconfig"][3])=="quant")
def save_config():
file_type = [("KoboldCpp Settings", "*.kcpps")]
filename = asksaveasfile(filetypes=file_type, defaultextension=file_type)
if filename == None: return
export_vars()
file = open(str(filename.name), 'a')
file.write(json.dumps(args.__dict__))
file.close()
pass
def load_config():
file_type = [("KoboldCpp Settings", "*.kcpps")]
global runmode_untouched
runmode_untouched = False
filename = askopenfilename(filetypes=file_type, defaultextension=file_type)
if not filename or filename=="":
return
with open(filename, 'r') as f:
dict = json.load(f)
import_vars(dict)
pass
def display_help():
try:
import webbrowser as wb
wb.open("https://github.com/LostRuins/koboldcpp/wiki")
except:
print("Cannot launch help in browser.")
def display_updates():
try:
import webbrowser as wb
wb.open("https://github.com/LostRuins/koboldcpp/releases/latest")
except:
print("Cannot launch updates in browser.")
ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5)
ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5)
ctk.CTkButton(tabs , text = "Help", fg_color="#992222", hover_color="#bb3333", command = display_help, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5)
# start a thread that tries to get actual gpu names and layer counts
gpuinfo_thread = threading.Thread(target=auto_gpu_heuristics)
gpuinfo_thread.start() #submit job in new thread so nothing is waiting
# runs main loop until closed or launch clicked
root.mainloop()
if nextstate==0:
exitcounter = 999
print("Exiting by user request.")
time.sleep(3)
sys.exit(0)
else:
# processing vars
export_vars()
if not args.model_param and not args.sdconfig:
exitcounter = 999
print("\nNo text or image model file was selected. Exiting.")
time.sleep(3)
sys.exit(2)
def show_gui_msgbox(title,message):
print(title + ": " + message)
try:
from tkinter import messagebox
import tkinter as tk
root = tk.Tk()
root.attributes("-alpha", 0)
messagebox.showerror(title=title, message=message)
root.destroy()
except Exception as ex2:
pass
def print_with_time(txt):
from datetime import datetime
print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True)
def make_url_request(url, data, method='POST', headers={}):
import urllib.request, ssl
global nocertify
try:
request = None
ssl_context = ssl.create_default_context()
if nocertify:
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
if method=='POST':
json_payload = json.dumps(data).encode('utf-8')
request = urllib.request.Request(url, data=json_payload, headers=headers, method=method)
request.add_header('content-type', 'application/json')
else:
request = urllib.request.Request(url, headers=headers, method=method)
response_data = ""
with urllib.request.urlopen(request,context=ssl_context) as response:
response_data = response.read().decode('utf-8')
json_response = json.loads(response_data)
return json_response
except urllib.error.HTTPError as e:
try:
errmsg = e.read().decode('utf-8')
print_with_time(f"Error: {e} - {errmsg}")
except Exception as e:
print_with_time(f"Error: {e}")
return None
except Exception as e:
print_with_time(f"Error: {e} - {response_data}")
return None
#A very simple and stripped down embedded horde worker with no dependencies
def run_horde_worker(args, api_key, worker_name):
from datetime import datetime
import random
global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime
epurl = f"http://localhost:{args.port}"
if args.host!="":
epurl = f"http://{args.host}:{args.port}"
def submit_completed_generation(url, jobid, sessionstart, submit_dict):
global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter
reply = make_url_request_horde(url, submit_dict)
if not reply:
punishcounter += 1
print_with_time(f"Error, Job submit failed.")
else:
reward = reply["reward"]
session_kudos_earned += reward
session_jobs += 1
curtime = datetime.now()
elapsedtime=curtime-sessionstart
hrs = int(elapsedtime.total_seconds()) // 3600
mins = elapsedtime.seconds // 60 % 60
secs = elapsedtime.seconds % 60
elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s"
earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600)
print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]')
rewardcounter += 1
if rewardcounter > 50:
rewardcounter = 0
if exitcounter > 1:
exitcounter -= 1
def make_url_request_horde(url, data, method='POST'):
headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'}
ret = make_url_request(url, data, method, headers)
if not ret:
print("Make sure your Horde API key and worker name is valid!")
