koboldcpp/koboldcpp.py

7690 lines
426 KiB
Python

#!/usr/bin/env python3
#-*- coding: utf-8 -*-
# KoboldCpp is an easy-to-use AI text-generation software for GGML models.
# It's a single self contained distributable from Concedo, that builds off llama.cpp,
# and adds a versatile Kobold API endpoint, additional format support,
# backward compatibility, as well as a fancy UI with persistent stories,
# editing tools, save formats, memory, world info, author's note, characters,
# scenarios and everything Kobold and KoboldAI Lite have to offer.
import os
try:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # try set GPU to PCI order first thing
except Exception:
pass
import copy
import ctypes
import multiprocessing
import math
import re
import argparse
import platform
import base64
import struct
import json
import sys
import http.server
import time
import asyncio
import socket
import threading
import html
import random
import hashlib
import urllib.parse
import urllib.request
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, timezone
from typing import Tuple
import shutil
import subprocess
# constants
sampler_order_max = 7
tensor_split_max = 16
images_max = 8
audio_max = 4
bias_min_value = -100.0
bias_max_value = 100.0
logprobs_max = 5
default_draft_amount = 8
default_ttsmaxlen = 4096
default_visionmaxres = 1024
net_save_slots = 12
savestate_limit = 3 #3 savestate slots
default_vae_tile_threshold = 768
default_native_ctx = 16384
# abuse prevention
stop_token_max = 256
ban_token_max = 768
logit_bias_max = 512
dry_seq_break_max = 128
extra_images_max = 4
# global vars
KcppVersion = "1.98.1"
showdebug = True
kcpp_instance = None #global running instance
global_memory = {"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False, "restart_override_config_target":""}
using_gui_launcher = False
handle = None
friendlymodelname = "inactive"
friendlysdmodelname = "inactive"
friendlyembeddingsmodelname = "inactive"
lastgeneratedcomfyimg = b''
lastuploadedcomfyimg = b''
fullsdmodelpath = "" #if empty, it's not initialized
password = "" #if empty, no auth key required
fullwhispermodelpath = "" #if empty, it's not initialized
ttsmodelpath = "" #if empty, not initialized
embeddingsmodelpath = "" #if empty, not initialized
maxctx = 8192
maxhordectx = 0 #set to whatever maxctx is if 0
maxhordelen = 1024
modelbusy = threading.Lock()
requestsinqueue = 0
defaultport = 5001
showsamplerwarning = True
showmaxctxwarning = True
showusedmemwarning = True
showmultigpuwarning = True
session_kudos_earned = 0
session_jobs = 0
session_starttime = None
exitcounter = -1
punishcounter = 0 #causes a timeout if too many errors
rewardcounter = 0 #reduces error counts for successful jobs
totalgens = 0
currentusergenkey = "" #store a special key so polled streaming works even in multiuser
pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later
args = None #global args
runmode_untouched = True
modelfile_extracted_meta = None
importvars_in_progress = False
has_multiplayer = False
has_audio_support = False
has_vision_support = False
savedata_obj = None
multiplayer_story_data_compressed = None #stores the full compressed story of the current multiplayer session
multiplayer_turn_major = 1 # to keep track of when a client needs to sync their stories
multiplayer_turn_minor = 1
multiplayer_dataformat = "" # used to tell what is the data payload in saved story. set by client
multiplayer_lastactive = {} # timestamp of last activity for each unique player
websearch_lastquery = ""
websearch_lastresponse = []
preloaded_story = None
chatcompl_adapter = None
chatcompl_adapter_list = None #if using autoguess, will populate this will potential adapters
embedded_kailite = None
embedded_kcpp_docs = None
embedded_kcpp_sdui = None
sslvalid = False
nocertify = False
start_time = time.time()
last_req_time = time.time()
last_non_horde_req_time = time.time()
currfinishreason = None
zenity_recent_dir = os.getcwd()
zenity_permitted = True
saved_stdout = None
saved_stderr = None
saved_stdout_py = None
saved_stderr_py = None
stdout_nullfile = None
stdout_nullfile_py = None
CLDevices = ["1","2","3","4"]
CUDevices = ["1","2","3","4","All"]
CLDevicesNames = ["","","",""]
CUDevicesNames = ["","","","",""]
VKDevicesNames = ["","","",""]
VKIsDGPU = [0,0,0,0]
MaxMemory = [0]
MaxFreeMemory = [0]
class logit_bias(ctypes.Structure):
_fields_ = [("token_id", ctypes.c_int32),
("bias", ctypes.c_float)]
class token_count_outputs(ctypes.Structure):
_fields_ = [("count", ctypes.c_int),
("ids", ctypes.POINTER(ctypes.c_int))]
# returns top 5 logprobs per token
class logprob_item(ctypes.Structure):
_fields_ = [("option_count", ctypes.c_int),
("selected_token", ctypes.c_char_p),
("selected_logprob", ctypes.c_float),
("tokens", ctypes.c_char_p * logprobs_max),
("logprobs", ctypes.POINTER(ctypes.c_float))]
class last_logprobs_outputs(ctypes.Structure):
_fields_ = [("count", ctypes.c_int),
("logprob_items", ctypes.POINTER(logprob_item))]
class load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("blasthreads", ctypes.c_int),
("max_context_length", ctypes.c_int),
("low_vram", ctypes.c_bool),
("use_mmq", ctypes.c_bool),
("use_rowsplit", ctypes.c_bool),
("executable_path", ctypes.c_char_p),
("model_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("draftmodel_filename", ctypes.c_char_p),
("draft_amount", ctypes.c_int),
("draft_gpulayers", ctypes.c_int),
("draft_gpusplit", ctypes.c_float * tensor_split_max),
("mmproj_filename", ctypes.c_char_p),
("mmproj_cpu", ctypes.c_bool),
("visionmaxres", ctypes.c_int),
("use_mmap", ctypes.c_bool),
("use_mlock", ctypes.c_bool),
("use_smartcontext", ctypes.c_bool),
("use_contextshift", ctypes.c_bool),
("use_fastforward", ctypes.c_bool),
("clblast_info", ctypes.c_int),
("kcpp_main_gpu", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("blasbatchsize", ctypes.c_int),
("forceversion", ctypes.c_int),
("gpulayers", ctypes.c_int),
("rope_freq_scale", ctypes.c_float),
("rope_freq_base", ctypes.c_float),
("overridenativecontext", ctypes.c_int),
("moe_experts", ctypes.c_int),
("moecpu", ctypes.c_int),
("no_bos_token", ctypes.c_bool),
("load_guidance", ctypes.c_bool),
("override_kv", ctypes.c_char_p),
("override_tensors", ctypes.c_char_p),
("flash_attention", ctypes.c_bool),
("tensor_split", ctypes.c_float * tensor_split_max),
("quant_k", ctypes.c_int),
("quant_v", ctypes.c_int),
("check_slowness", ctypes.c_bool),
("highpriority", ctypes.c_bool),
("swa_support", ctypes.c_bool),
("lora_multiplier", ctypes.c_float),
("quiet", ctypes.c_bool),
("debugmode", ctypes.c_int)]
class generation_inputs(ctypes.Structure):
_fields_ = [("seed", ctypes.c_int),
("prompt", ctypes.c_char_p),
("memory", ctypes.c_char_p),
("negative_prompt", ctypes.c_char_p),
("guidance_scale", ctypes.c_float),
("images", ctypes.c_char_p * images_max),
("audio", ctypes.c_char_p * audio_max),
("max_context_length", ctypes.c_int),
("max_length", ctypes.c_int),
("temperature", ctypes.c_float),
("top_k", ctypes.c_int),
("top_a", ctypes.c_float),
("top_p", ctypes.c_float),
("min_p", ctypes.c_float),
("typical_p", ctypes.c_float),
("tfs", ctypes.c_float),
("nsigma", ctypes.c_float),
("rep_pen", ctypes.c_float),
("rep_pen_range", ctypes.c_int),
("rep_pen_slope", ctypes.c_float),
("presence_penalty", ctypes.c_float),
("mirostat", ctypes.c_int),
("mirostat_tau", ctypes.c_float),
("mirostat_eta", ctypes.c_float),
("xtc_threshold", ctypes.c_float),
("xtc_probability", ctypes.c_float),
("sampler_order", ctypes.c_int * sampler_order_max),
("sampler_len", ctypes.c_int),
("allow_eos_token", ctypes.c_bool),
("bypass_eos_token", ctypes.c_bool),
("tool_call_fix", ctypes.c_bool),
("render_special", ctypes.c_bool),
("stream_sse", ctypes.c_bool),
("grammar", ctypes.c_char_p),
("grammar_retain_state", ctypes.c_bool),
("dynatemp_range", ctypes.c_float),
("dynatemp_exponent", ctypes.c_float),
("smoothing_factor", ctypes.c_float),
("dry_multiplier", ctypes.c_float),
("dry_base", ctypes.c_float),
("dry_allowed_length", ctypes.c_int),
("dry_penalty_last_n", ctypes.c_int),
("dry_sequence_breakers_len", ctypes.c_int),
("dry_sequence_breakers", ctypes.POINTER(ctypes.c_char_p)),
("stop_sequence_len", ctypes.c_int),
("stop_sequence", ctypes.POINTER(ctypes.c_char_p)),
("logit_biases_len", ctypes.c_int),
("logit_biases", ctypes.POINTER(logit_bias)),
("banned_tokens_len", ctypes.c_int),
("banned_tokens", ctypes.POINTER(ctypes.c_char_p))]
class generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("stopreason", ctypes.c_int),
("prompt_tokens", ctypes.c_int),
("completion_tokens", ctypes.c_int),
("text", ctypes.c_char_p)]
class sd_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("kcpp_main_gpu", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("threads", ctypes.c_int),
("quant", ctypes.c_int),
("flash_attention", ctypes.c_bool),
("diffusion_conv_direct", ctypes.c_bool),
("vae_conv_direct", ctypes.c_bool),
("taesd", ctypes.c_bool),
("tiled_vae_threshold", ctypes.c_int),
("t5xxl_filename", ctypes.c_char_p),
("clipl_filename", ctypes.c_char_p),
("clipg_filename", ctypes.c_char_p),
("vae_filename", ctypes.c_char_p),
("lora_filename", ctypes.c_char_p),
("lora_multiplier", ctypes.c_float),
("photomaker_filename", ctypes.c_char_p),
("img_hard_limit", ctypes.c_int),
("img_soft_limit", ctypes.c_int),
("quiet", ctypes.c_bool),
("debugmode", ctypes.c_int)]
class sd_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("negative_prompt", ctypes.c_char_p),
("init_images", ctypes.c_char_p),
("mask", ctypes.c_char_p),
("extra_images_len", ctypes.c_int),
("extra_images", ctypes.POINTER(ctypes.c_char_p)),
("flip_mask", ctypes.c_bool),
("denoising_strength", ctypes.c_float),
("cfg_scale", ctypes.c_float),
("sample_steps", ctypes.c_int),
("width", ctypes.c_int),
("height", ctypes.c_int),
("seed", ctypes.c_int),
("sample_method", ctypes.c_char_p),
("clip_skip", ctypes.c_int)]
class sd_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
class whisper_load_model_inputs(ctypes.Structure):
_fields_ = [("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("kcpp_main_gpu", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("quiet", ctypes.c_bool),
("debugmode", ctypes.c_int)]
class whisper_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("audio_data", ctypes.c_char_p),
("suppress_non_speech", ctypes.c_bool),
("langcode", ctypes.c_char_p)]
class whisper_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
class tts_load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("ttc_model_filename", ctypes.c_char_p),
("cts_model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("kcpp_main_gpu", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("gpulayers", ctypes.c_int),
("flash_attention", ctypes.c_bool),
("ttsmaxlen", ctypes.c_int),
("quiet", ctypes.c_bool),
("debugmode", ctypes.c_int)]
class tts_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("speaker_seed", ctypes.c_int),
("audio_seed", ctypes.c_int),
("custom_speaker_voice", ctypes.c_char_p),
("custom_speaker_text", ctypes.c_char_p),
("custom_speaker_data", ctypes.c_char_p)]
class tts_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("data", ctypes.c_char_p)]
class embeddings_load_model_inputs(ctypes.Structure):
_fields_ = [("threads", ctypes.c_int),
("model_filename", ctypes.c_char_p),
("executable_path", ctypes.c_char_p),
("clblast_info", ctypes.c_int),
("kcpp_main_gpu", ctypes.c_int),
("vulkan_info", ctypes.c_char_p),
("gpulayers", ctypes.c_int),
("flash_attention", ctypes.c_bool),
("use_mmap", ctypes.c_bool),
("embeddingsmaxctx", ctypes.c_int),
("quiet", ctypes.c_bool),
("debugmode", ctypes.c_int)]
class embeddings_generation_inputs(ctypes.Structure):
_fields_ = [("prompt", ctypes.c_char_p),
("truncate", ctypes.c_bool)]
class embeddings_generation_outputs(ctypes.Structure):
_fields_ = [("status", ctypes.c_int),
("count", ctypes.c_int),
("data", ctypes.c_char_p)]
def getdirpath():
return os.path.dirname(os.path.realpath(__file__))
def getabspath():
return os.path.dirname(os.path.abspath(__file__))
def file_exists(filename):
return os.path.exists(os.path.join(getdirpath(), filename))
def suppress_stdout():
global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py
if not saved_stdout and not saved_stderr and not saved_stdout_py and not saved_stderr_py and not stdout_nullfile and not stdout_nullfile_py:
sys.stdout.flush()
sys.stderr.flush()
saved_stdout = os.dup(sys.stdout.fileno())
saved_stderr = os.dup(sys.stderr.fileno())
saved_stderr_py = sys.stderr
saved_stdout_py = sys.stdout
stdout_nullfile = os.open(os.devnull, os.O_WRONLY)
stdout_nullfile_py = open(os.devnull, 'w')
os.dup2(stdout_nullfile, sys.stdout.fileno())
os.dup2(stdout_nullfile, sys.stderr.fileno())
sys.stderr = sys.stdout = stdout_nullfile_py
def restore_stdout():
global saved_stdout, saved_stderr, saved_stdout_py, saved_stderr_py, stdout_nullfile, stdout_nullfile_py
if saved_stdout and saved_stderr and saved_stdout_py and saved_stderr_py and stdout_nullfile and stdout_nullfile_py:
sys.stdout = saved_stdout_py
sys.stderr = saved_stderr_py
os.dup2(saved_stdout, sys.stdout.fileno())
os.dup2(saved_stderr, sys.stderr.fileno())
os.close(stdout_nullfile)
stdout_nullfile_py.close()
os.close(saved_stdout)
os.close(saved_stderr)
saved_stdout = saved_stderr = saved_stdout_py = saved_stderr_py = stdout_nullfile = stdout_nullfile_py = None
def get_default_threads():
physical_core_limit = 1
if os.cpu_count() is not None and os.cpu_count()>1:
physical_core_limit = os.cpu_count() // 2
default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1))
processor = platform.processor()
if 'Intel' in processor:
default_threads = (8 if default_threads > 8 else default_threads) #this helps avoid e-cores.
if default_threads > 48:
print(f"Auto CPU Threads capped at 48 (instead of {default_threads}). You can override this by passing an explicit number of --threads.")
default_threads = 48
return default_threads
def pick_existant_file(ntoption,nonntoption):
precompiled_prefix = "precompiled_"
ntexist = file_exists(ntoption)
nonntexist = file_exists(nonntoption)
precompiled_ntexist = file_exists(precompiled_prefix+ntoption)
precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption)
if os.name == 'nt':
if not ntexist and precompiled_ntexist:
return (precompiled_prefix+ntoption)
if nonntexist and not ntexist:
return nonntoption
return ntoption
else:
if not nonntexist and precompiled_nonntexist:
return (precompiled_prefix+nonntoption)
if ntexist and not nonntexist:
return ntoption
return nonntoption
lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so")
lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so")
lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so")
lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so")
lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so")
lib_clblast_failsafe = pick_existant_file("koboldcpp_clblast_failsafe.dll","koboldcpp_clblast_failsafe.so")
lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so")
lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so")
lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so")
lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so")
libname = ""
lib_option_pairs = [
(lib_default, "Use CPU"),
(lib_cublas, "Use CUDA"),
(lib_hipblas, "Use hipBLAS (ROCm)"),
(lib_vulkan, "Use Vulkan"),
(lib_clblast, "Use CLBlast"),
(lib_noavx2, "Use CPU (Old CPU)"),
(lib_vulkan_noavx2, "Use Vulkan (Old CPU)"),
(lib_clblast_noavx2, "Use CLBlast (Old CPU)"),
(lib_clblast_failsafe, "Use CLBlast (Older CPU)"),
(lib_failsafe, "Failsafe Mode (Older CPU)")]
default_option, cublas_option, hipblas_option, vulkan_option, clblast_option, noavx2_option, vulkan_noavx2_option, clblast_noavx2_option, clblast_failsafe_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs)
runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)]
def init_library():
global handle, args, libname
global lib_default,lib_failsafe,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_clblast_failsafe,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2
libname = lib_default
if args.noavx2: #failsafe implies noavx2 always
if args.useclblast and (os.name!='nt' or file_exists("clblast.dll")):
if file_exists(lib_clblast_noavx2) and not (args.failsafe):
libname = lib_clblast_noavx2
elif file_exists(lib_clblast_failsafe):
libname = lib_clblast_failsafe
elif (args.usevulkan is not None) and file_exists(lib_vulkan_noavx2):
libname = lib_vulkan_noavx2
elif (args.failsafe) and file_exists(lib_failsafe):
print("!!! Attempting to use FAILSAFE MODE !!!")