return ret
current_id = None
current_payload = None
current_generation = None
session_starttime = datetime.now()
sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower)
exitcounter = 0
print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own KAI Bridge/Scribe worker instead, don't set your API key)")
BRIDGE_AGENT = f"KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp"
cluster = "https://horde.koboldai.net"
while exitcounter < 10:
time.sleep(3)
readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET')
if readygo:
print_with_time(f"Embedded Horde Worker '{worker_name}' is started.")
break
while exitcounter < 10:
currentjob_attempts = 0
current_generation = None
if punishcounter >= 5:
punishcounter = 0
exitcounter += 1
if exitcounter < 10:
penaltytime = (2 ** exitcounter)
print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.")
print_with_time(f"Caution: Too many failed jobs may lead to entering maintenance mode.")
time.sleep(60 * penaltytime)
else:
print_with_time(f"Horde Worker Exit limit reached, too many errors.")
#first, make sure we are not generating
if modelbusy.locked():
time.sleep(0.2)
continue
#pop new request
gen_dict = {
"name": worker_name,
"models": [friendlymodelname],
"max_length": maxhordelen,
"max_context_length": maxhordectx,
"priority_usernames": [],
"softprompts": [],
"bridge_agent": BRIDGE_AGENT,
}
pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict)
if not pop:
punishcounter += 1
print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...")
time.sleep(10)
continue
if not pop["id"]:
slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3))
time.sleep(slp)
sleepy_counter += 1
if sleepy_counter==20:
print_with_time(f"No recent jobs, entering low power mode...")
continue
sleepy_counter = 0
current_id = pop['id']
current_payload = pop['payload']
print(f"") #empty newline
print_with_time(f"Job received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...")
#do gen
while exitcounter < 10:
if not modelbusy.locked():
#horde gets a genkey to avoid KCPP overlap
current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}"
current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload)
if current_generation:
break
else:
currentjob_attempts += 1
if currentjob_attempts>5:
break
print_with_time(f"Server Busy - Not ready to generate...")
time.sleep(5)
#submit reply
print(f"") #empty newline
if current_generation:
submit_dict = {
"id": current_id,
"generation": current_generation["results"][0]["text"],
"state": "ok"
}
submiturl = cluster + '/api/v2/generate/text/submit'
submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict))
submit_thread.start() #submit job in new thread so nothing is waiting
else:
print_with_time(f"Error, Abandoned current job due to errors. Getting new job.")
current_id = None
current_payload = None
time.sleep(0.1)
if exitcounter<100:
print_with_time(f"Horde Worker Shutdown - Too many errors.")
else:
print_with_time(f"Horde Worker Shutdown - Server Closing.")
exitcounter = 999
time.sleep(3)
sys.exit(2)
def setuptunnel():
# This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet
# It should work out of the box on both linux and windows
try:
import subprocess, re
def run_tunnel():
tunnelproc = None
tunneloutput = ""
tunnelrawlog = ""
time.sleep(0.2)
if os.name == 'nt':
print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
elif sys.platform=="darwin":
print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"./cloudflared tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
else:
print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True)
tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
time.sleep(10)
def tunnel_reader():
nonlocal tunnelproc,tunneloutput,tunnelrawlog
pattern = r'https://[\w\.-]+\.trycloudflare\.com'
while True:
line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason
tunnelrawlog += line+"\n"
if not line:
return
found = re.findall(pattern, line)
for x in found:
tunneloutput = x
print(f"Your remote Kobold API can be found at {tunneloutput}/api")
print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1")
print("======\n")
print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True)
return
tunnel_reader_thread = threading.Thread(target=tunnel_reader)
tunnel_reader_thread.start()
time.sleep(5)
if tunneloutput=="":
print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True)
time.sleep(0.5)
tunnelproc.wait()
if os.name == 'nt':
if os.path.exists("cloudflared.exe") and os.path.getsize("cloudflared.exe") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for Windows...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe -o cloudflared.exe", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
elif sys.platform=="darwin":
if os.path.exists("cloudflared") and os.path.getsize("cloudflared") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for MacOS...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz -o cloudflared-darwin-amd64.tgz", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True)
subprocess.run("chmod +x 'cloudflared'", shell=True)
else:
if os.path.exists("cloudflared-linux-amd64") and os.path.getsize("cloudflared-linux-amd64") > 1000000:
print("Cloudflared file exists, reusing it...")