libname = lib_failsafe
elif file_exists(lib_noavx2):
libname = lib_noavx2
elif (args.usecuda is not None):
if file_exists(lib_cublas):
libname = lib_cublas
elif file_exists(lib_hipblas):
libname = lib_hipblas
elif (args.usevulkan is not None):
if file_exists(lib_vulkan):
libname = lib_vulkan
elif file_exists(lib_vulkan_noavx2):
libname = lib_vulkan_noavx2
elif args.useclblast and (os.name!='nt' or file_exists("clblast.dll")):
if file_exists(lib_clblast):
libname = lib_clblast
elif file_exists(lib_clblast_noavx2):
libname = lib_clblast_noavx2
elif file_exists(lib_clblast_failsafe):
libname = lib_clblast_failsafe
elif libname == lib_default and not file_exists(lib_default) and file_exists(lib_noavx2):
libname = lib_noavx2
print("Initializing dynamic library: " + libname)
dir_path = getdirpath()
abs_path = getabspath()
#add all potential paths
if os.name=='nt':
os.add_dll_directory(dir_path)
os.add_dll_directory(abs_path)
os.add_dll_directory(os.getcwd())
if libname == lib_cublas and "CUDA_PATH" in os.environ:
newpath = os.path.join(os.environ["CUDA_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
if libname == lib_hipblas and "HIP_PATH" in os.environ:
newpath = os.path.join(os.environ["HIP_PATH"], "bin")
if os.path.exists(newpath):
os.add_dll_directory(newpath)
handle = ctypes.CDLL(os.path.join(dir_path, libname))
handle.load_model.argtypes = [load_model_inputs]
handle.load_model.restype = ctypes.c_bool
handle.generate.argtypes = [generation_inputs]
handle.generate.restype = generation_outputs
handle.new_token.restype = ctypes.c_char_p
handle.new_token.argtypes = [ctypes.c_int]
handle.get_stream_count.restype = ctypes.c_int
handle.has_finished.restype = ctypes.c_bool
handle.has_audio_support.restype = ctypes.c_bool
handle.has_vision_support.restype = ctypes.c_bool
handle.get_last_eval_time.restype = ctypes.c_float
handle.get_last_process_time.restype = ctypes.c_float
handle.get_last_token_count.restype = ctypes.c_int
handle.get_last_input_count.restype = ctypes.c_int
handle.get_last_seed.restype = ctypes.c_int
handle.get_last_draft_success.restype = ctypes.c_int
handle.get_last_draft_failed.restype = ctypes.c_int
handle.get_total_img_gens.restype = ctypes.c_int
handle.get_total_tts_gens.restype = ctypes.c_int
handle.get_total_transcribe_gens.restype = ctypes.c_int
handle.get_total_gens.restype = ctypes.c_int
handle.get_last_stop_reason.restype = ctypes.c_int
handle.abort_generate.restype = ctypes.c_bool
handle.token_count.restype = token_count_outputs
handle.get_pending_output.restype = ctypes.c_char_p
handle.get_chat_template.restype = ctypes.c_char_p
handle.calc_new_state_kv.restype = ctypes.c_size_t
handle.calc_new_state_tokencount.restype = ctypes.c_size_t
handle.calc_old_state_kv.argtypes = [ctypes.c_int]
handle.calc_old_state_kv.restype = ctypes.c_size_t
handle.calc_old_state_tokencount.argtypes = [ctypes.c_int]
handle.calc_old_state_tokencount.restype = ctypes.c_size_t
handle.save_state_kv.argtypes = [ctypes.c_int]
handle.save_state_kv.restype = ctypes.c_size_t
handle.load_state_kv.argtypes = [ctypes.c_int]
handle.load_state_kv.restype = ctypes.c_bool
handle.clear_state_kv.restype = ctypes.c_bool
handle.sd_load_model.argtypes = [sd_load_model_inputs]
handle.sd_load_model.restype = ctypes.c_bool
handle.sd_generate.argtypes = [sd_generation_inputs]
handle.sd_generate.restype = sd_generation_outputs
handle.whisper_load_model.argtypes = [whisper_load_model_inputs]
handle.whisper_load_model.restype = ctypes.c_bool
handle.whisper_generate.argtypes = [whisper_generation_inputs]
handle.whisper_generate.restype = whisper_generation_outputs
handle.tts_load_model.argtypes = [tts_load_model_inputs]
handle.tts_load_model.restype = ctypes.c_bool
handle.tts_generate.argtypes = [tts_generation_inputs]
handle.tts_generate.restype = tts_generation_outputs
handle.embeddings_load_model.argtypes = [embeddings_load_model_inputs]
handle.embeddings_load_model.restype = ctypes.c_bool
handle.embeddings_generate.argtypes = [embeddings_generation_inputs]
handle.embeddings_generate.restype = embeddings_generation_outputs
handle.last_logprobs.restype = last_logprobs_outputs
handle.detokenize.argtypes = [token_count_outputs]
handle.detokenize.restype = ctypes.c_char_p
def set_backend_props(inputs):
clblastids = 0
if args.useclblast:
clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1])
inputs.clblast_info = clblastids
# we must force an explicit tensor split
# otherwise the default will divide equally and multigpu crap will slow it down badly
inputs.kcpp_main_gpu = 0
if(args.maingpu is not None and args.maingpu>=0):
inputs.kcpp_main_gpu = args.maingpu
if args.usecuda:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
if not args.tensor_split:
if (args.usecuda and "0" in args.usecuda):
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["HIP_VISIBLE_DEVICES"] = "0"
inputs.kcpp_main_gpu = 0
elif (args.usecuda and "1" in args.usecuda):
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["HIP_VISIBLE_DEVICES"] = "1"
inputs.kcpp_main_gpu = 0
elif (args.usecuda and "2" in args.usecuda):
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["HIP_VISIBLE_DEVICES"] = "2"
inputs.kcpp_main_gpu = 0
elif (args.usecuda and "3" in args.usecuda):
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["HIP_VISIBLE_DEVICES"] = "3"
inputs.kcpp_main_gpu = 0
else:
if(args.maingpu is None or args.maingpu<0):
if (args.usecuda and "0" in args.usecuda):
inputs.kcpp_main_gpu = 0
elif (args.usecuda and "1" in args.usecuda):
inputs.kcpp_main_gpu = 1
elif (args.usecuda and "2" in args.usecuda):
inputs.kcpp_main_gpu = 2
elif (args.usecuda and "3" in args.usecuda):
inputs.kcpp_main_gpu = 3
if args.usevulkan: #is an empty array if using vulkan without defined gpu
s = ""
for it in range(0,len(args.usevulkan)):
s += str(args.usevulkan[it])
inputs.vulkan_info = s.encode("UTF-8")
else:
inputs.vulkan_info = "".encode("UTF-8")
# set universal flags
inputs.quiet = args.quiet
inputs.debugmode = args.debugmode
inputs.executable_path = (getdirpath()+"/").encode("UTF-8")
return inputs
def end_trim_to_sentence(input_text):
enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '']
last = -1
for ender in enders:
last = max(last, input_text.rfind(ender))
nl = input_text.rfind("\n")
last = max(last, nl)
if last > 0:
return input_text[:last + 1].strip()
return input_text.strip()
def tryparseint(value,fallback):
if value is None:
return fallback
try:
return int(value)
except ValueError:
return fallback
def tryparsefloat(value,fallback):
if value is None:
return fallback
try:
return float(value)
except ValueError:
return fallback
def replace_last_in_string(text: str, match: str, replacement: str) -> str:
if match == "":
return text
head, sep, tail = text.rpartition(match)
if sep == "":
return text # old not found
return head + replacement + tail
def is_incomplete_utf8_sequence(byte_seq): #note, this will only flag INCOMPLETE sequences, corrupted ones will be ignored.
try:
byte_seq.decode('utf-8')
return False # Valid UTF-8
except UnicodeDecodeError as e:
if e.reason == 'unexpected end of data':
return True #incomplete sequence
return False #invalid sequence, but not incomplete
def strip_base64_prefix(encoded_data):
if not encoded_data:
return ""
if encoded_data.startswith("data:image"):
encoded_data = encoded_data.split(',', 1)[-1]
return encoded_data
def old_cpu_check(): #return -1 for pass, 0 if has avx2, 1 if has avx, 2 if has nothing
shouldcheck = ((sys.platform == "linux" and platform.machine().lower() in ("x86_64", "amd64")) or
(os.name == 'nt' and platform.machine().lower() in ("amd64", "x86_64")))
if not shouldcheck:
return -1 #doesnt deal with avx at all.
try:
retflags = 0
if sys.platform == "linux":
with open('/proc/cpuinfo', 'r') as f:
cpuinfo = f.read()
cpuinfo = cpuinfo.lower()
if 'avx' not in cpuinfo and 'avx2' not in cpuinfo:
retflags = 2
elif 'avx2' not in cpuinfo:
retflags = 1
elif os.name == 'nt':
basepath = os.path.abspath(os.path.dirname(__file__))
output = ""
data = None
output = subprocess.run([os.path.join(basepath, "simplecpuinfo.exe")], capture_output=True, text=True, check=True, creationflags=subprocess.CREATE_NO_WINDOW | subprocess.DETACHED_PROCESS, encoding='utf-8', timeout=6).stdout
data = json.loads(output)
if data["avx2"]==0 and data["avx"]==0:
retflags = 2
elif data["avx2"]==0:
retflags = 1
return retflags
except Exception:
return -1 #cannot determine
def unpack_to_dir(destpath = ""):
srcpath = os.path.abspath(os.path.dirname(__file__))
cliunpack = False if destpath == "" else True
print("Attempt to unpack KoboldCpp into directory...")
if not cliunpack:
from tkinter import messagebox
destpath = zentk_askdirectory(title='Select an empty folder to unpack KoboldCpp')
if not destpath:
return
if not os.path.isdir(destpath):
os.makedirs(destpath)
if os.path.isdir(srcpath) and os.path.isdir(destpath) and not os.listdir(destpath):
try:
if cliunpack:
print(f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
else:
messagebox.showinfo("Unpack Starting", f"KoboldCpp will be extracted to {destpath}\nThis process may take several seconds to complete.")
pyds_dir = os.path.join(destpath, 'pyds')
using_pyinstaller_6 = False
try:
import pkg_resources
piver = pkg_resources.get_distribution("pyinstaller").version
print(f"PyInstaller Version: {piver}")
if piver.startswith("6."):
using_pyinstaller_6 = True
os.makedirs(os.path.join(destpath, "_internal"), exist_ok=True)
pyds_dir = os.path.join(os.path.join(destpath, "_internal"), 'pyds')
except Exception:
pass
os.makedirs(pyds_dir, exist_ok=True)
for item in os.listdir(srcpath):
s = os.path.join(srcpath, item)
d = os.path.join(destpath, item)
d2 = d #this will be modified for pyinstaller 6 and unmodified for pyinstaller 5
if using_pyinstaller_6:
d2 = os.path.join(os.path.join(destpath, "_internal"), item)
if using_pyinstaller_6 and item.startswith('koboldcpp-launcher'): # Move koboldcpp-launcher to its intended location
shutil.copy2(s, d)
continue
if item.endswith('.pyd'): # relocate pyds files to subdirectory
pyd = os.path.join(pyds_dir, item)
shutil.copy2(s, pyd)
continue
if os.path.isdir(s):
shutil.copytree(s, d2, False, None)
else:
shutil.copy2(s, d2)
if cliunpack:
print(f"KoboldCpp successfully extracted to {destpath}")
else:
messagebox.showinfo("KoboldCpp Unpack Success", f"KoboldCpp successfully extracted to {destpath}")
except Exception as e:
if cliunpack:
print(f"An error occurred while unpacking: {e}")
else:
messagebox.showerror("Error", f"An error occurred while unpacking: {e}")
else:
if cliunpack:
print("The target folder is not empty or invalid. Please select an empty folder.")
else:
messagebox.showwarning("Invalid Selection", "The target folder is not empty or invalid. Please select an empty folder.")
def exit_with_error(code, message, title="Error"):
global using_gui_launcher
print("")
time.sleep(1)
if using_gui_launcher:
show_gui_msgbox(title, message)
else:
print(message, flush=True)
time.sleep(2)
sys.exit(code)
def utfprint(str, importance = 2): #0 = only debugmode, 1 = except quiet, 2 = always print
if args.quiet and importance<2: #quiet overrides debugmode
return
if args.debugmode < 1:
if importance==1 and (args.debugmode == -1 or args.quiet):
return
if importance==0:
return
maxlen = 32000
if args.debugmode >= 1:
maxlen = 192000
try:
strlength = len(str)
if strlength > maxlen: #limit max output len
str = str[:maxlen] + f"... (+{strlength-maxlen} chars)"
except Exception:
pass
try:
print(str)
except UnicodeEncodeError:
# Replace or omit the problematic character
utf_string = str.encode('ascii', 'ignore').decode('ascii',"ignore")
utf_string = utf_string.replace('\a', '') #remove bell characters
print(utf_string)
def bring_terminal_to_foreground():
if os.name=='nt':
ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9)
ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow())
def simple_lcg_hash(input_string): #turns any string into a number between 10000 and 99999
a = 1664525
c = 1013904223
m = 89999 # Modulo
hash_value = 25343
for char in input_string:
hash_value = (a * hash_value + ord(char) + c) % m
hash_value += 10000
return hash_value
def string_has_overlap(str_a, str_b, maxcheck):
max_overlap = min(maxcheck, len(str_a), len(str_b))
for i in range(1, max_overlap + 1):
if str_a[-i:] == str_b[:i]:
return True
return False
def string_contains_or_overlaps_sequence_substring(inputstr, sequences):
if inputstr=="":
return False
for s in sequences:
if s.strip()=="":
continue
if s.strip() in inputstr.strip() or inputstr.strip() in s.strip():
return True
if string_has_overlap(inputstr, s, 10):
return True
return False
def truncate_long_json(data, max_length):
def truncate_middle(s, max_length):
if len(s) <= max_length or max_length < 5:
return s
half = (max_length - 3) // 2
return s[:half] + "..." + s[-half:]
if isinstance(data, dict):
new_data = {}
for key, value in data.items():
if isinstance(value, str):
new_data[key] = truncate_middle(value, max_length)
else:
new_data[key] = truncate_long_json(value, max_length)
return new_data
elif isinstance(data, list):
return [truncate_long_json(item, max_length) for item in data]
elif isinstance(data, str):
return truncate_middle(data, max_length)
else:
return data
def convert_json_to_gbnf(json_obj):
try:
from json_to_gbnf import SchemaConverter
prop_order = []
converter = SchemaConverter(
prop_order={name: idx for idx, name in enumerate(prop_order)},
allow_fetch=False,
dotall=False,
raw_pattern=False)
schema = json.loads(json.dumps(json_obj))
converter.visit(schema, '')
outstr = converter.format_grammar()
return outstr
except Exception as e:
print(f"JSON to GBNF failed: {e}")
return ""
def get_capabilities():
global savedata_obj, has_multiplayer, KcppVersion, friendlymodelname, friendlysdmodelname, fullsdmodelpath, password, fullwhispermodelpath, ttsmodelpath, embeddingsmodelpath, has_audio_support, has_vision_support
has_llm = not (friendlymodelname=="inactive")
has_txt2img = not (friendlysdmodelname=="inactive" or fullsdmodelpath=="")
has_password = (password!="")
has_whisper = (fullwhispermodelpath!="")
has_search = True if args.websearch else False
has_tts = (ttsmodelpath!="")
has_embeddings = (embeddingsmodelpath!="")
has_guidance = True if args.enableguidance else False
admin_type = (2 if args.admin and args.admindir and args.adminpassword else (1 if args.admin and args.admindir else 0))
return {"result":"KoboldCpp", "version":KcppVersion, "protected":has_password, "llm":has_llm, "txt2img":has_txt2img,"vision":has_vision_support,"audio":has_audio_support,"transcribe":has_whisper,"multiplayer":has_multiplayer,"websearch":has_search,"tts":has_tts, "embeddings":has_embeddings, "savedata":(savedata_obj is not None), "admin": admin_type, "guidance": has_guidance}
def dump_gguf_metadata(file_path): #if you're gonna copy this into your own project at least credit concedo
chunk_size = 1024*1024*12 # read first 12mb of file
try:
data = None
fptr = 0
dt_table = ["u8","i8","u16","i16","u32","i32","f32","bool","str","arr","u64","i64","f64"] #13 types, else error
tt_table = ["f32","f16","q4_0","q4_1","q4_2","q4_3","q5_0","q5_1","q8_0","q8_1","q2_k","q3_k","q4_k","q5_k","q6_k","q8_k","iq2_xxs","iq2_xs","iq3_xxs","iq1_s","iq4_nl","iq3_s","iq2_s","iq4_xs","i8","i16","i32","i64","f64","iq1_m","bf16","q4_0_4_4","q4_0_4_8","q4_0_8_8","tq1_0","tq2_0","iq4_nl_4_4","unknown","unknown","unknown","unknown","unknown"]
def read_data(datatype):
nonlocal fptr, data, dt_table
if datatype=="u32":
val_bytes = data[fptr:fptr + 4]
val = struct.unpack('<I', val_bytes)[0]
fptr += 4
return val
if datatype=="u64":
val_bytes = data[fptr:fptr + 8]
val = struct.unpack('<Q', val_bytes)[0]
fptr += 8
return val
if datatype=="i32":
val_bytes = data[fptr:fptr + 4]
val = struct.unpack('<i', val_bytes)[0]
fptr += 4
return val
if datatype=="bool":
val_bytes = data[fptr:fptr + 1]
val = struct.unpack('<B', val_bytes)[0]
fptr += 1
return val
if datatype=="f32":
val_bytes = data[fptr:fptr + 4]
val = struct.unpack('<f', val_bytes)[0]
fptr += 4
return val
if datatype=="str":
val_bytes = data[fptr:fptr + 8]
str_len = struct.unpack('<Q', val_bytes)[0]
fptr += 8
val_bytes = data[fptr:fptr + str_len]
str_val = val_bytes.split(b'\0', 1)[0].decode('utf-8')
fptr += str_len
return str_val
if datatype == "u16":
val_bytes = data[fptr:fptr + 2]
val = struct.unpack('<H', val_bytes)[0]
fptr += 2
return val
if datatype == "i16":
val_bytes = data[fptr:fptr + 2]
val = struct.unpack('<h', val_bytes)[0]
fptr += 2
return val
if datatype == "u8":
val_bytes = data[fptr:fptr + 1]
val = struct.unpack('<B', val_bytes)[0]
fptr += 1
return val
if datatype == "i8":
val_bytes = data[fptr:fptr + 1]
val = struct.unpack('<b', val_bytes)[0]
fptr += 1
return val
if datatype=="arr":
val_bytes = data[fptr:fptr + 4]
arr_type = struct.unpack('<I', val_bytes)[0]
fptr += 4
val_bytes = data[fptr:fptr + 8]
arr_elems = struct.unpack('<Q', val_bytes)[0]
fptr += 8
arr_vals = []
for i in range(arr_elems):
dt_translated = dt_table[arr_type]
arr_val = read_data(dt_translated)
arr_vals.append(arr_val)
return arr_vals
print(f"Unknown Datatype: {datatype}")
return
fsize = os.path.getsize(file_path)
if fsize < 512: #ignore files under file size limit
print("This GGUF file is too small to analyze. Please ensure it is valid.")
return
with open(file_path, 'rb') as f:
file_header = f.read(4)
if file_header != b'GGUF': #file is not GGUF
print(f"File does not seem to be a GGUF: {file_header}")
return
data = f.read(chunk_size)
read_ver = read_data("u32")
if read_ver < 2:
print(f"This GGUF file is too old. Version detected: {read_ver}")
return
read_tensorcount = read_data("u64")
read_kvcount = read_data("u64")
print(f"*** GGUF FILE METADATA ***\nGGUF.version = {read_ver}\nGGUF.tensor_count = {read_tensorcount}\nGGUF.kv_count = {read_kvcount}")
for kn in range(read_kvcount):
curr_key = read_data("str")
curr_datatype = read_data("u32")
dt_translated = dt_table[curr_datatype]
curr_val = read_data(dt_translated)
if dt_translated=="arr":
print(f"{dt_translated}: {curr_key} = [{len(curr_val)}]")
elif dt_translated=="str":
print(f"{dt_translated}: {curr_key} = {curr_val[:256]}")
else:
print(f"{dt_translated}: {curr_key} = {curr_val}")
print("\n*** GGUF TENSOR INFO ***")
for kn in range(read_tensorcount):
tensor_name = read_data("str")
dims = read_data("u32")
dim_val_str = "["
for d in range(dims):
dim_val = read_data("u64")
dim_val_str += f"{'' if d==0 else ', '}{dim_val}"
dim_val_str += "]"
tensor_type = read_data("u32")
read_data("u64") # tensor_offset not used
tensor_type_str = tt_table[tensor_type]
print(f"{kn:<3}: {tensor_type_str:<8} | {tensor_name:<30} | {dim_val_str}")
print(f"Metadata and TensorInfo Bytes: {fptr}")
except Exception as e:
print(f"Error Analyzing File: {e}")
return
def read_gguf_metadata(file_path):
chunk_size = 16384 # read only first 16kb of file
try:
def read_gguf_key(keyname,data,maxval):
keylen = len(keyname)
index = data.find(keyname) # Search for the magic number, Read 2 chunks of 4 byte numbers
if index != -1 and index + keylen + 8 <= chunk_size:
start_index = index + keylen
first_value_bytes = data[start_index:start_index + 4]
second_value_bytes = data[start_index + 4:start_index + 8]
# Unpack each 4 bytes as an unsigned int32 in little-endian format
value1 = struct.unpack('<I', first_value_bytes)[0] #4 means its a uint32
value2 = struct.unpack('<I', second_value_bytes)[0]
if value1 == 4 and value2 > 0 and value2 <= maxval:
return value2 #contains the desired value
return 0
else:
return 0 #not found
fsize = os.path.getsize(file_path)
if fsize < (chunk_size+256): #ignore files under 16kb
return None
with open(file_path, 'rb') as f:
file_header = f.read(4)
if file_header != b'GGUF': #file is not GGUF
return None
data = f.read(chunk_size)
layercount = read_gguf_key(b'.block_count',data,512)
head_count_kv = read_gguf_key(b'.attention.head_count_kv',data,8192)
key_length = read_gguf_key(b'.attention.key_length',data,8192)
val_length = read_gguf_key(b'.attention.value_length',data,8192)
return [layercount,head_count_kv, max(key_length,val_length)]
except Exception:
return None
def extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath,draftmodelpath,ttsmodelpath,embdmodelpath):
global modelfile_extracted_meta
modelfile_extracted_meta = None
sdfsize = 0
whisperfsize = 0
mmprojsize = 0
draftmodelsize = 0
ttsmodelsize = 0
embdmodelsize = 0
if sdfilepath and os.path.exists(sdfilepath):
sdfsize = os.path.getsize(sdfilepath)
if whisperfilepath and os.path.exists(whisperfilepath):
whisperfsize = os.path.getsize(whisperfilepath)
if mmprojfilepath and os.path.exists(mmprojfilepath):
mmprojsize = os.path.getsize(mmprojfilepath)
if draftmodelpath and os.path.exists(draftmodelpath):
draftmodelsize = os.path.getsize(draftmodelpath)
if ttsmodelpath and os.path.exists(ttsmodelpath):
ttsmodelsize = os.path.getsize(ttsmodelpath)
if embdmodelpath and os.path.exists(embdmodelpath):
embdmodelsize = os.path.getsize(embdmodelpath)
if filepath and os.path.exists(filepath):
try:
fsize = os.path.getsize(filepath)
if fsize>10000000: #dont bother with models < 10mb as they are probably bad
ggufmeta = read_gguf_metadata(filepath)
modelfile_extracted_meta = [filepath,ggufmeta,fsize,sdfsize,whisperfsize,mmprojsize,draftmodelsize,ttsmodelsize,embdmodelsize] #extract done. note that meta may be null
except Exception:
modelfile_extracted_meta = None
def autoset_gpu_layers(ctxsize, sdquanted, bbs, qkv_level): #shitty algo to determine how many layers to use
global showusedmemwarning, showmultigpuwarning, modelfile_extracted_meta # reference cached values instead
gpumem = MaxMemory[0]
usedmem = 0
if MaxFreeMemory[0]>0:
usedmem = MaxMemory[0]-MaxFreeMemory[0]
if showusedmemwarning and usedmem > (2.5*1024*1024*1024):
showusedmemwarning = False
print(f"Note: KoboldCpp has detected that a significant amount of GPU VRAM ({usedmem/1024/1024} MB) is currently used by another application.\nFor best results, you may wish to close that application and then restart KoboldCpp.\n***")
reservedmem = max(1.25*1024*1024*1024,(0.5*1024*1024*1024 + usedmem)) # determine vram overhead
try:
if not modelfile_extracted_meta:
return 0
layerlimit = 0
fsize = modelfile_extracted_meta[2]
fname = modelfile_extracted_meta[0]
if fsize > (10*1024*1024): #dont bother with models < 10mb
cs = ctxsize
mem = gpumem
if "-00001-of-00" in fname:
match = re.search(r'-(\d{5})-of-(\d{5})\.', fname)
if match:
total_parts = int(match.group(2))
if total_parts > 1 and total_parts <= 999:
if showmultigpuwarning:
showmultigpuwarning = False
print("Multi-Part GGUF detected. Layer estimates may not be very accurate - recommend setting layers manually.")
fsize *= total_parts
sdquantsavings = sdquanted
if modelfile_extracted_meta[3] > 1024*1024*1024*5: #sdxl tax
mem -= 1024*1024*1024*(9 - sdquantsavings * 1.5) # 9, 7.5, 6
elif modelfile_extracted_meta[3] > 1024*1024*512: #normal sd tax
mem -= 1024*1024*1024*(4.25 - sdquantsavings * 0.5) # 4.25, 3.75, 3.25
if modelfile_extracted_meta[4] > 1024*1024*10: #whisper tax
mem -= max(350*1024*1024,modelfile_extracted_meta[4]*1.5)
if modelfile_extracted_meta[5] > 1024*1024*10: #mmproj tax
mem -= max(350*1024*1024,modelfile_extracted_meta[5]*1.5)
if modelfile_extracted_meta[6] > 1024*1024*10: #draft model tax
mem -= (modelfile_extracted_meta[6] * 1.5)
if modelfile_extracted_meta[7] > 1024*1024*10: #tts model tax
mem -= max(600*1024*1024, modelfile_extracted_meta[7] * 3)
if modelfile_extracted_meta[8] > 1024*1024*10: #embeddings model tax
mem -= max(350*1024*1024, modelfile_extracted_meta[8] * 1.5)
mem = 0 if mem < 0 else mem
csmul = (cs/4096) if cs >= 8192 else 1.8 if cs > 4096 else 1.2 if cs > 2048 else 1.0
ggufmeta = modelfile_extracted_meta[1]
if not ggufmeta or ggufmeta[0]==0: #fail to read or no layers
sizeperlayer = fsize*csmul*0.052
layerlimit = int(min(200,(mem-usedmem)/sizeperlayer))
else:
layers = ggufmeta[0]
headcount = ggufmeta[1]
headkvlen = (ggufmeta[2] if ggufmeta[2] > 0 else 128)
ratio = (mem-usedmem)/(fsize*csmul*1.6*(1.0 if bbs <= 512 else 1.2))
if headcount > 0:
# rubbish random formula. apply blasbatchsize calculations if over 512
fattn_discount = 1.0/(3.2 if qkv_level==2 else (1.6 if qkv_level==1 else 1.0))
mem1 = layers*(4 if bbs <= 512 else (bbs/128))*headkvlen*cs*fattn_discount*4*1.45
mem2 = layers*headcount*headkvlen*cs*fattn_discount*4*1.15
ratio = max(ratio,(mem - reservedmem - mem1) / (fsize + mem2))
layerlimit = min(int(ratio*layers), (layers + 3))
layerlimit = (0 if layerlimit<=2 else layerlimit)
return layerlimit
except Exception:
return 0
def fetch_gpu_properties(testCL,testCU,testVK):
gpumem_ignore_limit_min = 1024*1024*600 #600 mb min
gpumem_ignore_limit_max = 1024*1024*1024*300 #300 gb max
if testCU:
FetchedCUdevices = []
FetchedCUdeviceMem = []
FetchedCUfreeMem = []
AMDgpu = None
try: # Get NVIDIA GPU names
output = subprocess.run(['nvidia-smi','--query-gpu=name,memory.total,memory.free','--format=csv,noheader'], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout
FetchedCUdevices = [line.split(",")[0].strip() for line in output.splitlines()]
FetchedCUdeviceMem = [line.split(",")[1].strip().split(" ")[0].strip() for line in output.splitlines()]
FetchedCUfreeMem = [line.split(",")[2].strip().split(" ")[0].strip() for line in output.splitlines()]
except Exception:
FetchedCUdeviceMem = []
FetchedCUfreeMem = []
pass
if len(FetchedCUdevices)==0:
try: # Get AMD ROCm GPU names
output = subprocess.run(['rocminfo'], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout
device_name = None
for line in output.splitlines(): # read through the output line by line
line = line.strip()
if line.startswith("Marketing Name:"):
device_name = line.split(":", 1)[1].strip() # if we find a named device, temporarily save the name
elif line.startswith("Device Type:") and "GPU" in line and device_name is not None: # if the following Device Type is a GPU (not a CPU) then add it to devices list
FetchedCUdevices.append(device_name)
AMDgpu = True
elif line.startswith("Device Type:") and "GPU" not in line:
device_name = None
if FetchedCUdevices:
getamdvram = subprocess.run(['rocm-smi', '--showmeminfo', 'vram', '--csv'], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout # fetch VRAM of devices
if getamdvram:
FetchedCUdeviceMem = [line.split(",")[1].strip() for line in getamdvram.splitlines()[1:] if line.strip()]
except Exception:
FetchedCUdeviceMem = []
FetchedCUfreeMem = []
pass
lowestcumem = 0
lowestfreecumem = 0
try:
for idx in range(0,4):
if(len(FetchedCUdevices)>idx):
CUDevicesNames[idx] = FetchedCUdevices[idx]
for idx in range(0,4):
if(len(FetchedCUdevices)>idx):
if len(FetchedCUdeviceMem)>idx:
dmem = int(FetchedCUdeviceMem[idx]) if AMDgpu else (int(FetchedCUdeviceMem[idx])*1024*1024)
lowestcumem = dmem if lowestcumem==0 else (dmem if dmem<lowestcumem else lowestcumem)
if len(FetchedCUfreeMem)>idx:
dmem = (int(FetchedCUfreeMem[idx])*1024*1024)
lowestfreecumem = dmem if lowestfreecumem==0 else (dmem if dmem<lowestfreecumem else lowestfreecumem)
except Exception:
lowestcumem = 0
lowestfreecumem = 0
MaxMemory[0] = max(lowestcumem,MaxMemory[0])
MaxFreeMemory[0] = max(lowestfreecumem,MaxFreeMemory[0])
if MaxMemory[0] < (1024*1024*256):
print("Unable to detect VRAM, please set layers manually.")
if testVK:
try: # Get Vulkan names
foundVkGPU = False
output = subprocess.run(['vulkaninfo','--summary'], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout
devicelist = [line.split("=")[1].strip() for line in output.splitlines() if "deviceName" in line]
devicetypes = [line.split("=")[1].strip() for line in output.splitlines() if "deviceType" in line]
idx = 0
for dname in devicelist:
if idx<len(VKDevicesNames):
VKDevicesNames[idx] = dname
idx += 1
if len(devicetypes) == len(devicelist):
idx = 0
for dvtype in devicetypes:
if idx<len(VKIsDGPU):
typeflag = (1 if dvtype=="PHYSICAL_DEVICE_TYPE_DISCRETE_GPU" else 0)
VKIsDGPU[idx] = typeflag
if typeflag:
foundVkGPU = True
idx += 1
if foundVkGPU:
try: # Try get vulkan memory (experimental)
output = subprocess.run(['vulkaninfo'], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout
devicechunks = output.split("VkPhysicalDeviceMemoryProperties")[1:]
gpuidx = 0
lowestvkmem = 0
for chunk in devicechunks:
heaps = chunk.split("memoryTypes:")[0].split("memoryHeaps[")[1:]
snippet = heaps[0]
if "MEMORY_HEAP_DEVICE_LOCAL_BIT" in snippet and "size" in snippet:
match = re.search(r"size\s*=\s*(\d+)", snippet)
if match:
dmem = int(match.group(1))
if dmem > gpumem_ignore_limit_min and dmem < gpumem_ignore_limit_max:
lowestvkmem = dmem if lowestvkmem==0 else (dmem if dmem<lowestvkmem else lowestvkmem)
gpuidx += 1
except Exception: # failed to get vulkan vram
pass
MaxMemory[0] = max(lowestvkmem,MaxMemory[0])
except Exception:
pass
if testCL:
try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found.
basepath = os.path.abspath(os.path.dirname(__file__))
output = ""
data = None
try:
output = subprocess.run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8', timeout=10).stdout
data = json.loads(output)
except Exception:
output = subprocess.run([((os.path.join(basepath, "simpleclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, creationflags=subprocess.CREATE_NO_WINDOW | subprocess.DETACHED_PROCESS, encoding='utf-8', timeout=10).stdout
data = json.loads(output)
plat = 0
dev = 0
lowestclmem = 0
for platform in data["devices"]:
dev = 0
for device in platform["online"]:
dname = device["CL_DEVICE_NAME"]
dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"])
idx = plat+dev*2
if idx<len(CLDevices):
CLDevicesNames[idx] = dname
if dmem > gpumem_ignore_limit_min and dmem < gpumem_ignore_limit_max:
lowestclmem = dmem if lowestclmem==0 else (dmem if dmem<lowestclmem else lowestclmem)
dev += 1
plat += 1
MaxMemory[0] = max(lowestclmem,MaxMemory[0])
except Exception:
pass
return
def auto_set_backend_cli():
fetch_gpu_properties(False,True,True)
found_new_backend = False
# check for avx2 and avx support
is_oldpc_ver = "Use CPU" not in runopts #on oldcpu ver, default lib does not exist
cpusupport = old_cpu_check() # 0 if has avx2, 1 if has avx, 2 if has nothing
eligible_cuda = (cpusupport<1 and not is_oldpc_ver) or (cpusupport<2 and is_oldpc_ver)
if not eligible_cuda:
if cpusupport==1:
args.noavx2 = True
elif cpusupport==2:
args.noavx2 = True
args.failsafe = True
if eligible_cuda and exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CUDA" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and any(CUDevicesNames):
if "Use CUDA" in runopts or "Use hipBLAS (ROCm)" in runopts:
args.usecuda = ["normal","mmq"]
print(f"Auto Selected CUDA Backend (flag={cpusupport})\n")
found_new_backend = True
elif exitcounter < 100 and (1 in VKIsDGPU) and ("Use Vulkan" in runopts or "Use Vulkan (Old CPU)" in runopts):
for i in range(0,len(VKIsDGPU)):
if VKIsDGPU[i]==1:
args.usevulkan = []
print(f"Auto Selected Vulkan Backend (flag={cpusupport})\n")
found_new_backend = True
break
if not found_new_backend:
print(f"Auto Selected Default Backend (flag={cpusupport})\n")
def load_model(model_filename):
global args
inputs = load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten
inputs.threads = args.threads
inputs.low_vram = (True if (args.usecuda and "lowvram" in args.usecuda) else False)
inputs.use_mmq = (True if (args.usecuda and "nommq" not in args.usecuda) else False)
inputs.use_rowsplit = (True if (args.usecuda and "rowsplit" in args.usecuda) else False)
inputs.vulkan_info = "0".encode("UTF-8")
inputs.blasthreads = args.blasthreads
inputs.use_mmap = args.usemmap
inputs.use_mlock = args.usemlock
inputs.lora_filename = "".encode("UTF-8")
inputs.lora_multiplier = args.loramult
if args.lora:
inputs.lora_filename = args.lora[0].encode("UTF-8")
inputs.draftmodel_filename = args.draftmodel.encode("UTF-8") if args.draftmodel else "".encode("UTF-8")
inputs.draft_amount = args.draftamount
inputs.draft_gpulayers = args.draftgpulayers
for n in range(tensor_split_max):
if args.draftgpusplit and n < len(args.draftgpusplit):
inputs.draft_gpusplit[n] = float(args.draftgpusplit[n])
else:
inputs.draft_gpusplit[n] = 0
inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8")
inputs.mmproj_cpu = (True if args.mmprojcpu else False)
inputs.visionmaxres = (512 if args.visionmaxres < 512 else (2048 if args.visionmaxres > 2048 else args.visionmaxres))
inputs.use_smartcontext = args.smartcontext
inputs.use_contextshift = (0 if args.noshift else 1)
inputs.use_fastforward = (0 if args.nofastforward else 1)
inputs.flash_attention = args.flashattention
if args.quantkv>0:
if args.flashattention:
inputs.quant_k = inputs.quant_v = args.quantkv
else:
inputs.quant_k = args.quantkv
inputs.quant_v = 0
print("\nWarning: quantkv was used without flashattention! This is NOT RECOMMENDED!\nOnly K cache can be quantized, and performance can suffer.\nIn some cases, it might even use more VRAM when doing a full offload.\nYou are strongly encouraged to use flashattention if you want to use quantkv.")
else:
inputs.quant_k = inputs.quant_v = 0
inputs.blasbatchsize = args.blasbatchsize
inputs.forceversion = args.forceversion
inputs.gpulayers = args.gpulayers
if args.overridenativecontext and args.overridenativecontext>0:
inputs.overridenativecontext = args.overridenativecontext
inputs.rope_freq_scale = 0
inputs.rope_freq_base = 10000
else:
inputs.overridenativecontext = 0
inputs.rope_freq_scale = args.ropeconfig[0]
if len(args.ropeconfig)>1:
inputs.rope_freq_base = args.ropeconfig[1]
else:
inputs.rope_freq_base = 10000
for n in range(tensor_split_max):
if args.tensor_split and n < len(args.tensor_split):
inputs.tensor_split[n] = float(args.tensor_split[n])
else:
inputs.tensor_split[n] = 0
inputs.moe_experts = args.moeexperts
inputs.no_bos_token = args.nobostoken
inputs.load_guidance = args.enableguidance
inputs.override_kv = args.overridekv.encode("UTF-8") if args.overridekv else "".encode("UTF-8")
inputs.override_tensors = args.overridetensors.encode("UTF-8") if args.overridetensors else "".encode("UTF-8")
inputs.moecpu = (200 if args.moecpu > 200 else args.moecpu)
inputs.check_slowness = (not args.highpriority and os.name == 'nt' and 'Intel' in platform.processor())
inputs.highpriority = args.highpriority
inputs.swa_support = args.useswa
inputs = set_backend_props(inputs)
ret = handle.load_model(inputs)
return ret
def generate(genparams, stream_flag=False):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
prompt = genparams.get('prompt', "")
memory = genparams.get('memory', "")
negative_prompt = genparams.get('negative_prompt', "")
guidance_scale = tryparsefloat(genparams.get('guidance_scale', 1.0),1.0)
images = genparams.get('images', [])
audio = genparams.get('audio', [])
max_context_length = tryparseint(genparams.get('max_context_length', maxctx),maxctx)
max_length = tryparseint(genparams.get('max_length', args.defaultgenamt),args.defaultgenamt)
temperature = tryparsefloat(genparams.get('temperature', adapter_obj.get("temperature", 0.75)),0.75)
top_k = tryparseint(genparams.get('top_k', adapter_obj.get("top_k", 100)),100)
top_a = tryparsefloat(genparams.get('top_a', 0.0),0.0)
top_p = tryparsefloat(genparams.get('top_p', adapter_obj.get("top_p", 0.92)),0.92)
min_p = tryparsefloat(genparams.get('min_p', adapter_obj.get("min_p", 0.0)),0.0)
typical_p = tryparsefloat(genparams.get('typical', 1.0),1.0)
tfs = tryparsefloat(genparams.get('tfs', 1.0),1.0)
nsigma = tryparsefloat(genparams.get('nsigma', 0.0),0.0)
rep_pen = tryparsefloat(genparams.get('rep_pen', adapter_obj.get("rep_pen", 1.0)),1.0)
rep_pen_range = tryparseint(genparams.get('rep_pen_range', 320),320)
rep_pen_slope = tryparsefloat(genparams.get('rep_pen_slope', 1.0),1.0)
presence_penalty = tryparsefloat(genparams.get('presence_penalty', 0.0),0.0)
mirostat = tryparseint(genparams.get('mirostat', 0),0)
mirostat_tau = tryparsefloat(genparams.get('mirostat_tau', 5.0),5.0)
mirostat_eta = tryparsefloat(genparams.get('mirostat_eta', 0.1),0.1)
dry_multiplier = tryparsefloat(genparams.get('dry_multiplier', 0.0),0.0)
dry_base = tryparsefloat(genparams.get('dry_base', 1.75),1.75)
dry_allowed_length = tryparseint(genparams.get('dry_allowed_length', 2),2)
dry_penalty_last_n = tryparseint(genparams.get('dry_penalty_last_n', 320),320)
dry_sequence_breakers = genparams.get('dry_sequence_breakers', [])
xtc_threshold = tryparsefloat(genparams.get('xtc_threshold', 0.2),0.2)
xtc_probability = tryparsefloat(genparams.get('xtc_probability', 0),0)
sampler_order = genparams.get('sampler_order', [6, 0, 1, 3, 4, 2, 5])
seed = tryparseint(genparams.get('sampler_seed', -1),-1)
stop_sequence = genparams.get('stop_sequence', [])
ban_eos_token = genparams.get('ban_eos_token', False)
stream_sse = stream_flag
grammar = genparams.get('grammar', '')
#translate grammar if its json
try:
grammarjson = json.loads(grammar)
decoded = convert_json_to_gbnf(grammarjson)
if decoded:
grammar = decoded
except Exception:
pass
grammar_retain_state = genparams.get('grammar_retain_state', False)
genkey = genparams.get('genkey', '')
trimstop = genparams.get('trim_stop', True)
dynatemp_range = tryparsefloat(genparams.get('dynatemp_range', 0.0),0.0)
dynatemp_exponent = tryparsefloat(genparams.get('dynatemp_exponent', 1.0),1.0)
smoothing_factor = tryparsefloat(genparams.get('smoothing_factor', 0.0),0.0)
logit_biases = genparams.get('logit_bias', {})
render_special = genparams.get('render_special', False)
banned_strings = genparams.get('banned_strings', []) # SillyTavern uses that name
banned_tokens = genparams.get('banned_tokens', banned_strings)
bypass_eos_token = genparams.get('bypass_eos', False)
tool_call_fix = genparams.get('using_openai_tools', False)
custom_token_bans = genparams.get('custom_token_bans', '')
for tok in custom_token_bans.split(','):
tok = tok.strip() # Remove leading/trailing whitespace
if tok.isdigit():
logit_biases[tok] = bias_min_value
inputs = generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.memory = memory.encode("UTF-8")
inputs.negative_prompt = negative_prompt.encode("UTF-8")
inputs.guidance_scale = guidance_scale
for n in range(images_max):
if not images or n >= len(images):
inputs.images[n] = "".encode("UTF-8")
else:
inputs.images[n] = images[n].encode("UTF-8")
for n in range(audio_max):
if not audio or n >= len(audio):
inputs.audio[n] = "".encode("UTF-8")
else:
inputs.audio[n] = audio[n].encode("UTF-8")
global showmaxctxwarning
if max_context_length > maxctx:
if showmaxctxwarning:
print(f"\n!!! ====== !!!\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid issues. This message will only show once per session.)\n!!! ====== !!!")