else:
print("Downloading Cloudflare Tunnel for Linux...")
subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared-linux-amd64", shell=True, capture_output=True, text=True, check=True, encoding='utf-8')
subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True)
print("Attempting to start tunnel thread...", flush=True)
tunnel_thread = threading.Thread(target=run_tunnel)
tunnel_thread.start()
except Exception as ex:
print("Remote Tunnel Failed!")
print(str(ex))
return None
def unload_libs():
global handle
import platform
OS = platform.system()
dll_close = None
if OS == "Windows": # pragma: Windows
from ctypes import wintypes
dll_close = ctypes.windll.kernel32.FreeLibrary
dll_close.argtypes = [wintypes.HMODULE]
dll_close.restype = ctypes.c_int
elif OS == "Darwin":
try:
try: # macOS 11 (Big Sur). Possibly also later macOS 10s.
stdlib = ctypes.CDLL("libc.dylib")
except OSError:
stdlib = ctypes.CDLL("libSystem")
except OSError:
# Older macOSs. Not only is the name inconsistent but it's
# not even in PATH.
stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif OS == "Linux":
try:
stdlib = ctypes.CDLL("")
except OSError:
stdlib = ctypes.CDLL("libc.so") # Alpine Linux.
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif sys.platform == "msys":
# msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`.
stdlib = ctypes.CDLL("msys-2.0.dll")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif sys.platform == "cygwin":
stdlib = ctypes.CDLL("cygwin1.dll")
dll_close = stdlib.dlclose
dll_close.argtypes = [ctypes.c_void_p]
dll_close.restype = ctypes.c_int
elif OS == "FreeBSD":
# FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number.
# It is not in PATH but using its name instead of its path is somehow the
# only way to open it. The name must include the .so.7 suffix.
stdlib = ctypes.CDLL("libc.so.7")
dll_close = stdlib.close
if handle and dll_close:
print("Unloading Libraries...")
dll_close(handle._handle)
del handle.load_model
del handle.generate
del handle.new_token
del handle.get_stream_count
del handle.has_finished
del handle.get_last_eval_time
del handle.get_last_process_time
del handle.get_last_token_count
del handle.get_last_seed
del handle.get_total_gens
del handle.get_last_stop_reason
del handle.abort_generate
del handle.token_count
del handle.get_pending_output
del handle
handle = None
def loadconfigfile(filename):
print("Loading kcpps configuration file...")
with open(filename, 'r') as f:
config = json.load(f)
for key, value in config.items():
setattr(args, key, value)
def sanitize_string(input_string):
# alphanumeric characters, dots, dashes, and underscores
import re
sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string)
return sanitized_string
def main(launch_args,start_server=True):
global args, friendlymodelname, friendlysdmodelname, fullsdmodelpath
args = launch_args
embedded_kailite = None
embedded_kcpp_docs = None
if args.config and len(args.config)==1:
if isinstance(args.config[0], str) and os.path.exists(args.config[0]):
loadconfigfile(args.config[0])
else:
global exitcounter
exitcounter = 999
print("Specified kcpp config file invalid or not found.")
time.sleep(3)
sys.exit(2)
#positional handling for kcpps files (drag and drop)
if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'):
loadconfigfile(args.model_param)
if not args.model_param:
args.model_param = args.model
if not args.model_param and not args.sdconfig:
#give them a chance to pick a file
print("For command line arguments, please refer to --help")
print("***")
try:
show_new_gui()
except Exception as ex:
exitcounter = 999
ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\nPlease check command line: script.py --help"
show_gui_msgbox("Warning, GUI failed to start",ermsg)
time.sleep(3)
sys.exit(2)
#try to read story if provided
if args.preloadstory:
if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory):
print(f"Preloading saved story {args.preloadstory} into server...")
with open(args.preloadstory, mode='rb') as f:
global preloaded_story
preloaded_story = f.read()
print("Saved story preloaded.")
else:
print(f"Warning: Saved story file {args.preloadstory} invalid or not found. No story will be preloaded into server.")
# sanitize and replace the default vanity name. remember me....
if args.model_param and args.model_param!="":
newmdldisplayname = os.path.basename(args.model_param)
newmdldisplayname = os.path.splitext(newmdldisplayname)[0]
friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname)
if args.hordeconfig and args.hordeconfig[0]!="":
global maxhordelen, maxhordectx, showdebug
friendlymodelname = args.hordeconfig[0]
if args.debugmode == 1:
friendlymodelname = "debug-" + friendlymodelname
if not friendlymodelname.startswith("koboldcpp/"):
friendlymodelname = "koboldcpp/" + friendlymodelname
if len(args.hordeconfig) > 1:
maxhordelen = int(args.hordeconfig[1])
if len(args.hordeconfig) > 2:
maxhordectx = int(args.hordeconfig[2])
if args.debugmode == 0:
args.debugmode = -1
if args.debugmode != 1:
showdebug = False
if args.highpriority:
print("Setting process to Higher Priority - Use Caution")
try:
import psutil
os_used = sys.platform
process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU
oldprio = process.nice()
if os_used == "win32": # Windows (either 32-bit or 64-bit)
process.nice(psutil.REALTIME_PRIORITY_CLASS)
print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice()))
elif os_used == "linux": # linux
process.nice(psutil.IOPRIO_CLASS_RT)
print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice()))
else: # MAC OS X or other
process.nice(-18)
print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice()))
except Exception as ex:
print("Error, Could not change process priority: " + str(ex))
if args.contextsize:
global maxctx
maxctx = args.contextsize
if args.nocertify:
global nocertify
nocertify = True
init_library() # Note: if blas does not exist and is enabled, program will crash.
print("==========")
time.sleep(1)
#handle loading text model
if args.model_param:
if not os.path.exists(args.model_param):
exitcounter = 999
print(f"Cannot find text model file: {args.model_param}")
time.sleep(3)
sys.exit(2)
if args.lora and args.lora[0]!="":
if not os.path.exists(args.lora[0]):
exitcounter = 999
print(f"Cannot find lora file: {args.lora[0]}")
time.sleep(3)
sys.exit(2)
else:
args.lora[0] = os.path.abspath(args.lora[0])
if len(args.lora) > 1:
if not os.path.exists(args.lora[1]):
exitcounter = 999
print(f"Cannot find lora base: {args.lora[1]}")
time.sleep(3)
sys.exit(2)
else:
args.lora[1] = os.path.abspath(args.lora[1])
if not args.blasthreads or args.blasthreads <= 0:
args.blasthreads = args.threads
modelname = os.path.abspath(args.model_param)
print(args)
# Flush stdout for win32 issue with regards to piping in terminals,
# especially before handing over to C++ context.
print(f"==========\nLoading model: {modelname} \n[Threads: {args.threads}, BlasThreads: {args.blasthreads}, SmartContext: {args.smartcontext}, ContextShift: {not (args.noshift)}]", flush=True)
loadok = load_model(modelname)
print("Load Text Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
print("Could not load text model: " + modelname)
time.sleep(3)
sys.exit(3)
#handle loading image model
if args.sdconfig:
imgmodel = args.sdconfig[0]
if not imgmodel or not os.path.exists(imgmodel):
exitcounter = 999
print(f"Cannot find image model file: {imgmodel}")
time.sleep(3)
sys.exit(2)
imgmodel = os.path.abspath(imgmodel)
fullsdmodelpath = imgmodel
friendlysdmodelname = os.path.basename(imgmodel)
friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0]
friendlysdmodelname = sanitize_string(friendlysdmodelname)
loadok = sd_load_model(imgmodel)
print("Load Image Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
print("Could not load image model: " + imgmodel)
time.sleep(3)
sys.exit(3)
#load embedded lite
try:
basepath = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(basepath, "klite.embd"), mode='rb') as f:
embedded_kailite = f.read()
# patch it with extra stuff
origStr = "Sorry, Kobold Lite requires Javascript to function."