showmaxctxwarning = False
max_context_length = maxctx
min_remain_hardlimit = max(min(max_context_length-4, 16),int(max_context_length*0.2))
min_remain_softlimit = max(min(max_context_length-4, 16),int(max_context_length*0.4))
if max_length >= (max_context_length-min_remain_softlimit):
print(f"\n!!! ====== !!!\nWarning: You are trying to generate text with max_length ({max_length}) near or exceeding max_context_length limit ({max_context_length}).\nMost of the context will be removed, and your outputs will not be very coherent.\nConsider launching with increased --contextsize to avoid issues.\n!!! ====== !!!")
if max_length >= (max_context_length-min_remain_hardlimit):
max_length = max_context_length-min_remain_hardlimit
inputs.max_context_length = max_context_length # this will resize the context buffer if changed
inputs.max_length = max_length
inputs.temperature = temperature
inputs.top_k = top_k
inputs.top_a = top_a
inputs.top_p = top_p
inputs.min_p = min_p
inputs.typical_p = typical_p
inputs.tfs = tfs
inputs.nsigma = nsigma
inputs.rep_pen = rep_pen
inputs.rep_pen_range = rep_pen_range
inputs.rep_pen_slope = rep_pen_slope
inputs.presence_penalty = presence_penalty
inputs.stream_sse = stream_sse
inputs.dynatemp_range = dynatemp_range
inputs.dynatemp_exponent = dynatemp_exponent
inputs.smoothing_factor = smoothing_factor
inputs.grammar = grammar.encode("UTF-8")
inputs.grammar_retain_state = grammar_retain_state
inputs.allow_eos_token = not ban_eos_token
inputs.bypass_eos_token = bypass_eos_token
inputs.tool_call_fix = tool_call_fix
inputs.render_special = render_special
if mirostat in (1, 2):
inputs.mirostat = mirostat
inputs.mirostat_tau = mirostat_tau
inputs.mirostat_eta = mirostat_eta
else:
inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0
inputs.dry_multiplier = dry_multiplier
inputs.dry_base = dry_base
inputs.xtc_threshold = xtc_threshold
inputs.xtc_probability = xtc_probability
inputs.dry_allowed_length = dry_allowed_length
inputs.dry_penalty_last_n = dry_penalty_last_n
# Handle dry_sequence_breakers being passed as a json-encoded array of
# strings, rather than as an array of strings itself. This is to support
# SillyTavern, which passes sequence breakers to Oobabooga that way.
if dry_multiplier > 0 and isinstance(dry_sequence_breakers, str):
try:
dry_sequence_breakers = json.loads(dry_sequence_breakers)
except ValueError as e:
print(f"ERROR: dry_sequence_breakers must be an array of strings or a json encoded array of strings. Could not parse '{dry_sequence_breakers}': " + str(e))
dry_sequence_breakers = []
if dry_multiplier <= 0 or dry_sequence_breakers is None: # prevent explicitly set to None, retain old behavior
dry_sequence_breakers = []
dry_sequence_breakers = dry_sequence_breakers[:dry_seq_break_max]
inputs.dry_sequence_breakers_len = len(dry_sequence_breakers)
inputs.dry_sequence_breakers = (ctypes.c_char_p * inputs.dry_sequence_breakers_len)()
for n, breaker in enumerate(dry_sequence_breakers):
inputs.dry_sequence_breakers[n] = breaker.encode("UTF-8")
if sampler_order and 0 < len(sampler_order) <= sampler_order_max:
try:
for i, sampler in enumerate(sampler_order):
inputs.sampler_order[i] = sampler
inputs.sampler_len = len(sampler_order)
global showsamplerwarning
if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5):
print("\n(Note: Non-default sampler_order detected. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)")
showsamplerwarning = False
except TypeError as e:
print("ERROR: sampler_order must be a list of integers: " + str(e))
inputs.seed = seed
inputs.stop_sequence_len = len(stop_sequence)
inputs.stop_sequence = (ctypes.c_char_p * inputs.stop_sequence_len)()
for n, sequence in enumerate(stop_sequence):
if sequence:
inputs.stop_sequence[n] = sequence.encode("UTF-8")
else:
inputs.stop_sequence[n] = "".encode("UTF-8")
bias_list = []
try:
if logit_biases and len(logit_biases) > 0:
bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()]
except Exception as ex:
print(f"Logit bias dictionary is invalid: {ex}")
bias_list = bias_list[:logit_bias_max]
inputs.logit_biases_len = len(bias_list)
inputs.logit_biases = (logit_bias * inputs.logit_biases_len)()
for n, lb in enumerate(bias_list):
try:
t_id = int(lb['key'])
bias = float(lb['value'])
t_id = -1 if t_id < 0 else t_id
bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias))
inputs.logit_biases[n] = logit_bias(t_id, bias)
except Exception as ex:
inputs.logit_biases[n] = logit_bias(-1, 0.0)
print(f"Skipped unparsable logit bias:{ex}")
if banned_tokens is None:
banned_tokens = []
banned_tokens = banned_tokens[:ban_token_max]
inputs.banned_tokens_len = len(banned_tokens)
inputs.banned_tokens = (ctypes.c_char_p * inputs.banned_tokens_len)()
for n, tok in enumerate(banned_tokens):
inputs.banned_tokens[n] = tok.encode("UTF-8")
currentusergenkey = genkey
totalgens += 1
#early exit if aborted
if pendingabortkey!="" and pendingabortkey==genkey:
print(f"\nDeferred Abort for GenKey: {pendingabortkey}")
pendingabortkey = ""
return {"text":"","status":-1,"stopreason":-1, "prompt_tokens":0, "completion_tokens": 0, "total_tokens": 0}
else:
ret = handle.generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.text.decode("UTF-8","ignore")
if trimstop:
for trim_str in stop_sequence:
sindex = outstr.find(trim_str)
if sindex != -1 and trim_str!="":
outstr = outstr[:sindex]
return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason,"prompt_tokens":ret.prompt_tokens, "completion_tokens": ret.completion_tokens}
sd_convdirect_choices = ['off', 'vaeonly', 'full']
def sd_convdirect_option(value):
if not value:
value = ''
value = value.lower()
if value in ['disabled', 'disable', 'none', 'off', '0', '']:
return 'off'
elif value in ['vae', 'vaeonly']:
return 'vaeonly'
elif value in ['enabled', 'enable', 'on', 'full']:
return 'full'
raise argparse.ArgumentTypeError(f"Invalid sdconvdirect option \"{value}\". Must be one of {sd_convdirect_choices}.")
sd_quant_choices = ['off','q8','q4']
def sd_quant_option(value):
try:
lvl = sd_quant_choices.index(value)
return lvl
except Exception:
return 0
def sd_load_model(model_filename,vae_filename,lora_filename,t5xxl_filename,clipl_filename,clipg_filename,photomaker_filename):
global args
inputs = sd_load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
thds = args.threads
if args.sdthreads and args.sdthreads > 0:
sdt = int(args.sdthreads)
if sdt > 0:
thds = sdt
inputs.threads = thds
inputs.quant = args.sdquant
inputs.flash_attention = args.sdflashattention
sdconvdirect = sd_convdirect_option(args.sdconvdirect)
inputs.diffusion_conv_direct = sdconvdirect == 'full'
inputs.vae_conv_direct = sdconvdirect in ['vaeonly', 'full']
inputs.taesd = True if args.sdvaeauto else False
inputs.tiled_vae_threshold = args.sdtiledvae
inputs.vae_filename = vae_filename.encode("UTF-8")
inputs.lora_filename = lora_filename.encode("UTF-8")
inputs.lora_multiplier = args.sdloramult
inputs.t5xxl_filename = t5xxl_filename.encode("UTF-8")
inputs.clipl_filename = clipl_filename.encode("UTF-8")
inputs.clipg_filename = clipg_filename.encode("UTF-8")
inputs.photomaker_filename = photomaker_filename.encode("UTF-8")
inputs.img_hard_limit = args.sdclamped
inputs.img_soft_limit = args.sdclampedsoft
inputs = set_backend_props(inputs)
ret = handle.sd_load_model(inputs)
return ret
def sd_oai_tranform_params(genparams):
size = genparams.get('size', "512x512")
if size and size!="":
pattern = r'^\D*(\d+)x(\d+)$'
match = re.fullmatch(pattern, size)
if match:
width = int(match.group(1))
height = int(match.group(2))
genparams["width"] = width
genparams["height"] = height
return genparams
def sd_comfyui_tranform_params(genparams):
promptobj = genparams.get('prompt', None)
if promptobj and isinstance(promptobj, dict):
for node_id, node_data in promptobj.items():
class_type = node_data.get("class_type","")
if class_type == "KSampler" or class_type == "KSamplerAdvanced":
inp = node_data.get("inputs",{})
# sampler settings from this node
genparams["seed"] = inp.get("seed", -1)
genparams["steps"] = inp.get("steps", 20)
genparams["cfg_scale"] = inp.get("cfg", 5)
genparams["sampler_name"] = inp.get("sampler_name", "euler")
pos = inp.get("positive",[]) #positive prompt node
neg = inp.get("negative",[]) #negative prompt node
latentimg = inp.get("latent_image",[]) #image size node
if latentimg and isinstance(latentimg, list) and len(latentimg) > 0:
temp = promptobj.get(str(latentimg[0]), {}) #now, this may be a VAEEncode or EmptyLatentImage
nodetype = temp.get("class_type", "") #if its a VAEEncode, it will have pixels
temp = temp.get('inputs', {})
if nodetype=="VAEEncode" and lastuploadedcomfyimg!="": #img2img
genparams["init_images"] = [lastuploadedcomfyimg]
genparams["width"] = temp.get("width", 512)
genparams["height"] = temp.get("height", 512)
if neg and isinstance(neg, list) and len(neg) > 0:
temp = promptobj.get(str(neg[0]), {})
temp = temp.get('inputs', {})
genparams["negative_prompt"] = temp.get("text", "")
if pos and isinstance(pos, list) and len(pos) > 0:
temp = promptobj.get(str(pos[0]), {})
temp = temp.get('inputs', {})
genparams["prompt"] = temp.get("text", "")
break
if genparams.get("prompt","")=="": #give up, set generic prompt
genparams["prompt"] = "high quality"
else:
print("Warning: ComfyUI Payload Missing!")
return genparams
def sd_generate(genparams):
global maxctx, args, currentusergenkey, totalgens, pendingabortkey, chatcompl_adapter
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
forced_negprompt = adapter_obj.get("add_sd_negative_prompt", "")
forced_posprompt = adapter_obj.get("add_sd_prompt", "")
forced_steplimit = adapter_obj.get("add_sd_step_limit", 80)
prompt = genparams.get("prompt", "high quality")
negative_prompt = genparams.get("negative_prompt", "")
if forced_negprompt!="":
if negative_prompt!="":
negative_prompt += ", " + forced_negprompt
else:
negative_prompt = forced_negprompt
if forced_posprompt!="":
if prompt!="":
prompt += ", " + forced_posprompt
else:
prompt = forced_posprompt
init_images_arr = genparams.get("init_images", [])
init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0])
init_images = strip_base64_prefix(init_images)
mask = strip_base64_prefix(genparams.get("mask", ""))
flip_mask = genparams.get("inpainting_mask_invert", 0)
denoising_strength = tryparsefloat(genparams.get("denoising_strength", 0.6),0.6)
cfg_scale = tryparsefloat(genparams.get("cfg_scale", 5),5)
sample_steps = tryparseint(genparams.get("steps", 20),20)
width = tryparseint(genparams.get("width", 512),512)
height = tryparseint(genparams.get("height", 512),512)
seed = tryparseint(genparams.get("seed", -1),-1)
if seed < 0:
seed = random.randint(100000, 999999)
sample_method = genparams.get("sampler_name", "k_euler_a")
clip_skip = tryparseint(genparams.get("clip_skip", -1),-1)
extra_images_arr = genparams.get("extra_images", [])
extra_images_arr = ([] if not extra_images_arr else extra_images_arr)
extra_images_arr = [img for img in extra_images_arr if img not in (None, "")]
extra_images_arr = extra_images_arr[:extra_images_max]
#clean vars
cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale))
sample_steps = (1 if sample_steps < 1 else (forced_steplimit if sample_steps > forced_steplimit else sample_steps))
if args.sdclamped:
sample_steps = (40 if sample_steps > 40 else sample_steps)
inputs = sd_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.negative_prompt = negative_prompt.encode("UTF-8")
inputs.init_images = init_images.encode("UTF-8")
inputs.mask = "".encode("UTF-8") if not mask else mask.encode("UTF-8")
inputs.extra_images_len = len(extra_images_arr)
inputs.extra_images = (ctypes.c_char_p * inputs.extra_images_len)()
for n, estr in enumerate(extra_images_arr):
extra_image = strip_base64_prefix(estr)
inputs.extra_images[n] = extra_image.encode("UTF-8")
inputs.flip_mask = flip_mask
inputs.cfg_scale = cfg_scale
inputs.denoising_strength = denoising_strength
inputs.sample_steps = sample_steps
inputs.width = width
inputs.height = height
inputs.seed = seed
inputs.sample_method = sample_method.lower().encode("UTF-8")
inputs.clip_skip = clip_skip
ret = handle.sd_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def whisper_load_model(model_filename):
global args
inputs = whisper_load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs = set_backend_props(inputs)
ret = handle.whisper_load_model(inputs)
return ret
def whisper_generate(genparams):
global args
prompt = genparams.get("prompt", "")
audio_data = genparams.get("audio_data", "")
if audio_data.startswith("data:audio"):
audio_data = audio_data.split(",", 1)[1]
inputs = whisper_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.audio_data = audio_data.encode("UTF-8")
lc = genparams.get("langcode", genparams.get("language", "auto"))
lc = lc.strip().lower() if (lc and lc.strip().lower()!="") else "auto"
inputs.langcode = lc.encode("UTF-8")
inputs.suppress_non_speech = genparams.get("suppress_non_speech", False)
ret = handle.whisper_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def tts_load_model(ttc_model_filename,cts_model_filename):
global args
inputs = tts_load_model_inputs()
inputs.ttc_model_filename = ttc_model_filename.encode("UTF-8") if ttc_model_filename else "".encode("UTF-8")
inputs.cts_model_filename = cts_model_filename.encode("UTF-8") if cts_model_filename else "".encode("UTF-8")
inputs.gpulayers = (999 if args.ttsgpu else 0)
inputs.flash_attention = args.flashattention
thds = args.threads
if args.ttsthreads and args.ttsthreads > 0:
ttst = int(args.ttsthreads)
if ttst > 0:
thds = ttst
inputs.threads = thds
inputs.ttsmaxlen = args.ttsmaxlen if args.ttsmaxlen < 4096 else 4096
inputs = set_backend_props(inputs)
ret = handle.tts_load_model(inputs)
return ret
def tts_prepare_voice_json(jsonstr):
try:
if not jsonstr:
return None
parsed_json = json.loads(jsonstr)
txt = parsed_json.get("text","")
items = parsed_json.get("words",[])
processed = ""
if txt=="" or not items or len(items)<1:
return None
for item in items:
word = item.get("word","")
duration = item.get("duration","")
codes = item.get("codes",[])
codestr = ""
for c in codes:
codestr += f"<|{c}|>"
processed += f"{word}<|t_{duration:.2f}|><|code_start|>{codestr}<|code_end|>\n"
return {"phrase":txt.strip()+".","voice":processed.strip()}
except Exception:
return None
def tts_generate(genparams):
global args
prompt = genparams.get("input", genparams.get("text", ""))
prompt = prompt.strip()
voice = 1
speaker_json = tts_prepare_voice_json(genparams.get("speaker_json","")) #handle custom cloned voices
voicestr = genparams.get("voice", genparams.get("speaker_wav", ""))
oai_voicemap = ["alloy","onyx","echo","nova","shimmer"] # map to kcpp defaults
voice_mapping = ["kobo","cheery","sleepy","shouty","chatty"]
normalized_voice = voicestr.strip().lower() if voicestr else ""
if normalized_voice in voice_mapping:
voice = voice_mapping.index(normalized_voice) + 1
elif normalized_voice in oai_voicemap:
voice = oai_voicemap.index(normalized_voice) + 1
else:
voice = simple_lcg_hash(voicestr.strip()) if voicestr else 1
inputs = tts_generation_inputs()
inputs.custom_speaker_voice = normalized_voice.encode("UTF-8")
inputs.prompt = prompt.encode("UTF-8")
inputs.speaker_seed = voice
aseed = -1
try:
aseed = int(genparams.get("seed", -1))
except Exception:
aseed = -1
inputs.audio_seed = aseed
if speaker_json:
inputs.custom_speaker_text = speaker_json.get("phrase","").encode("UTF-8")
inputs.custom_speaker_data = speaker_json.get("voice","").encode("UTF-8")
inputs.speaker_seed = 100
else:
inputs.custom_speaker_text = "".encode("UTF-8")
inputs.custom_speaker_data = "".encode("UTF-8")
ret = handle.tts_generate(inputs)
outstr = ""
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
return outstr
def embeddings_load_model(model_filename):
global args
inputs = embeddings_load_model_inputs()
inputs.model_filename = model_filename.encode("UTF-8")
inputs.gpulayers = (999 if args.embeddingsgpu else 0)
inputs.flash_attention = args.flashattention
inputs.threads = args.threads
inputs.use_mmap = args.usemmap
inputs.embeddingsmaxctx = (args.embeddingsmaxctx if args.embeddingsmaxctx else args.contextsize) # for us to clamp to contextsize if embeddingsmaxctx unspecified
inputs = set_backend_props(inputs)
ret = handle.embeddings_load_model(inputs)
return ret
def embeddings_generate(genparams):
global args
prompts = []
if isinstance(genparams.get('input',[]), list):
prompts = genparams.get('input',[])
else:
prompt = genparams.get("input", "")
if prompt:
prompts.append(prompt)
tokarrs = []
tokcnt = 0
for prompt in prompts:
tokarr = []
tmpcnt = 0
try:
inputs = embeddings_generation_inputs()
inputs.prompt = prompt.encode("UTF-8")
inputs.truncate = genparams.get('truncate', True)
ret = handle.embeddings_generate(inputs)
if ret.status==1:
outstr = ret.data.decode("UTF-8","ignore")
tokarr = json.loads(outstr) if outstr else []
tmpcnt = ret.count
except Exception as e:
tokarr = []
tmpcnt = 0
print(f"Error: {e}")
tokarrs.append(tokarr)
tokcnt += tmpcnt
return {"count":tokcnt, "data":tokarrs}
def tokenize_ids(countprompt,tcaddspecial):
rawcountdata = handle.token_count(countprompt.encode("UTF-8"),tcaddspecial)
countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0
# the above protects the server in case the count limit got corrupted
countdata = [rawcountdata.ids[i] for i in range(countlimit)]
return countdata
def detokenize_ids(tokids):
tokidslen = len(tokids)
detokstr = ""
if tokidslen > 0 and tokidslen < 65536:
inputs = token_count_outputs()
inputs.count = tokidslen
inputs.ids = (ctypes.c_int * tokidslen)()
for i, cid in enumerate(tokids):
inputs.ids[i] = cid
detok = handle.detokenize(inputs)
detokstr = ctypes.string_at(detok).decode("UTF-8","ignore")
return detokstr
# Performs a web search using DuckDuckGo and extracts text content from the top results.
def websearch(query):
global websearch_lastquery
global websearch_lastresponse
global nocertify
# sanitize query
query = re.sub(r'[+\-\"\\/*^|<>~`]', '', query) # Remove blacklisted characters
query = re.sub(r'\s+', ' ', query).strip() # Replace multiple spaces with a single space
if not query or query=="":
return []
query = query[:300] # only search first 300 chars, due to search engine limits
if query==websearch_lastquery:
print("Returning cached websearch...")
return websearch_lastresponse
import difflib
from html.parser import HTMLParser
num_results = 3
searchresults = []
utfprint("Performing new websearch...",1)
def fetch_searched_webpage(url, random_agent=False):
from urllib.parse import quote, urlsplit, urlunsplit
uagent = 'Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)'
if random_agent:
agents = ["Mozilla/5.0 (Macintosh; Intel Mac OS X 13_2) Gecko/20100101 Firefox/114.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.1823.79 Safari/537.36 Edg/114.0.1823.79",
"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.5938.132 Safari/537.36"]
uagent = random.choice(agents)
if args.debugmode:
utfprint(f"WebSearch URL: {url}")
# Encode non-ASCII parts of the URL
try:
split_url = urlsplit(url)
encoded_path = quote(split_url.path)
encoded_url = urlunsplit((split_url.scheme, split_url.netloc, encoded_path, split_url.query, split_url.fragment))
ssl_cert_dir = os.environ.get('SSL_CERT_DIR')
if not ssl_cert_dir and not nocertify and os.name != 'nt':
os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs'
req = urllib.request.Request(encoded_url, headers={'User-Agent': uagent})
with urllib.request.urlopen(req, timeout=15) as response:
html_content = response.read().decode('utf-8', errors='ignore')
return html_content
except urllib.error.HTTPError: #we got blocked? try 1 more time with a different user agent
try:
req = urllib.request.Request(encoded_url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36'})
with urllib.request.urlopen(req, timeout=15) as response:
html_content = response.read().decode('utf-8', errors='ignore')
return html_content
except Exception as e:
utfprint(f"Error fetching text from URL {url}: {e}",1)
return ""
except Exception as e:
utfprint(f"Error fetching text from URL {url}: {e}",1)
return ""
def fetch_webpages_parallel(urls):
with ThreadPoolExecutor() as executor:
# Submit tasks and gather results
results = list(executor.map(fetch_searched_webpage, urls))
return results
def normalize_page_text(text):
text = re.sub(r'\s+([.,!?])', r'\1', text) # Remove spaces before punctuation
# text = re.sub(r'([.,!?])([^\s])', r'\1 \2', text) # Ensure a single space follows punctuation, if not at the end of a line
return text
class VisibleTextParser(HTMLParser):
def __init__(self):
super().__init__()
self.texts = []
self.is_script_or_style = False
def handle_starttag(self, tag, attrs):
if tag in {'script', 'style'}:
self.is_script_or_style = True
def handle_endtag(self, tag):
if tag in {'script', 'style'}:
self.is_script_or_style = False
def handle_data(self, data):
if not self.is_script_or_style and data.strip():
self.texts.append(data.strip())
def get_text(self):
return ' '.join(self.texts)
class ExtractResultsParser(HTMLParser):
def __init__(self):
super().__init__()
self.titles = []
self.urls = []
self.descs = []
self.recordingTitle = False
self.recordingUrl = False
self.recordingDesc = False
self.currsegmenttxt = ""
def handle_starttag(self, tag, attrs):
if tag == "a":
# Check if the "class" attribute matches the target class
for attr_name, attr_value in attrs:
if not self.recordingTitle and attr_name == "class" and "result__a" in attr_value.split():
self.recordingTitle = True
self.currsegmenttxt = ""
if not self.recordingUrl and attr_name == "class" and "result__url" in attr_value.split():
self.recordingUrl = True
self.currsegmenttxt = ""
if not self.recordingDesc and attr_name == "class" and "result__snippet" in attr_value.split():
self.recordingDesc = True
self.currsegmenttxt = ""
def handle_endtag(self, tag):
if tag == "a" and self.recordingTitle:
self.recordingTitle = False
self.titles.append(self.currsegmenttxt.strip())
self.currsegmenttxt = ""
if tag == "a" and self.recordingUrl:
self.recordingUrl = False
self.urls.append(f"https://{self.currsegmenttxt.strip()}")
self.currsegmenttxt = ""
if tag == "a" and self.recordingDesc:
self.recordingDesc = False
self.descs.append(self.currsegmenttxt.strip())
self.currsegmenttxt = ""
def handle_data(self, data):
if self.recordingTitle or self.recordingDesc or self.recordingUrl:
self.currsegmenttxt += data
encoded_query = urllib.parse.quote(query)
search_url = f"https://html.duckduckgo.com/html/?q={encoded_query}"
try:
search_html = fetch_searched_webpage(search_url, random_agent=True)
parser = ExtractResultsParser()
parser.feed(search_html)
titles = parser.titles[:num_results]
searchurls = parser.urls[:num_results]
descs = parser.descs[:num_results]
if len(descs)==0 or len(titles)==0 or len(descs)==0:
utfprint("No results found! Maybe something went wrong...",1)
return []
fetchedcontent = fetch_webpages_parallel(searchurls)
for i in range(len(descs)):
# dive into the results to try and get even more details
title = titles[i]
url = searchurls[i]
desc = descs[i]
pagedesc = ""
try:
desclen = len(desc)
html_content = fetchedcontent[i]
parser2 = VisibleTextParser()
parser2.feed(html_content)
scraped = parser2.get_text().strip()
scraped = normalize_page_text(scraped)
desc = normalize_page_text(desc)
s = difflib.SequenceMatcher(None, scraped.lower(), desc.lower(), autojunk=False)
matches = s.find_longest_match(0, len(scraped), 0, desclen)
if matches.size > 100 and desclen-matches.size < 100: #good enough match
# expand description by some chars both sides
expandamtbefore = 200
expandamtafter = 800
startpt = matches.a - expandamtbefore
startpt = 0 if startpt < 0 else startpt
endpt = matches.a + expandamtafter + desclen
pagedesc = scraped[startpt:endpt].strip()
except Exception:
pass
searchresults.append({"title":title,"url":url,"desc":desc,"content":pagedesc})
except Exception as e:
utfprint(f"Error fetching URL {search_url}: {e}",1)
return []
if len(searchresults) > 0:
websearch_lastquery = query
websearch_lastresponse = searchresults
return searchresults
def is_port_in_use(portNum):
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', portNum)) == 0
except Exception:
return True
def is_ipv6_supported():
try:
# Attempt to create an IPv6 socket
sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1)
sock.close()
return True
except Exception:
return False
# Used to parse json for openai tool calls
def extract_json_from_string(input_string):
parsed_json = None
try: # First check if model exported perfect json
parsed_json = json.loads(input_string)
if not isinstance(parsed_json, list):
parsed_json = [parsed_json]
return parsed_json
except Exception:
pass
try: # Next check if all we need is to add brackets to make it perfect json
parsed_json = json.loads(f"[{input_string}]")
return parsed_json
except Exception:
pass
try:
# Now use regular expression to match JSON objects or arrays in case part is valid json and part is not
json_pattern = r'(\{.*?\}|\[.*?\])' # was json_pattern = r'(\{.*\}|\[.*\])'
potential_jsons = re.findall(json_pattern, input_string, re.DOTALL)
for potential_json in potential_jsons:
try:
parsed_json = json.loads(potential_json)
if not isinstance(parsed_json, list):
parsed_json = [parsed_json]
return parsed_json
except Exception:
continue
except Exception:
pass
return []
def parse_last_logprobs(lastlogprobs):
if not lastlogprobs:
return None
logprobsdict = {}
logprobsdict['content'] = []
logprobsdict['tokens'] = []
logprobsdict['token_logprobs'] = []
logprobsdict['top_logprobs'] = []
logprobsdict['text_offset'] = []
text_offset_counter = 0
for i in range(lastlogprobs.count):
lp_content_item = {}
logprob_item = lastlogprobs.logprob_items[i]
toptoken = ctypes.string_at(logprob_item.selected_token).decode("UTF-8","ignore")
logprobsdict['tokens'].append(toptoken)
lp_content_item['token'] = toptoken
logprobsdict['token_logprobs'].append(logprob_item.selected_logprob)
lp_content_item['logprob'] = logprob_item.selected_logprob
lp_content_item['bytes'] = list(toptoken.encode('utf-8'))
lp_content_item['top_logprobs'] = []
logprobsdict['text_offset'].append(text_offset_counter)
text_offset_counter += len(toptoken)
tops = {}
for j in range(min(logprob_item.option_count,logprobs_max)):
tl_item = {}
tl_item['logprob'] = logprob_item.logprobs[j]
tokstr = ctypes.string_at(logprob_item.tokens[j]).decode("UTF-8","ignore")
tops[tokstr] = logprob_item.logprobs[j]
tl_item['token'] = tokstr
tl_item['bytes'] = list(tokstr.encode('utf-8'))
lp_content_item['top_logprobs'].append(tl_item)
logprobsdict['top_logprobs'].append(tops)
logprobsdict['content'].append(lp_content_item)
return logprobsdict
def extract_tool_info_from_tool_array(chosen_tool, tools_array):
found_function = ""
found_tooljson = None
try:
if isinstance(chosen_tool, str):
found_function = chosen_tool
elif isinstance(chosen_tool, dict): #if we can match the tool name, we must use that tool, remove all other tools
found_function = chosen_tool.get('function').get('name')
#if we find the function in tools, remove all other tools except the one matching the function name
for tool in tools_array:
if found_function and tool.get('type') == "function" and tool.get('function').get('name').lower() == found_function.lower():
found_tooljson = tool
break
except Exception:
# In case of any issues, just revert back to no specified function
print("Tools parsing not valid - discarded")
pass
return found_tooljson
def extract_all_names_from_tool_array(tools_array):
toolnames = []
for tool in tools_array:
try:
if tool.get('type') == "function" and tool.get('function').get('name'):
toolnames.append(tool.get('function').get('name'))
except Exception:
pass
return toolnames
#returns the found JSON of the correct tool to use, or None if no tool is suitable
def determine_tool_json_to_use(genparams, curr_ctx, assistant_message_start, is_followup_tool):
# tools handling: Check if user is passing a openai tools array, if so add to end of prompt before assistant prompt unless tool_choice has been set to None
tools_array = genparams.get('tools', [])
chosen_tool = genparams.get('tool_choice', "auto")
# first handle auto mode, determine whether a tool is needed
used_tool_json = None
if not curr_ctx:
return None
if tools_array and len(tools_array) > 0 and chosen_tool is not None and chosen_tool!="none":
tools_string = json.dumps(tools_array, indent=0)
should_use_tools = True
if chosen_tool=="auto":
# if you want a different template, you can set 'custom_tools_prompt' in the chat completions adapter as follows
custom_tools_prompt = "Can the user query be answered by a listed tool above? (One word response: yes or no):"
if is_followup_tool:
custom_tools_prompt = "Can the user query be further answered by another listed tool above? (If response is already complete, reply NO) (One word response: yes or no):"
# note: message string already contains the instruct start tag!
pollgrammar = r'root ::= "yes" | "no" | "Yes" | "No" | "YES" | "NO"'
temp_poll = {
"prompt": f"{curr_ctx}\n\nTool List:\n{tools_string}\n\n{custom_tools_prompt}{assistant_message_start}",
"max_length":5,
"temperature":0.1,
"top_k":1,
"rep_pen":1,
"ban_eos_token":False,
"grammar":pollgrammar
}
temp_poll_result = generate(genparams=temp_poll)
if temp_poll_result and "yes" not in temp_poll_result['text'].lower():
should_use_tools = False
if not args.quiet:
print(f"\nRelevant tool is listed: {temp_poll_result['text']} ({should_use_tools})")
if should_use_tools:
#first, try and extract a specific tool if selected
used_tool_json = extract_tool_info_from_tool_array(chosen_tool, tools_array)
if used_tool_json: #already found the tool we want, remove all others
pass
elif len(tools_array)==1:
used_tool_json = tools_array[0]
else: # we have to find the tool we want the old fashioned way
toolnames = extract_all_names_from_tool_array(tools_array)
if len(toolnames) == 1:
used_tool_json = extract_tool_info_from_tool_array(toolnames[0], tools_array)
else:
pollgrammar = ""
for name in toolnames:
pollgrammar += ("" if pollgrammar=="" else " | ")
pollgrammar += "\"" + name + "\""
pollgrammar = r'root ::= ' + pollgrammar
decide_tool_prompt = "Which of the listed tools should be used next? Pick exactly one. (Reply directly with the selected tool's name):"
temp_poll = {
"prompt": f"{curr_ctx}\n\nTool List:\n{tools_string}\n\n{decide_tool_prompt}{assistant_message_start}",
"max_length":16,
"temperature":0.1,
"top_k":1,
"rep_pen":1,
"ban_eos_token":False,
"grammar":pollgrammar
}
temp_poll_result = generate(genparams=temp_poll)
if temp_poll_result:
raw = temp_poll_result['text'].lower()
for name in toolnames:
if name.lower() in raw:
used_tool_json = extract_tool_info_from_tool_array(name, tools_array)
if not args.quiet:
print(f"\nAttempting to use tool: {name}")
break
return used_tool_json
def transform_genparams(genparams, api_format):
global chatcompl_adapter, maxctx
if api_format < 0: #not text gen, do nothing
return
jsongrammar = r"""
root ::= arr
value ::= object | array | string | number | ("true" | "false" | "null") ws
arr ::=
"[\n" ws (
value
(",\n" ws value)*
)? "]"
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\\x7F\x00-\x1F] |
"\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4})
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [1-9] [0-9]{0,15})? ws
ws ::= | " " | "\n" [ \t]{0,20}
"""
#api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate,6=ollama,7=ollamachat
#alias all nonstandard alternative names for rep pen.
rp1 = float(genparams.get('repeat_penalty', 1.0))
rp2 = float(genparams.get('repetition_penalty', 1.0))
rp3 = float(genparams.get('rep_pen', 1.0))
rp_max = max(rp1,rp2,rp3)
genparams["rep_pen"] = rp_max
if "use_default_badwordsids" in genparams and "ban_eos_token" not in genparams:
genparams["ban_eos_token"] = genparams.get('use_default_badwordsids', False)
if api_format==1:
genparams["prompt"] = genparams.get('text', "")
genparams["top_k"] = int(genparams.get('top_k', 100))
genparams["max_length"] = int(genparams.get('max', args.defaultgenamt))
elif api_format==2:
#tool calls only possible if forced, or if ending with assistant tag
adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
used_tool_json = determine_tool_json_to_use(genparams, genparams.get('prompt', ""), assistant_message_start, True)
if used_tool_json and not genparams.get('grammar', ""):
toolparamjson = None
toolname = None
# Set temperature lower automatically if function calling, cannot exceed 0.5
genparams["temperature"] = (1.0 if genparams.get("temperature", 0.5) > 1.0 else genparams.get("temperature", 0.5))
genparams["using_openai_tools"] = True
# Set grammar to llamacpp example grammar to force json response (see https://github.com/ggerganov/llama.cpp/blob/master/grammars/json_arr.gbnf)
genparams["grammar"] = jsongrammar
try:
toolname = used_tool_json.get('function').get('name')
toolparamjson = used_tool_json.get('function').get('parameters')
bettergrammarjson = {"type":"array","items":{"type":"object","properties":{"id":{"type":"string","enum":["call_001"]},"type":{"type":"string","enum":["function"]},"function":{"type":"object","properties":{"name":{"type":"string"},"arguments":{}},"required":["name","arguments"],"additionalProperties":False}},"required":["id","type","function"],"additionalProperties":False}}
bettergrammarjson["items"]["properties"]["function"]["properties"]["arguments"] = toolparamjson
decoded = convert_json_to_gbnf(bettergrammarjson)
if decoded:
genparams["grammar"] = decoded
except Exception:
pass
tool_json_formatting_instruction = f"\nPlease use the provided schema to fill the parameters to create a function call for {toolname}, in the following format: " + json.dumps([{"id": "call_001", "type": "function", "function": {"name": f"{toolname}", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}], indent=0)
genparams["prompt"] += f"\n\nJSON Schema:\n{used_tool_json}\n\n{tool_json_formatting_instruction}{assistant_message_start}"
elif api_format==3 or api_format==4 or api_format==7:
default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter
adapter_obj = genparams.get('adapter', default_adapter)
default_max_tok = (adapter_obj.get("max_length", args.defaultgenamt) if (api_format==4 or api_format==7) else args.defaultgenamt)
genparams["max_length"] = tryparseint(genparams.get('max_tokens', genparams.get('max_completion_tokens', default_max_tok)),default_max_tok)
presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0))
genparams["presence_penalty"] = tryparsefloat(presence_penalty,0.0)
# openai allows either a string or a list as a stop sequence
if genparams.get('stop',[]) is not None:
if isinstance(genparams.get('stop',[]), list):
genparams["stop_sequence"] = genparams.get('stop', [])
else:
genparams["stop_sequence"] = [genparams.get('stop')]
genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1),-1)
genparams["mirostat"] = genparams.get('mirostat_mode', 0)