patchedStr = "Sorry, Kobold Lite requires Javascript to function.<br>You can use <a class=\"color_blueurl\" href=\"/noscript\">KoboldCpp NoScript mode</a> instead."
embedded_kailite = embedded_kailite.decode("UTF-8","ignore")
embedded_kailite = embedded_kailite.replace(origStr, patchedStr)
embedded_kailite = embedded_kailite.encode()
print("Embedded Kobold Lite loaded.")
except Exception as e:
print("Could not find Kobold Lite. Embedded Kobold Lite will not be available.")
try:
basepath = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f:
embedded_kcpp_docs = f.read()
except Exception as e:
print("Could not find Embedded KoboldCpp API docs.")
if args.port_param!=defaultport:
args.port = args.port_param
global sslvalid
if args.ssl:
if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]):
sslvalid = True
print("SSL configuration is valid and will be used.")
else:
print("Your SSL configuration is INVALID. SSL will not be used.")
epurl = ""
httpsaffix = ("https" if sslvalid else "http")
if args.host=="":
epurl = f"{httpsaffix}://localhost:{args.port}"
else:
epurl = f"{httpsaffix}://{args.host}:{args.port}"
if not args.remotetunnel:
print(f"Starting Kobold API on port {args.port} at {epurl}/api/")
print(f"Starting OpenAI Compatible API on port {args.port} at {epurl}/v1/")
if args.launch:
try:
import webbrowser as wb
wb.open(epurl)
except:
print("--launch was set, but could not launch web browser automatically.")
if args.hordeconfig and len(args.hordeconfig)>4:
horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordeconfig[3],args.hordeconfig[4]))
horde_thread.daemon = True
horde_thread.start()
#if post-ready script specified, execute it
if args.onready:
def onready_subprocess():
import subprocess
print("Starting Post-Load subprocess...")
subprocess.run(args.onready[0], shell=True)
timer_thread = threading.Timer(1, onready_subprocess) #1 second delay
timer_thread.start()
if args.model_param and args.benchmark is not None:
from datetime import datetime, timezone
global libname
start_server = False
save_to_file = (args.benchmark!="stdout" and args.benchmark!="")
benchmaxctx = (2048 if maxctx>2048 else maxctx)
benchlen = 100
benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0])
if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000:
print(f"\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.")
save_to_file = False
if save_to_file:
print(f"\nRunning benchmark (Save to File: {args.benchmark})...")
else:
print(f"\nRunning benchmark (Not Saved)...")
benchprompt = "11111111"
for i in range(0,10): #generate massive prompt
benchprompt += benchprompt
result = generate(benchprompt,memory="",max_length=benchlen,max_context_length=benchmaxctx,temperature=0.1,top_k=1,rep_pen=1,use_default_badwordsids=True)
result = (result[:5] if len(result)>5 else "")
resultok = (result=="11111")
t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001
t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001
s_pp = float(benchmaxctx-benchlen)/t_pp
s_gen = float(benchlen)/t_gen
datetimestamp = datetime.now(timezone.utc)
print(f"\nBenchmark Completed - Results:\n======")
print(f"Timestamp: {datetimestamp}")
print(f"Backend: {libname}")
print(f"Layers: {args.gpulayers}")
print(f"Model: {benchmodel}")
print(f"MaxCtx: {benchmaxctx}")
print(f"GenAmount: {benchlen}\n-----")
print(f"ProcessingTime: {t_pp:.2f}s")
print(f"ProcessingSpeed: {s_pp:.2f}T/s")
print(f"GenerationTime: {t_gen:.2f}s")
print(f"GenerationSpeed: {s_gen:.2f}T/s")
print(f"TotalTime: {(t_pp+t_gen):.2f}s")
print(f"Coherent: {resultok}")
print(f"Output: {result}\n-----")
if save_to_file:
try:
with open(args.benchmark, "a") as file:
file.seek(0, 2)
if file.tell() == 0: #empty file
file.write(f"Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Coherent,Output")
file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{resultok},{result}")
except Exception as e:
print(f"Error writing benchmark to file: {e}")
if start_server:
if args.remotetunnel:
setuptunnel()
# Flush stdout for previous win32 issue so the client can see output.
print(f"======\nPlease connect to custom endpoint at {epurl}", flush=True)
asyncio.run(RunServerMultiThreaded(args.host, args.port, embedded_kailite, embedded_kcpp_docs))
else:
# Flush stdout for previous win32 issue so the client can see output.
print(f"Server was not started, main function complete. Idling.", flush=True)
def run_in_queue(launch_args, input_queue, output_queue):
main(launch_args, start_server=False)
output_queue.put({'command': 'complete'})
while True:
if not input_queue.empty():
while not input_queue.empty():
data = input_queue.get()
if data['command'] == 'generate':
(args, kwargs) = data['data']
output_queue.put({'command': 'generated text', 'data': generate(*args, **kwargs)})
time.sleep(0.2)
def start_in_seperate_process(launch_args):
import multiprocessing
input_queue = multiprocessing.Queue()
output_queue = multiprocessing.Queue()
p = multiprocessing.Process(target=run_in_queue, args=(launch_args, input_queue, output_queue))
p.start()
return (output_queue, input_queue, p)
if __name__ == '__main__':
def check_range(value_type, min_value, max_value):
def range_checker(arg: str):
try:
f = value_type(arg)
except ValueError:
raise argparse.ArgumentTypeError(f'must be a valid {value_type}')
if f < min_value or f > max_value:
raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]')
return f
return range_checker
print("***\nWelcome to KoboldCpp - Version " + KcppVersion) # just update version manually
# print("Python version: " + sys.version)
parser = argparse.ArgumentParser(description='KoboldCpp Server')
modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
modelgroup.add_argument("--model", help="Model file to load", nargs="?")
modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?")
portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
portgroup.add_argument("--port", help="Port to listen on", default=defaultport, type=int, action='store')
portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store')
parser.add_argument("--host", help="Host IP to listen on. If empty, all routable interfaces are accepted.", default="")
parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true')
parser.add_argument("--config", help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1)
physical_core_limit = 1
if os.cpu_count()!=None and os.cpu_count()>1:
physical_core_limit = int(os.cpu_count()/2)
default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1))
parser.add_argument("--threads", help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=default_threads)
compatgroup = parser.add_mutually_exclusive_group()
compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit'])
compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None)
compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2)
compatgroup.add_argument("--noblas", help="Do not use OpenBLAS for accelerated prompt ingestion", action='store_true')
parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=0)
parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+')
parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 2048). Supported values are [256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536]'), type=check_range(int,256,262144), default=2048)
parser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+')
#more advanced params
parser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512)
parser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0)
parser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+')
parser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently.", action='store_true')
parser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true')
parser.add_argument("--bantokens", help="You can manually specify a list of token SUBSTRINGS that the AI cannot use. This bans ALL instances of that substring.", metavar=('[token_substrings]'), nargs='+')
parser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0)
parser.add_argument("--nommap", help="If set, do not use mmap to load newer models", action='store_true')
parser.add_argument("--usemlock", help="For Apple Systems. Force system to keep model in RAM rather than swapping or compressing", action='store_true')
parser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true')
parser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0)
parser.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true')
parser.add_argument("--hordeconfig", help="Sets the display model name to something else, for easy use on AI Horde. Optional additional parameters set the horde max genlength, max ctxlen, API key and worker name.",metavar=('[hordemodelname]', '[hordegenlength] [hordemaxctx] [hordeapikey] [hordeworkername]'), nargs='+')
parser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1)
parser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None)
parser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=0)
parser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true')
parser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true')
parser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true')
parser.add_argument("--preloadstory", help="Configures a prepared story json save file to be hosted on the server, which frontends (such as Kobold Lite) can access over the API.", default="")
parser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running --hordeconfig.", action='store_true')
parser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+')
parser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true')
parser.add_argument("--sdconfig", help="Specify a stable diffusion safetensors model to enable image generation. If quick is specified, force optimal generation settings for speed.",metavar=('[sd_filename]', '[normal|quick|clamped] [threads] [quant|noquant]'), nargs='+')
main(parser.parse_args(),start_server=True)