if api_format==4 or api_format==7: #handle ollama chat here too
# translate openai chat completion messages format into one big string.
messages_array = genparams.get('messages', [])
messages_string = adapter_obj.get("chat_start", "")
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
system_message_end = adapter_obj.get("system_end", "")
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
user_message_end = adapter_obj.get("user_end", "")
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
assistant_message_end = adapter_obj.get("assistant_end", "")
assistant_message_gen = adapter_obj.get("assistant_gen", assistant_message_start)
tools_message_start = adapter_obj.get("tools_start", "\nTool Results:\n")
tools_message_end = adapter_obj.get("tools_end", "")
images_added = []
audio_added = []
# handle structured outputs
respformat = genparams.get('response_format', None)
if respformat:
try:
rt = respformat.get('type')
if rt.lower() == "json_schema":
schema = respformat.get('json_schema').get('schema')
decoded = convert_json_to_gbnf(schema)
if decoded:
genparams["grammar"] = decoded
elif rt.lower() == "json_object":
genparams["grammar"] = jsongrammar
except Exception:
# In case of any issues, just do normal gen
print("Structured Output not valid - discarded")
pass
elif 'json_schema' in genparams:
try:
schema = genparams.get('json_schema')
decoded = convert_json_to_gbnf(schema)
if decoded:
genparams["grammar"] = decoded
except Exception:
print("Structured Output (old format) not valid - discarded")
pass
message_index = 0
attachedimgid = 0
attachedaudid = 0
for message in messages_array:
message_index += 1
if message['role'] == "system":
messages_string += system_message_start
elif message['role'] == "user":
messages_string += user_message_start
elif message['role'] == "assistant":
messages_string += assistant_message_start
elif message['role'] == "tool":
messages_string += tools_message_start
# content can be a string or an array of objects
curr_content = message.get("content",None)
if api_format==7: #ollama handle vision
imgs = message.get("images",None)
if imgs and len(imgs) > 0:
for img in imgs:
images_added.append(img)
if not curr_content:
if "tool_calls" in message:
try:
if len(message.get("tool_calls"))>0:
tcfnname = message.get("tool_calls")[0].get("function").get("name")
messages_string += f"\n(Made a function call to {tcfnname})\n"
except Exception:
messages_string += "\n(Made a function call)\n"
pass # do nothing
elif isinstance(curr_content, str):
messages_string += curr_content
elif isinstance(curr_content, list): #is an array
for item in curr_content:
if item['type']=="text":
messages_string += item['text']
elif item['type']=="image_url":
if 'image_url' in item and item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"):
images_added.append(item['image_url']['url'].split(",", 1)[1])
attachedimgid += 1
messages_string += f"\n(Attached Image {attachedimgid})\n"
elif item['type']=="input_audio":
if 'input_audio' in item and item['input_audio'] and item['input_audio']['data']:
audio_added.append(item['input_audio']['data'])
attachedaudid += 1
messages_string += f"\n(Attached Audio {attachedaudid})\n"
# If last message, add any tools calls after message content and before message end token if any
if message_index == len(messages_array):
used_tool_json = determine_tool_json_to_use(genparams, messages_string, assistant_message_start, (message['role'] == "tool"))
if used_tool_json:
toolparamjson = None
toolname = None
# Set temperature lower automatically if function calling, cannot exceed 0.5
genparams["temperature"] = (1.0 if genparams.get("temperature", 0.5) > 1.0 else genparams.get("temperature", 0.5))
genparams["using_openai_tools"] = True
# Set grammar to llamacpp example grammar to force json response (see https://github.com/ggerganov/llama.cpp/blob/master/grammars/json_arr.gbnf)
genparams["grammar"] = jsongrammar
try:
toolname = used_tool_json.get('function').get('name')
toolparamjson = used_tool_json.get('function').get('parameters')
bettergrammarjson = {"type":"array","items":{"type":"object","properties":{"id":{"type":"string","enum":["call_001"]},"type":{"type":"string","enum":["function"]},"function":{"type":"object","properties":{"name":{"type":"string"},"arguments":{}},"required":["name","arguments"],"additionalProperties":False}},"required":["id","type","function"],"additionalProperties":False}}
bettergrammarjson["items"]["properties"]["function"]["properties"]["arguments"] = toolparamjson
decoded = convert_json_to_gbnf(bettergrammarjson)
if decoded:
genparams["grammar"] = decoded
except Exception:
pass
tool_json_formatting_instruction = f"\nPlease use the provided schema to fill the parameters to create a function call for {toolname}, in the following format: " + json.dumps([{"id": "call_001", "type": "function", "function": {"name": f"{toolname}", "arguments": {"first property key": "first property value", "second property key": "second property value"}}}], indent=0)
messages_string += f"\n\nJSON Schema:\n{used_tool_json}\n\n{tool_json_formatting_instruction}{assistant_message_start}"
if message['role'] == "system":
messages_string += system_message_end
elif message['role'] == "user":
messages_string += user_message_end
elif message['role'] == "assistant":
messages_string += assistant_message_end
elif message['role'] == "tool":
messages_string += tools_message_end
messages_string += assistant_message_gen
genparams["prompt"] = messages_string
if len(images_added)>0:
genparams["images"] = images_added
if len(audio_added)>0:
genparams["audio"] = audio_added
if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing
genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()]
else:
genparams["stop_sequence"].append(user_message_start.strip())
genparams["stop_sequence"].append(assistant_message_start.strip())
genparams["trim_stop"] = True
elif api_format==5:
firstimg = genparams.get('image', "")
genparams["images"] = [firstimg]
genparams["max_length"] = 42
adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter
user_message_start = adapter_obj.get("user_start", "### Instruction:")
assistant_message_start = adapter_obj.get("assistant_start", "### Response:")
assistant_message_gen = adapter_obj.get("assistant_gen", assistant_message_start)
genparams["prompt"] = f"{user_message_start} In one sentence, write a descriptive caption for this image.\n{assistant_message_gen}"
elif api_format==6:
detokstr = ""
tokids = genparams.get('context', [])
adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter
user_message_start = adapter_obj.get("user_start", "\n\n### Instruction:\n")
assistant_message_start = adapter_obj.get("assistant_start", "\n\n### Response:\n")
assistant_message_gen = adapter_obj.get("assistant_gen", assistant_message_start)
try:
detokstr = detokenize_ids(tokids)
except Exception as e:
utfprint("Ollama Context Error: " + str(e))
ollamasysprompt = genparams.get('system', "")
ollamabodyprompt = f"{detokstr}{user_message_start}{genparams.get('prompt', '')}{assistant_message_gen}"
ollamaopts = genparams.get('options', {})
if genparams.get('stop',[]) is not None:
genparams["stop_sequence"] = genparams.get('stop', [])
if "num_predict" in ollamaopts:
genparams["max_length"] = ollamaopts.get('num_predict', args.defaultgenamt)
if "num_ctx" in ollamaopts:
genparams["max_context_length"] = ollamaopts.get('num_ctx', maxctx)
if "temperature" in ollamaopts:
genparams["temperature"] = ollamaopts.get('temperature', 0.75)
if "top_k" in ollamaopts:
genparams["top_k"] = ollamaopts.get('top_k', 100)
if "top_p" in ollamaopts:
genparams["top_p"] = ollamaopts.get('top_p', 0.92)
if "seed" in ollamaopts:
genparams["sampler_seed"] = tryparseint(ollamaopts.get('seed', -1),-1)
if "stop" in ollamaopts:
genparams["stop_sequence"] = ollamaopts.get('stop', [])
genparams["stop_sequence"].append(user_message_start.strip())
genparams["stop_sequence"].append(assistant_message_start.strip())
genparams["trim_stop"] = True
genparams["ollamasysprompt"] = ollamasysprompt
genparams["ollamabodyprompt"] = ollamabodyprompt
genparams["prompt"] = ollamasysprompt + ollamabodyprompt
#final transformations (universal template replace)
replace_instruct_placeholders = genparams.get('replace_instruct_placeholders', True)
stop_sequence = (genparams.get('stop_sequence', []) if genparams.get('stop_sequence', []) is not None else [])
stop_sequence = stop_sequence[:stop_token_max]
if replace_instruct_placeholders:
prompt = genparams.get('prompt', "")
memory = genparams.get('memory', "")
adapter_obj = {} if chatcompl_adapter is None else chatcompl_adapter
system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n")
system_message_end = adapter_obj.get("system_end", "")
user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n")
user_message_end = adapter_obj.get("user_end", "")
assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n")
assistant_message_end = adapter_obj.get("assistant_end", "")
assistant_message_gen = adapter_obj.get("assistant_gen", assistant_message_start)
if isinstance(prompt, str): #needed because comfy SD uses same field name
if assistant_message_gen and assistant_message_gen!=assistant_message_start: #replace final output tag with unspaced (gen) version if exists
if prompt.rstrip().endswith("{{[OUTPUT]}}"):
prompt = replace_last_in_string(prompt,"{{[OUTPUT]}}",assistant_message_gen)
elif assistant_message_start and prompt.rstrip().endswith(assistant_message_start):
prompt = replace_last_in_string(prompt, assistant_message_start, assistant_message_gen)
if "{{[INPUT_END]}}" in prompt or "{{[OUTPUT_END]}}" in prompt:
prompt = prompt.replace("{{[INPUT]}}", user_message_start)
prompt = prompt.replace("{{[OUTPUT]}}", assistant_message_start)
prompt = prompt.replace("{{[SYSTEM]}}", system_message_start)
prompt = prompt.replace("{{[INPUT_END]}}", user_message_end)
prompt = prompt.replace("{{[OUTPUT_END]}}", assistant_message_end)
prompt = prompt.replace("{{[SYSTEM_END]}}", system_message_end)
memory = memory.replace("{{[INPUT]}}", user_message_start)
memory = memory.replace("{{[OUTPUT]}}", assistant_message_start)
memory = memory.replace("{{[SYSTEM]}}", system_message_start)
memory = memory.replace("{{[INPUT_END]}}", user_message_end)
memory = memory.replace("{{[OUTPUT_END]}}", assistant_message_end)
memory = memory.replace("{{[SYSTEM_END]}}", system_message_end)
else:
prompt = prompt.replace("{{[INPUT]}}", assistant_message_end + user_message_start)
prompt = prompt.replace("{{[OUTPUT]}}", user_message_end + assistant_message_start)
prompt = prompt.replace("{{[SYSTEM]}}", system_message_start)
prompt = prompt.replace("{{[INPUT_END]}}", "")
prompt = prompt.replace("{{[OUTPUT_END]}}", "")
prompt = prompt.replace("{{[SYSTEM_END]}}", "")
memory = memory.replace("{{[INPUT]}}", assistant_message_end + user_message_start)
memory = memory.replace("{{[OUTPUT]}}", user_message_end + assistant_message_start)
memory = memory.replace("{{[SYSTEM]}}", system_message_start)
memory = memory.replace("{{[INPUT_END]}}", "")
memory = memory.replace("{{[OUTPUT_END]}}", "")
memory = memory.replace("{{[SYSTEM_END]}}", "")
for i in range(len(stop_sequence)):
if stop_sequence[i] == "{{[INPUT]}}":
stop_sequence[i] = user_message_start.strip()
elif stop_sequence[i] == "{{[OUTPUT]}}":
stop_sequence[i] = assistant_message_start.strip()
elif stop_sequence[i] == "{{[INPUT_END]}}":
stop_sequence[i] = (user_message_end.strip() if user_message_end.strip()!="" else "")
elif stop_sequence[i] == "{{[OUTPUT_END]}}":
stop_sequence[i] = (assistant_message_end.strip() if assistant_message_end.strip()!="" else "")
stop_sequence = list(filter(None, stop_sequence))
genparams["prompt"] = prompt
genparams["memory"] = memory
genparams["stop_sequence"] = stop_sequence
return genparams
def LaunchWebbrowser(target_url, failedmsg):
try:
if os.name == "posix" and "DISPLAY" in os.environ: # UNIX-like systems
clean_env = os.environ.copy()
clean_env.pop("LD_LIBRARY_PATH", None)
clean_env["PATH"] = "/usr/bin:/bin"
result = subprocess.run(["/usr/bin/env", "xdg-open", target_url], check=True, env=clean_env)
if result.returncode == 0:
return # fallback successful
raise RuntimeError("no xdg-open")
except Exception:
try:
import webbrowser as wb
if wb.open(target_url, autoraise=True):
return # If successful, exit the function
raise RuntimeError("wb.open failed")
except Exception:
print(failedmsg)
print(f"Please manually open your browser to {target_url}")
#################################################################
### A hacky simple HTTP server simulating a kobold api by Concedo
### we are intentionally NOT using flask, because we want MINIMAL dependencies
#################################################################
class KcppServerRequestHandler(http.server.SimpleHTTPRequestHandler):
sys_version = "1"
server_version = "KoboldCppServer"
def __init__(self, addr, port):
self.addr = addr
self.port = port
def __call__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def log_message(self, format, *args):
global showdebug
if showdebug:
super().log_message(format, *args)
pass
def extract_formdata_from_file_upload(self, body):
result = {"file": None, "prompt": None, "language": None}
try:
if 'content-type' in self.headers and self.headers['content-type']:
boundary = self.headers['content-type'].split("=")[1].encode()
if boundary:
fparts = body.split(boundary)
for fpart in fparts:
detected_upload_filename = re.findall(r'Content-Disposition[^;]*;\s*name=(?:"file"|file)\s*;\s*filename=(?:"([^"]+)"|([^\s";]+))', fpart.decode('utf-8',errors='ignore'),flags=re.IGNORECASE)
detected_upload_filename_comfy = re.findall(r'Content-Disposition[^;]*;\s*name=(?:"image"|image)\s*;\s*filename=(?:"([^"]+)"|([^\s";]+))', fpart.decode('utf-8',errors='ignore'),flags=re.IGNORECASE)
if detected_upload_filename and len(detected_upload_filename)>0:
utfprint(f"Detected uploaded file: {detected_upload_filename[0]}")
file_content_start = fpart.find(b'\r\n\r\n') + 4 # Position after headers
file_content_end = fpart.rfind(b'\r\n') # Ending boundary
if file_content_start != -1 and file_content_end != -1:
if "file" in result and result["file"] is None:
file_data = fpart[file_content_start:file_content_end]
file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore")
base64_string = f"data:audio/wav;base64,{file_data_base64}"
result["file"] = base64_string
elif detected_upload_filename_comfy and len(detected_upload_filename_comfy)>0:
utfprint(f"Detected uploaded image: {detected_upload_filename_comfy[0]}")
file_content_start = fpart.find(b'\r\n\r\n') + 4 # Position after headers
file_content_end = fpart.rfind(b'\r\n') # Ending boundary
if file_content_start != -1 and file_content_end != -1:
if "file" in result and result["file"] is None:
file_data = fpart[file_content_start:file_content_end]
file_data_base64 = base64.b64encode(file_data).decode('utf-8',"ignore")
base64_string = f"{file_data_base64}"
result["file"] = base64_string
# Check for fields
detected_prompt_field = re.findall(r'Content-Disposition.*name="prompt"\r\n\r\n(.*)\r\n', fpart.decode('utf-8', errors='ignore'))
if detected_prompt_field and len(detected_prompt_field)>0:
result["prompt"] = detected_prompt_field[0].strip() # Extract and strip whitespace
detected_lang_field = re.findall(r'Content-Disposition.*name="language"\r\n\r\n(.*)\r\n', fpart.decode('utf-8', errors='ignore'))
if detected_lang_field and len(detected_lang_field)>0:
result["language"] = detected_lang_field[0].strip() # Extract and strip whitespace
if not ("file" in result and result["file"]):
print("Uploaded file not found.")
return result
except Exception as e:
print(f"File Upload Process Error: {e}")
return result
async def generate_text(self, genparams, api_format, stream_flag):
global friendlymodelname, chatcompl_adapter, currfinishreason
currfinishreason = None
def run_blocking(): # api format 1=basic,2=kai,3=oai,4=oai-chat
# flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
return generate(genparams=genparams,stream_flag=stream_flag)
genout = {"text": "", "status": -1, "stopreason": -1, "prompt_tokens":0, "completion_tokens": 0, "total_tokens": 0}
if stream_flag:
loop = asyncio.get_event_loop()
executor = ThreadPoolExecutor()
genout = await loop.run_in_executor(executor, run_blocking)
else:
genout = run_blocking()
recvtxt = genout['text']
prompttokens = genout['prompt_tokens']
comptokens = genout['completion_tokens']
currfinishreason = ("length" if (genout['stopreason'] != 1) else "stop")
# grab logprobs if not streaming
logprobsdict = None
if not stream_flag and ("logprobs" in genparams and genparams["logprobs"]):
lastlogprobs = handle.last_logprobs()
logprobsdict = parse_last_logprobs(lastlogprobs)
# flag instance as non-idle for a while
washordereq = genparams.get('genkey', '').startswith('HORDEREQ_')
if not washordereq:
global last_non_horde_req_time
last_non_horde_req_time = time.time()
utfprint("\nOutput: " + recvtxt,1)
#tool calls resolution
tool_calls = []
if api_format == 4 or api_format == 2:
using_openai_tools = genparams.get('using_openai_tools', False)
if using_openai_tools:
tool_calls = extract_json_from_string(recvtxt)
if tool_calls and len(tool_calls)>0:
for tc in tool_calls:
tcarg = tc.get("function",{}).get("arguments",None)
tc["id"] = f"call_{random.randint(10000, 99999)}"
if tcarg is not None and not isinstance(tcarg, str):
tc["function"]["arguments"] = json.dumps(tcarg)
recvtxt = None
currfinishreason = "tool_calls"
if api_format == 1:
res = {"data": {"seqs": [recvtxt]}}
elif api_format == 3:
res = {"id": "cmpl-A1", "object": "text_completion", "created": int(time.time()), "model": friendlymodelname,
"usage": {"prompt_tokens": prompttokens, "completion_tokens": comptokens, "total_tokens": (prompttokens+comptokens)},
"choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason, "logprobs":logprobsdict}]}
elif api_format == 4:
res = {"id": "chatcmpl-A1", "object": "chat.completion", "created": int(time.time()), "model": friendlymodelname,
"usage": {"prompt_tokens": prompttokens, "completion_tokens": comptokens, "total_tokens": (prompttokens+comptokens)},
"choices": [{"index": 0, "message": {"role": "assistant", "content": recvtxt, "tool_calls": tool_calls}, "finish_reason": currfinishreason, "logprobs":logprobsdict}]}
elif api_format == 5:
res = {"caption": end_trim_to_sentence(recvtxt)}
elif api_format == 6:
oldprompt = genparams.get('ollamabodyprompt', "")
tokarr = tokenize_ids(oldprompt+recvtxt,False)
res = {"model": friendlymodelname,"created_at": str(datetime.now(timezone.utc).isoformat()),"response":recvtxt,"done": True,"done_reason":currfinishreason,"context": tokarr,"total_duration": 1,"load_duration": 1,"prompt_eval_count": prompttokens,"prompt_eval_duration": 1,"eval_count": comptokens,"eval_duration": 1}
elif api_format == 7:
res = {"model": friendlymodelname,"created_at": str(datetime.now(timezone.utc).isoformat()),"message":{"role":"assistant","content":recvtxt},"done": True,"done_reason":currfinishreason,"total_duration": 1,"load_duration": 1,"prompt_eval_count": prompttokens,"prompt_eval_duration": 1,"eval_count": comptokens,"eval_duration": 1}
else: #kcpp format
res = {"results": [{"text": recvtxt, "tool_calls": tool_calls, "finish_reason": currfinishreason, "logprobs":logprobsdict, "prompt_tokens": prompttokens, "completion_tokens": comptokens}]}
try:
return res
except Exception as e:
print(f"Generate: Error while generating: {e}")
async def send_oai_sse_event(self, data):
if data=="[DONE]":
self.wfile.write(f'data: {data}'.encode())
else:
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def send_kai_sse_event(self, data):
self.wfile.write('event: message\n'.encode())
self.wfile.write(f'data: {data}\n\n'.encode())
self.wfile.flush()
async def handle_sse_stream(self, genparams, api_format):
global friendlymodelname, currfinishreason
# if tools, do not send anything - OAI tool calls will be handled with fakestreaming!
using_openai_tools = genparams.get('using_openai_tools', False)
if api_format == 4 and using_openai_tools:
return
self.send_response(200)
self.send_header("X-Accel-Buffering", "no")
self.send_header("cache-control", "no-cache")
self.send_header("connection", "keep-alive")
self.end_headers(content_type='text/event-stream')
current_token = 0
incomplete_token_buffer = bytearray()
async_sleep_short = 0.02
await asyncio.sleep(0.35) #anti race condition, prevent check from overtaking generate
try:
tokenReserve = "" #keeps fully formed tokens that we cannot send out yet
while True:
streamDone = handle.has_finished() #exit next loop on done
if streamDone:
sr = handle.get_last_stop_reason()
currfinishreason = ("length" if (sr!=1) else "stop")
tokenStr = ""
streamcount = handle.get_stream_count()
while current_token < streamcount:
token = handle.new_token(current_token)
if token is None: # Token isnt ready yet, received nullpointer
break
current_token += 1
newbyte = ctypes.string_at(token)
incomplete_token_buffer += bytearray(newbyte)
tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore")
incseq = is_incomplete_utf8_sequence(incomplete_token_buffer)
badFragment = (tokenSeg==" " and len(incomplete_token_buffer)>1) or incseq #partial incomplete unicode
if tokenSeg!="" and not badFragment:
incomplete_token_buffer.clear()
tokenStr += tokenSeg
if tokenStr!="" or streamDone:
sseq = genparams.get('stop_sequence', [])
trimstop = genparams.get('trim_stop', True)
if trimstop and not streamDone and string_contains_or_overlaps_sequence_substring(tokenStr,sseq):
tokenReserve += tokenStr
await asyncio.sleep(async_sleep_short) #if a stop sequence could trigger soon, do not send output
else:
if tokenStr!="" or tokenReserve!="":
tokenStr = tokenReserve + tokenStr
tokenReserve = ""
#apply trimming if needed
if trimstop:
for trim_str in sseq:
sindex = tokenStr.find(trim_str)
if sindex != -1 and trim_str!="":
tokenStr = tokenStr[:sindex]
if tokenStr!="" or streamDone:
need_split_final_msg = True if (currfinishreason is not None and streamDone and tokenStr!="") else False
if need_split_final_msg: #we need to send one message without the finish reason, then send a finish reason with no msg to follow standards
if api_format == 4: # if oai chat, set format to expected openai streaming response
event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":None,"delta":{'role':'assistant','content':tokenStr}}]})
await self.send_oai_sse_event(event_str)
elif api_format == 3: # non chat completions
event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":None,"text":tokenStr}]})
await self.send_oai_sse_event(event_str)
else:
event_str = json.dumps({"token": tokenStr, "finish_reason":None})
await self.send_kai_sse_event(event_str)
tokenStr = "" # now the final finish reason can be sent alone
if api_format == 4: # if oai chat, set format to expected openai streaming response
event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"delta":{'role':'assistant','content':tokenStr}}]})
await self.send_oai_sse_event(event_str)
elif api_format == 3: # non chat completions
event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"text":tokenStr}]})
await self.send_oai_sse_event(event_str)
else:
event_str = json.dumps({"token": tokenStr, "finish_reason":currfinishreason})
await self.send_kai_sse_event(event_str)
tokenStr = ""
else:
await asyncio.sleep(async_sleep_short)
else:
await asyncio.sleep(async_sleep_short) #this should keep things responsive
if streamDone:
if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format
await self.send_oai_sse_event('[DONE]')
break
except Exception as ex:
print("Token streaming was interrupted or aborted!")
print(ex)
handle.abort_generate()
time.sleep(0.2) #short delay
# flush buffers, sleep a bit to make sure all data sent, and then force close the connection
self.wfile.flush()
await asyncio.sleep(0.1)
self.close_connection = True
await asyncio.sleep(0.05)
async def handle_request(self, genparams, api_format, stream_flag):
tasks = []
try:
if stream_flag:
tasks.append(self.handle_sse_stream(genparams, api_format))
generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag))
tasks.append(generate_task)
await asyncio.gather(*tasks)
generate_result = generate_task.result()
return generate_result
except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost
print("An ongoing connection was aborted or interrupted!")
print(cae)
handle.abort_generate()
time.sleep(0.2) #short delay
except Exception as e:
print(e)
def get_multiplayer_idle_state(self,userid):
if modelbusy.locked():
return False
for key, value in multiplayer_lastactive.items():
if key!=userid and time.time()-value<6: #6s to idle
return False
return True
def check_header_password(self, target_password):
auth_ok = True
if target_password and target_password !="":
auth_header = None
auth_ok = False
if 'Authorization' in self.headers:
auth_header = self.headers['Authorization']
elif 'authorization' in self.headers:
auth_header = self.headers['authorization']
if auth_header is not None and auth_header.startswith('Bearer '):
token = auth_header[len('Bearer '):].strip()
if token==target_password:
auth_ok = True
return auth_ok
def secure_endpoint(self): #returns false if auth fails. caller should exit
#handle password stuff
auth_ok = self.check_header_password(password)
if auth_ok is False:
self.send_response(401)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"error": "Unauthorized",
"msg": "Authentication key is missing or invalid.",
"type": "unauthorized",
}}).encode())
return False
return True
def noscript_webui(self):
global modelbusy, sslvalid
parsed_url = urllib.parse.urlparse(self.path)
parsed_dict = urllib.parse.parse_qs(parsed_url.query)
reply = ""
status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate"
prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else ""
chatmsg = str(parsed_dict['chatmsg'][0]) if 'chatmsg' in parsed_dict else ""
imgprompt = str(parsed_dict['imgprompt'][0]) if 'imgprompt' in parsed_dict else ""
max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100
temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.75
top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100
top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9
rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0
ban_eos_token = int(parsed_dict['ban_eos_token'][0]) if 'ban_eos_token' in parsed_dict else 0
steps = int(parsed_dict['steps'][0]) if 'steps' in parsed_dict else 25
cfg = int(parsed_dict['cfg'][0]) if 'cfg' in parsed_dict else 7
genbtnval = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")
gencommand = (genbtnval=="Generate" or genbtnval=="Send")
chatmode = int(parsed_dict['chatmode'][0]) if 'chatmode' in parsed_dict else 0
imgmode = int(parsed_dict['imgmode'][0]) if 'imgmode' in parsed_dict else 0
human_name = str(parsed_dict['human_name'][0]) if 'human_name' in parsed_dict else "User"
bot_name = str(parsed_dict['bot_name'][0]) if 'bot_name' in parsed_dict else "Assistant"
stops = []
prefix = ""
if chatmode:
ban_eos_token = False
prompt = prompt.replace("1HdNl1","\n")
if chatmsg:
prompt += f"\n{human_name}: {chatmsg}\n{bot_name}:"
else:
gencommand = False
stops = [f"\n{human_name}:",f"\n{bot_name}:"]
prefix = f"[This is a chat conversation log between {human_name} and {bot_name}.]\n"
elif imgmode:
if imgprompt:
prompt = imgprompt
max_length = 1
else:
gencommand = False
if modelbusy.locked():
status = "Model is currently busy, try again later."
elif gencommand:
if prompt=="" or max_length<=0:
status = "Need a valid prompt and length to generate."
else:
if max_length>512:
max_length = 512
httpsaffix = ("https" if sslvalid else "http")
epurl = f"{httpsaffix}://localhost:{args.port}"
if args.host!="":
epurl = f"{httpsaffix}://{args.host}:{args.port}"
if imgmode and imgprompt:
gen_payload = {"prompt":{"3":{"class_type": "KSampler","inputs":{"cfg":cfg,"steps":steps,"latent_image":["5", 0],"positive": ["6", 0]}},"5":{"class_type": "EmptyLatentImage","inputs":{"height":512,"width":512}},"6":{"class_type": "CLIPTextEncode","inputs":{"text":imgprompt}}}}
respjson = make_url_request(f'{epurl}/prompt', gen_payload)
else:
gen_payload = {"prompt": prefix+prompt,"max_length": max_length,"temperature": temperature,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"ban_eos_token":ban_eos_token, "stop_sequence":stops}
respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload)
reply = html.escape(respjson["results"][0]["text"])
if chatmode:
reply = " "+reply.strip()
status = "Generation Completed"
if "generate" in parsed_dict:
del parsed_dict["generate"]
if "chatmsg" in parsed_dict:
del parsed_dict["chatmsg"]
if "imgprompt" in parsed_dict:
del parsed_dict["imgprompt"]
parsed_dict["prompt"] = prompt + reply
parsed_dict["status"] = status
parsed_dict["chatmode"] = ("1" if chatmode else "0")
parsed_dict["imgmode"] = ("1" if imgmode else "0")
updated_query_string = urllib.parse.urlencode(parsed_dict, doseq=True)
updated_path = parsed_url._replace(query=updated_query_string).geturl()
self.path = updated_path
time.sleep(0.5) #short delay
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return
imgbtn = '''<form action="/noscript" style="display: inline;">
<input type="hidden" name="imgmode" value="1">
<input type="submit" value="Image Mode">
</form>'''
bodycontent = f'''<b><u>{"Image Mode" if imgmode else ("Chat Mode" if chatmode else "Story Mode")}</u></b><br>'''
optionscontent = ""
if imgmode:
randimg = f'<img src="view_image{random.randint(100, 999)}.png" width="320" width="320">'
bodycontent += f'''<p>Generated Image: {prompt if prompt else "None"}</p>
{randimg if prompt else ""}<br>
<label>Image Prompt: </label><input type="text" size="40" value="" name="imgprompt">
<input type="hidden" name="generate" value="Generate" />
<input type="submit" value="Generate"> (Be patient)'''
elif chatmode:
oldconvo = prompt.strip().replace(f"{human_name}:",f"<b>{human_name}:</b>").replace(f"{bot_name}:",f"<b>{bot_name}:</b>").replace("\n","<br>")
oldconvo += f'''<input type="hidden" name="human_name" value="{human_name}"><input type="hidden" name="bot_name" value="{bot_name}">'''
newconvo = '''Start a new conversation.<br>
<label>Your Name: </label> <input type="text" size="10" value="User" name="human_name"><br>
<label>Bot Name: </label> <input type="text" size="10" value="Assistant" name="bot_name"><br>'''
clnprompt = prompt.replace("\n","1HdNl1")
bodycontent += f'''<p>{newconvo if prompt=="" else oldconvo}</p>
<input type="hidden" name="prompt" value="{clnprompt}">
<label>Say: </label><input type="text" size="40" value="" name="chatmsg">
<input type="hidden" name="generate" value="Send" />
<input type="submit" value="Send"> (Be patient)'''
else:
bodycontent += f'''
<textarea name="prompt" cols="60" rows="8" wrap="soft" placeholder="Enter Prompt Here">{prompt}</textarea><br>
<input type="hidden" name="generate" value="Generate" />
<input type="submit" value="Generate"> (Be patient)
'''
if not imgmode:
optionscontent = f'''<label>Gen. Amount</label> <input type="text" size="4" value="{max_length}" name="max_length"><br>
<label>Temperature</label> <input type="text" size="4" value="{temperature}" name="temperature"><br>
<label>Top-K</label> <input type="text" size="4" value="{top_k}" name="top_k"><br>
<label>Top-P</label> <input type="text" size="4" value="{top_p}" name="top_p"><br>
<label>Rep. Pen</label> <input type="text" size="4" value="{rep_pen}" name="rep_pen"><br>
<label>Prevent EOS</label> <input type="checkbox" name="ban_eos_token" value="1" {"checked" if ban_eos_token else ""}><br>'''
else:
optionscontent = f'''<label>Steps</label> <input type="text" size="4" value="{steps}" name="steps"><br>
<label>Cfg. Scale</label> <input type="text" size="4" value="{cfg}" name="cfg"><br>'''
caps = get_capabilities()
finalhtml = f'''<!doctype html>
<html lang="en"><head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>KoboldCpp NoScript Mode</title></head><body>
<h2>KoboldCpp NoScript Mode</h2>
<div>
<p>KoboldCpp can be used without Javascript enabled, however this is not recommended.
<br>If you have Javascript, please use <a href="/">KoboldAI Lite WebUI</a> instead.</p><hr>
<form action="/noscript">
{bodycontent}
<hr>
<b>{status}</b><br>
<hr>
{optionscontent}
<input type="hidden" name="chatmode" value="{chatmode}">
<input type="hidden" name="imgmode" value="{imgmode}">
</form>
<hr>
<div style="display: inline-block;">
Change Mode<br>
<form action="/noscript" style="display: inline;">
<input type="submit" value="Story Mode">
</form>
<form action="/noscript" style="display: inline;">
<input type="hidden" name="chatmode" value="1">
<input type="submit" value="Chat Mode">
</form>
{imgbtn if ("txt2img" in caps and caps["txt2img"]) else ""}
</div>
</div>
</body></html>'''
finalhtml = finalhtml.encode('utf-8')
self.send_response(200)
self.send_header('content-length', str(len(finalhtml)))
self.end_headers(content_type='text/html')
self.wfile.write(finalhtml)
def do_GET(self):
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui
global last_req_time, start_time
global savedata_obj, has_multiplayer, multiplayer_turn_major, multiplayer_turn_minor, multiplayer_story_data_compressed, multiplayer_dataformat, multiplayer_lastactive, maxctx, maxhordelen, friendlymodelname, lastuploadedcomfyimg, lastgeneratedcomfyimg, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath, password, friendlyembeddingsmodelname
self.path = self.path.rstrip('/')
response_body = None
content_type = 'application/json'
if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without /
content_type = 'text/html'
if embedded_kailite is None:
response_body = (f"Embedded KoboldAI Lite is not found.<br>You will have to connect via the main KoboldAI client, or <a href='https://lite.koboldai.net?local=1&port={self.port}'>use this URL</a> to connect.").encode()
else:
response_body = embedded_kailite
elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without /
self.noscript_webui()
return
elif self.path.endswith(('/manifest.json')):
response_body = (json.dumps({"name":"KoboldAI Lite","short_name":"KoboldAI Lite","description":"Progressive Web App for KoboldAI Lite","start_url":"./","scope":".","display":"standalone","background_color":"#303030","theme_color":"#337ab7","orientation":"portrait-primary","icons":[{"src":"","type":"image/png","sizes":"150x150"}]}).encode())
elif self.path.endswith(('/api/v1/model', '/api/latest/model')):
auth_ok = self.check_header_password(password)
response_body = (json.dumps({'result': (friendlymodelname if auth_ok else "koboldcpp/protected-model") }).encode())
elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')):
response_body = (json.dumps({"value": maxhordelen}).encode())
elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')):
response_body = (json.dumps({"value": min(maxctx,(maxctx if maxhordectx==0 else maxhordectx))}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')):
response_body = (json.dumps({"value":""}).encode())
elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')):
response_body = (json.dumps({"values": []}).encode())
elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')):
response_body = (json.dumps({"result":"1.2.5"}).encode())
elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde
response_body = (json.dumps({"value": maxctx}).encode())
elif self.path.endswith(('/api/extra/version')):
caps = get_capabilities()
response_body = (json.dumps(caps).encode())
elif self.path.endswith(('/api/admin/list_options')): #used by admin to get info about a kcpp instance
opts = []
if args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
dirpath = os.path.abspath(args.admindir)
opts = [f for f in sorted(os.listdir(dirpath)) if (f.endswith(".kcpps") or f.endswith(".kcppt") or f.endswith(".gguf")) and os.path.isfile(os.path.join(dirpath, f))]
opts.append("unload_model")
response_body = (json.dumps(opts).encode())
elif self.path.endswith(('/api/extra/perf')):
lastp = handle.get_last_process_time()
laste = handle.get_last_eval_time()
lastc = handle.get_last_token_count()
lastic = handle.get_last_input_count()
totalgens = handle.get_total_gens()
totalimggens = handle.get_total_img_gens()
totalttsgens = handle.get_total_tts_gens()
totaltranscribegens = handle.get_total_transcribe_gens()
stopreason = handle.get_last_stop_reason()
lastseed = handle.get_last_seed()
lastdraftsuccess = handle.get_last_draft_success()
lastdraftfailed = handle.get_last_draft_failed()
t_pp = float(lastp)*float(lastic)*0.001
t_gen = float(laste)*float(lastc)*0.001
s_pp = float(lastic)/t_pp if t_pp>0 else 0
s_gen = float(lastc)/t_gen if t_gen>0 else 0
uptime = time.time() - start_time
idletime = time.time() - last_req_time
is_quiet = True if (args.quiet and args.debugmode != 1) else False
response_body = json.dumps(
{
"last_process": lastp,
"last_eval": laste,
"last_token_count": lastc,
"last_input_count": lastic,
"last_process_time": t_pp,
"last_eval_time": t_gen,
"last_process_speed": s_pp,
"last_eval_speed": s_gen,
"last_seed": lastseed,
"last_draft_success": lastdraftsuccess,
"last_draft_failed": lastdraftfailed,
"total_gens": totalgens,
"stop_reason": stopreason,
"total_img_gens": totalimggens,
"total_tts_gens": totalttsgens,
"total_transcribe_gens": totaltranscribegens,
"queue": requestsinqueue,
"idle": (0 if modelbusy.locked() else 1),
"hordeexitcounter": exitcounter,
"uptime": uptime,
"idletime": idletime,
"quiet": is_quiet,
}
).encode()
elif self.path.endswith('/api/extra/generate/check'):
if not self.secure_endpoint():
return
pendtxtStr = ""
if requestsinqueue==0 and totalgens>0 and currentusergenkey=="":
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
elif self.path.endswith('/api/extra/last_logprobs'):
if not self.secure_endpoint():
return
logprobsdict = None
if requestsinqueue==0 and totalgens>0 and currentusergenkey=="":
lastlogprobs = handle.last_logprobs()
logprobsdict = parse_last_logprobs(lastlogprobs)
response_body = (json.dumps({"logprobs":logprobsdict}).encode())
elif self.path.endswith('/v1/models'):
response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":int(time.time()),"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode())
elif self.path.endswith('/sdapi/v1/sd-models'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode())
elif self.path.endswith('/sdapi/v1/options'):
response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode())
elif self.path.endswith('/sdapi/v1/samplers'):
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"DDIM","aliases":["ddim"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode())
elif self.path.endswith('/sdapi/v1/latent-upscale-modes'):
response_body = (json.dumps([]).encode())
elif self.path.endswith('/sdapi/v1/upscalers'):
response_body = (json.dumps([]).encode())
elif self.path.endswith('/speakers_list'): #xtts compatible
response_body = (json.dumps(["kobo","cheery","sleepy","shouty","chatty"]).encode()) #some random voices for them to enjoy
elif self.path.endswith('/speakers'): #xtts compatible
response_body = (json.dumps([{"name":"kobo","voice_id":"kobo","preview_url":""},{"name":"cheery","voice_id":"cheery","preview_url":""},{"name":"sleepy","voice_id":"sleepy","preview_url":""},{"name":"shouty","voice_id":"shouty","preview_url":""},{"name":"chatty","voice_id":"chatty","preview_url":""}]).encode()) #some random voices for them to enjoy
elif self.path.endswith('/get_tts_settings'): #xtts compatible
response_body = (json.dumps({"temperature":0.75,"speed":1,"length_penalty":1,"repetition_penalty":1,"top_p":1,"top_k":4,"enable_text_splitting":True,"stream_chunk_size":100}).encode()) #some random voices for them to enjoy
elif self.path.endswith('/api/tags') or self.path.endswith('/api/ps'): #ollama compatible
response_body = (json.dumps({"models":[{"name":"koboldcpp","model":f"{friendlymodelname}:latest","modified_at":"2024-07-19T15:26:55.6122841+08:00","expires_at": "2055-06-04T19:06:25.5433636+08:00","size":394998579,"size_vram":394998579,"digest":"b5dc5e784f2a3ee1582373093acf69a2f4e2ac1710b253a001712b86a61f88bb","details":{"parent_model":"","format":"gguf","family":"koboldcpp","families":["koboldcpp"],"parameter_size":"128M","quantization_level":"Q4_0"}},{"name":"koboldcpp","model":friendlymodelname,"modified_at":"2024-07-19T15:26:55.6122841+08:00","expires_at": "2055-06-04T19:06:25.5433636+08:00","size":394998579,"size_vram":394998579,"digest":"b5dc5e784f2a3ee1582373093acf69a2f4e2ac1710b253a001712b86a61f88bb","details":{"parent_model":"","format":"gguf","family":"koboldcpp","families":["koboldcpp"],"parameter_size":"128M","quantization_level":"Q4_0"}}]}).encode())
elif self.path.endswith('/api/version'): #ollama compatible, NOT the kcpp version
response_body = (json.dumps({"version":"0.7.0"}).encode())
elif self.path=='/ping':
response_body = (json.dumps({"status": "healthy"}).encode())
#comfyui compatible
elif self.path=='/system_stats':
response_body = (json.dumps({"system":{"os":"posix","ram_total":12345678900,"ram_free":12345678900,"comfyui_version":"v0.3.4-3-g7126ecf","python_version":"3.10.12","pytorch_version":"2.5.1","embedded_python":False,"argv":[]},"devices":[{"name":"koboldcpp","type":"cuda","index":0,"vram_total":12345678900,"vram_free":12345678900,"torch_vram_total":12345678900,"torch_vram_free":12345678900}]}).encode())
elif self.path=='/object_info':
response_body = (json.dumps({"KSampler":{"input":{"required":{"model":["MODEL",{"tooltip":""}],"seed":["INT",{"default":0,"min":0,"max":512,"tooltip":""}],"steps":["INT",{"default":20,"min":1,"max":512,"tooltip":""}],"cfg":["FLOAT",{"default":8.0,"min":0.0,"max":100.0,"step":0.1,"round":0.01,"tooltip":"512"}],"sampler_name":[["euler"],{"tooltip":""}],"scheduler":[["normal"],{"tooltip":""}],"positive":["CONDITIONING",{"tooltip":""}],"negative":["CONDITIONING",{"tooltip":""}],"latent_image":["LATENT",{"tooltip":""}],"denoise":["FLOAT",{"default":1.0,"min":0.0,"max":1.0,"step":0.01,"tooltip":""}]}},"input_order":{"required":["model","seed","steps","cfg","sampler_name","scheduler","positive","negative","latent_image","denoise"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"KSampler","display_name":"KSampler","description":"KSampler","python_module":"nodes","category":"sampling","output_node":False,"output_tooltips":[""]},"CheckpointLoaderSimple":{"input":{"required":{"ckpt_name":[[friendlysdmodelname],{"tooltip":""}]}},"input_order":{"required":["ckpt_name"]},"output":["MODEL","CLIP","VAE"],"output_is_list":[False,False,False],"output_name":["MODEL","CLIP","VAE"],"name":"CheckpointLoaderSimple","display_name":"Load","description":"","python_module":"nodes","category":"loaders","output_node":False,"output_tooltips":["","",""]},"CLIPTextEncode":{"input":{"required":{"text":["STRING",{"multiline":True,"dynamicPrompts":True,"tooltip":""}],"clip":["CLIP",{"tooltip":""}]}},"input_order":{"required":["text","clip"]},"output":["CONDITIONING"],"output_is_list":[False],"output_name":["CONDITIONING"],"name":"CLIPTextEncode","display_name":"CLIP","description":"","python_module":"nodes","category":"conditioning","output_node":False,"output_tooltips":[""]},"CLIPSetLastLayer":{"input":{"required":{"clip":["CLIP"],"stop_at_clip_layer":["INT",{"default":-1,"min":-24,"max":-1,"step":1}]}},"input_order":{"required":["clip","stop_at_clip_layer"]},"output":["CLIP"],"output_is_list":[False],"output_name":["CLIP"],"name":"CLIPSetLastLayer","display_name":"CLIPSLL","description":"","python_module":"nodes","category":"conditioning","output_node":False},"VAEDecode":{"input":{"required":{"samples":["LATENT",{"tooltip":""}],"vae":["VAE",{"tooltip":""}]}},"input_order":{"required":["samples","vae"]},"output":["IMAGE"],"output_is_list":[False],"output_name":["IMAGE"],"name":"VAEDecode","display_name":"VAE","description":"","python_module":"nodes","category":"latent","output_node":False,"output_tooltips":[""]},"VAEEncode":{"input":{"required":{"pixels":["IMAGE"],"vae":["VAE"]}},"input_order":{"required":["pixels","vae"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"VAEEncode","display_name":"VAE","description":"","python_module":"nodes","category":"latent","output_node":False},"VAEEncodeForInpaint":{"input":{"required":{"pixels":["IMAGE"],"vae":["VAE"],"mask":["MASK"],"grow_mask_by":["INT",{"default":6,"min":0,"max":64,"step":1}]}},"input_order":{"required":["pixels","vae","mask","grow_mask_by"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"VAEEncodeForInpaint","display_name":"VAE","description":"","python_module":"nodes","category":"latent/inpaint","output_node":False},"VAELoader":{"input":{"required":{"vae_name":[["kcpp_vae"]]}},"input_order":{"required":["vae_name"]},"output":["VAE"],"output_is_list":[False],"output_name":["VAE"],"name":"VAELoader","display_name":"Load VAE","description":"","python_module":"nodes","category":"loaders","output_node":False},"EmptyLatentImage":{"input":{"required":{"width":["INT",{"default":512,"min":16,"max":16384,"step":8,"tooltip":""}],"height":["INT",{"default":512,"min":16,"max":16384,"step":8,"tooltip":""}],"batch_size":["INT",{"default":1,"min":1,"max":1,"tooltip":""}]}},"input_order":{"required":["width","height","batch_size"]},"output":["LATENT"],"output_is_list":[False],"output_name":["LATENT"],"name":"EmptyLatentImage","display_name":"Empty Latent Image","description":"","python_module":"nodes","category":"latent","output_node":False,"output_tooltips":[""]}}).encode())
elif self.path.endswith('/api/models/checkpoints') or self.path.endswith('/models/checkpoints'): #emulate comfyui, duplication is redundant but added for clarity
if friendlysdmodelname=="inactive" or fullsdmodelpath=="":
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([friendlysdmodelname]).encode())
elif self.path=='/view' or self.path=='/view.png' or self.path=='/api/view' or self.path.startswith('/view_image') or self.path.startswith('/view?') or self.path.startswith('/api/view?'): #emulate comfyui
content_type = 'image/png'
response_body = lastgeneratedcomfyimg
elif self.path=='/history' or self.path=='/api/history' or self.path.startswith('/api/history/') or self.path.startswith('/history/'): #emulate comfyui
imgdone = (False if lastgeneratedcomfyimg==b'' else True)
response_body = (json.dumps({"12345678-0000-0000-0000-000000000001":{"prompt":[0,"12345678-0000-0000-0000-000000000001",{"3":{"class_type":"KSampler","inputs":{"cfg":5.0,"denoise":1.0,"latent_image":["5",0],"model":["4",0],"negative":["7",0],"positive":["6",0],"sampler_name":"euler","scheduler":"normal","seed":1,"steps":20}},"4":{"class_type":"CheckpointLoaderSimple","inputs":{"ckpt_name":friendlysdmodelname}},"5":{"class_type":"EmptyLatentImage","inputs":{"batch_size":1,"height":512,"width":512}},"6":{"class_type":"CLIPTextEncode","inputs":{"clip":["4",1],"text":"prompt"}},"7":{"class_type":"CLIPTextEncode","inputs":{"clip":["4",1],"text":""}},"8":{"class_type":"VAEDecode","inputs":{"samples":["3",0],"vae":["4",2]}},"9":{"class_type":"SaveImage","inputs":{"filename_prefix":"kliteimg","images":["8",0]}}},{},["9"]],"outputs":{"9":{"images":[{"filename":"kliteimg_00001_.png","subfolder":"","type":"output"}]}},"status":{"status_str":"success","completed":imgdone,"messages":[["execution_start",{"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}],["execution_cached",{"nodes":[],"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}],["execution_success",{"prompt_id":"12345678-0000-0000-0000-000000000001","timestamp":1}]]},"meta":{"9":{"node_id":"9","display_node":"9","parent_node":None,"real_node_id":"9"}}}}).encode())
elif self.path.startswith('/ws?clientId') and ('Upgrade' in self.headers and self.headers['Upgrade'].lower() == 'websocket' and
'Sec-WebSocket-Key' in self.headers):
ws_key = self.headers['Sec-WebSocket-Key']
ws_accept = base64.b64encode(hashlib.sha1((ws_key + '258EAFA5-E914-47DA-95CA-C5AB0DC85B11').encode()).digest()).decode()
self.protocol_version = "HTTP/1.1"
self.send_response(101) #fake websocket response, Switching Protocols
self.send_header('Upgrade', 'websocket')
self.send_header('Connection', 'Upgrade')
self.send_header('Sec-WebSocket-Accept', ws_accept)
self.end_headers()
try:
# Send a dummy WebSocket text frame: empty string
payload = json.dumps({"type": "status", "data": {"status": {"exec_info": {"queue_remaining": 0}}, "sid": "ffff000012345678ffff000012345678"}}).encode("utf-8")
header = struct.pack("!BB", 0x81, len(payload)) # FIN + text frame, no mask
self.connection.sendall(header + payload)
time.sleep(0.1) #short delay before replying
# Send close frame with status code 1000 (Normal Closure)
close_payload = struct.pack("!H", 1000)
close_frame = struct.pack("!BB", 0x88, len(close_payload)) + close_payload
self.connection.sendall(close_frame)
time.sleep(0.1) #short delay before replying
except Exception as e:
print(f"WebSocket send error: {e}")
self.connection.close()
return
elif self.path.endswith(('/.well-known/serviceinfo')):
response_body = (json.dumps({"version":"0.2","software":{"name":"KoboldCpp","version":KcppVersion,"repository":"https://github.com/LostRuins/koboldcpp","homepage":"https://github.com/LostRuins/koboldcpp","logo":"https://raw.githubusercontent.com/LostRuins/koboldcpp/refs/heads/concedo/niko.ico"},"api":{"koboldai":{"name":"KoboldAI API","rel_url":"/api","documentation":"https://lite.koboldai.net/koboldcpp_api","version":KcppVersion},"openai":{"name":"OpenAI API","rel_url ":"/v1","documentation":"https://openai.com/documentation/api","version":KcppVersion}}}).encode())
elif self.path=="/props":
ctbytes = handle.get_chat_template()
chat_template = ctypes.string_at(ctbytes).decode("UTF-8","ignore")
response_body = (json.dumps({
"chat_template": chat_template,
"total_slots": 1,
"default_generation_settings": {
"n_ctx": maxctx,
},
}).encode())
elif self.path=="/api" or self.path=="/docs" or self.path.startswith(('/api/?json=','/api?json=','/docs/?json=','/docs?json=')):
content_type = 'text/html'
if embedded_kcpp_docs is None:
response_body = ("KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode()
else:
response_body = embedded_kcpp_docs
elif self.path.startswith(("/sdui")):
content_type = 'text/html'
if embedded_kcpp_sdui is None:
response_body = ("KoboldCpp API is running, but KCPP SDUI is not loaded").encode()
else:
response_body = embedded_kcpp_sdui
elif self.path=="/v1":
content_type = 'text/html'
response_body = ("KoboldCpp OpenAI compatible endpoint is running!<br>For usage reference, see <a href='https://platform.openai.com/docs/api-reference'>https://platform.openai.com/docs/api-reference</a><br>For other endpoints, see <a href='/api'>KoboldCpp API Documentation</a>").encode()
elif self.path=="/api/extra/preloadstory":
if preloaded_story is None:
response_body = (json.dumps({}).encode())
else:
response_body = preloaded_story
elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')):
self.path = "/api"
self.send_response(302)
self.send_header("location", self.path)
self.end_headers(content_type='text/html')
return None
if response_body is None:
self.send_response(404)
self.end_headers(content_type='text/html')
rp = 'Error: KoboldCpp HTTP Server is running, but this endpoint does not exist. Please check the URL.'
self.wfile.write(rp.encode())
else:
self.send_response(200)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type=content_type)
self.wfile.write(response_body)
return
def do_POST(self):
global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey, lastuploadedcomfyimg, lastgeneratedcomfyimg, multiplayer_turn_major, multiplayer_turn_minor, multiplayer_story_data_compressed, multiplayer_dataformat, multiplayer_lastactive, net_save_slots, has_vision_support
contlenstr = self.headers['content-length']
content_length = 0
body = None
if contlenstr:
content_length = int(contlenstr)
max_pl = int(args.maxrequestsize) if args.maxrequestsize else 32
if content_length > (1024*1024*max_pl): #payload size limit
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": f"Payload is too big. Max payload size is {max_pl}MB.",
"type": "bad_input",
}}).encode())
return
body = self.rfile.read(content_length)
elif self.headers.get('transfer-encoding', '').lower()=="chunked":
content_length = 0
chunklimit = 0 # do not process more than 512 chunks, prevents bad actors
body = b''
try:
while True:
chunklimit += 1
line = self.rfile.readline().strip()
if line:
chunk_length = max(0,int(line, 16))
content_length += chunk_length
if not line or chunklimit > 512 or content_length > (1024*1024*48): #48mb payload limit
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Payload is too big. Max payload size is 48MB.",
"type": "bad_input",
}}).encode())
return
if chunk_length != 0:
chunk = self.rfile.read(chunk_length)
body += chunk
self.rfile.readline()
if chunk_length == 0:
break
except Exception:
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Failed to parse chunked request.",
"type": "bad_input",
}}).encode())
return
self.path = self.path.rstrip('/')
response_body = None
response_code = 200
if self.path.endswith('/api/extra/tokencount') or self.path.endswith('/api/extra/tokenize'):
if not self.secure_endpoint():
return
try:
genparams = json.loads(body)
countprompt = genparams.get('prompt', "")
tcaddspecial = genparams.get('special', True)
countdata = tokenize_ids(countprompt,tcaddspecial)
response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode())
except Exception as e:
utfprint("Count Tokens - Body Error: " + str(e))
response_code = 400
response_body = (json.dumps({"value": -1}).encode())
elif self.path.endswith('/api/extra/detokenize'):
if not self.secure_endpoint():
return
try:
genparams = json.loads(body)
tokids = genparams.get('ids', [])
detokstr = detokenize_ids(tokids)
response_body = (json.dumps({"result": detokstr,"success":True}).encode())
except Exception as e:
utfprint("Detokenize Error: " + str(e))
response_code = 400
response_body = (json.dumps({"result": "","success":False}).encode())
elif self.path.endswith('/api/extra/json_to_grammar'):
if not self.secure_endpoint():
return
try:
genparams = json.loads(body)
schema = genparams.get('schema', None)
if not schema:
schema = genparams
decoded = convert_json_to_gbnf(schema)
response_body = (json.dumps({"result": decoded,"success":(True if decoded else False)}).encode())
except Exception as e:
utfprint("JSON to Grammar Error: " + str(e))
response_code = 400
response_body = (json.dumps({"result": "","success":False}).encode())
elif self.path.endswith('/api/extra/abort'):
if not self.secure_endpoint():
return
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception:
multiuserkey = ""
pass
if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey):
ag = handle.abort_generate()
time.sleep(0.1) #short delay before replying
response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode())
print("\nGeneration Aborted")
elif (multiuserkey!="" and requestsinqueue>0):
pendingabortkey = multiuserkey
response_body = (json.dumps({"success": "true", "done":"false"}).encode())
else:
response_body = (json.dumps({"success": "false", "done":"false"}).encode())
elif self.path.endswith('/api/extra/generate/check'):
if not self.secure_endpoint():
return
pendtxtStr = ""
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception:
multiuserkey = ""
if totalgens>0:
if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser
pendtxt = handle.get_pending_output()
pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore")
response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode())
elif self.path.endswith('/api/extra/last_logprobs'):
if not self.secure_endpoint():
return
logprobsdict = None
multiuserkey = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
multiuserkey = tempbody.get('genkey', "")
except Exception:
multiuserkey = ""
if totalgens>0:
if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser
lastlogprobs = handle.last_logprobs()
logprobsdict = parse_last_logprobs(lastlogprobs)
response_body = (json.dumps({"logprobs":logprobsdict}).encode())
elif self.path.endswith('/api/extra/multiplayer/status'):
if not self.secure_endpoint():
return
if not has_multiplayer:
response_body = (json.dumps({"error":"Multiplayer not enabled!"}).encode())
else:
sender = ""
senderbusy = False
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
sender = tempbody.get('sender', "")
senderbusy = tempbody.get('senderbusy', False)
except Exception:
pass
if sender!="" and senderbusy:
multiplayer_lastactive[sender] = int(time.time())
response_body = (json.dumps({"turn_major":multiplayer_turn_major,"turn_minor":multiplayer_turn_minor,"idle":self.get_multiplayer_idle_state(sender),"data_format":multiplayer_dataformat}).encode())
elif self.path.endswith('/api/extra/data/list'):
if not self.secure_endpoint():
return
if savedata_obj is None:
response_body = (json.dumps([]).encode())
return
output = []
for i in range (net_save_slots):
if str(i) in savedata_obj:
output.append(savedata_obj[str(i)]["title"])
else:
output.append("")
response_body = (json.dumps(output).encode())
elif self.path.endswith('/api/extra/data/load'):
if not self.secure_endpoint():
return
if savedata_obj is None:
response_body = (json.dumps({"success":False,"data":None}).encode())
loadid = -1
try:
tempbody = json.loads(body)
loadid = tryparseint(tempbody.get('slot', 0),0)
except Exception:
loadid = -1
if loadid < 0 or str(loadid) not in savedata_obj:
response_body = (json.dumps({"success":False,"data":None}).encode())
else:
response_body = (json.dumps({"success":True,"data":savedata_obj[str(loadid)]}).encode())
elif self.path.endswith('/api/extra/data/save'):
if not self.secure_endpoint():
return
if savedata_obj is None:
response_code = 400
response_body = (json.dumps({"success":False, "error":"SaveDataFile not enabled!"}).encode())
else:
try:
incoming_story = json.loads(body) # ensure submitted data is valid json
slotid = tryparseint(incoming_story.get('slot', -1),-1)
dataformat = incoming_story.get('format', "")
title = incoming_story.get('title', "")
if not title or title=="":
title = "Untitled Save"
storybody = incoming_story.get('data', None) #should be a compressed string
if slotid >= 0 and slotid < net_save_slots: # we shall provide some fixed network save slots
saveneeded = False
if storybody and storybody!="":
storybody = str(storybody)
if len(storybody) > (1024*1024*10): #limit each story to 10mb
response_code = 400
response_body = (json.dumps({"success":False, "error":"Story is too long!"}).encode())
else:
savedata_obj[str(slotid)] = {"title":title, "format":dataformat, "data":storybody}
saveneeded = True
else: #erasing existing story
if str(slotid) in savedata_obj:
savedata_obj.pop(str(slotid))
saveneeded = True
if saveneeded:
if args.savedatafile and os.path.exists(os.path.abspath(args.savedatafile)):
with open(os.path.abspath(args.savedatafile), 'w+', encoding='utf-8', errors='ignore') as f:
json.dump(savedata_obj, f)
print(f"Data was saved to slot {slotid}")
response_body = (json.dumps({"success":True, "error":""}).encode())
else:
response_code = 400
response_body = (json.dumps({"success":False, "error":"SaveDataFile is missing!"}).encode())
else:
response_body = (json.dumps({"success":True, "error":""}).encode())
else:
response_code = 400
response_body = (json.dumps({"success":False, "error":"No story submitted or invalid slot!"}).encode())
except Exception as e:
utfprint("Remote Save Story - Body Error: " + str(e))
response_code = 400
response_body = (json.dumps({"success": False, "error":"Submitted story invalid!"}).encode())
elif self.path.endswith('/api/extra/multiplayer/getstory'):
if not self.secure_endpoint():
return
if not has_multiplayer:
response_body = ("".encode())
elif multiplayer_story_data_compressed is None:
response_body = ("".encode())
else:
response_body = multiplayer_story_data_compressed.encode()
elif self.path.endswith('/api/extra/multiplayer/setstory'):
if not self.secure_endpoint():
return
if not has_multiplayer:
response_code = 400
response_body = (json.dumps({"success":False, "error":"Multiplayer not enabled!"}).encode())
else:
try:
incoming_story = json.loads(body) # ensure submitted data is valid json
fullupdate = incoming_story.get('full_update', False)
dataformat = incoming_story.get('data_format', "")
sender = incoming_story.get('sender', "")
storybody = incoming_story.get('data', None) #should be a compressed string
if storybody:
storybody = str(storybody)
if len(storybody) > (1024*1024*3): #limit story to 3mb
response_code = 400
response_body = (json.dumps({"success":False, "error":"Story is too long!"}).encode())
else:
multiplayer_story_data_compressed = str(storybody) #save latest story
multiplayer_dataformat = dataformat
if sender!="":
multiplayer_lastactive[sender] = int(time.time())
if fullupdate:
multiplayer_turn_minor = 1
multiplayer_turn_major += 1
else:
multiplayer_turn_minor += 1
response_body = (json.dumps({"success":True,"turn_major":multiplayer_turn_major,"turn_minor":multiplayer_turn_minor,"idle":self.get_multiplayer_idle_state(sender),"data_format":multiplayer_dataformat}).encode())
else:
response_code = 400
response_body = (json.dumps({"success":False, "error":"No story submitted!"}).encode())
except Exception as e:
utfprint("Multiplayer Set Story - Body Error: " + str(e))
response_code = 400
response_body = (json.dumps({"success": False, "error":"Submitted story invalid!"}).encode())
elif self.path.startswith(("/api/extra/websearch")):
if not self.secure_endpoint():
return
if args.websearch:
try:
tempbody = json.loads(body)
searchstr = tempbody.get('q', "")
searchres = websearch(searchstr)
response_body = (json.dumps(searchres).encode())
except Exception as e:
utfprint("WebSearch Parse Error: " + str(e))
response_code = 400
response_body = (json.dumps([]).encode())
else:
response_body = (json.dumps([]).encode())
elif self.path.startswith(("/api/admin/reload_config")):
resp = {"success": False}
if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
targetfile = ""
overrideconfig = ""
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
targetfile = tempbody.get('filename', "")
overrideconfig = tempbody.get('overrideconfig', "")
except Exception:
targetfile = ""
if targetfile and targetfile!="":
if targetfile=="unload_model": #special request to simply unload model
print("Admin: Received request to unload model")
global_memory["restart_target"] = "unload_model"
global_memory["restart_override_config_target"] = ""
resp = {"success": True}
else:
dirpath = os.path.abspath(args.admindir)
targetfilepath = os.path.join(dirpath, targetfile)
opts = [f for f in os.listdir(dirpath) if (f.lower().endswith(".kcpps") or f.lower().endswith(".kcppt") or f.lower().endswith(".gguf")) and os.path.isfile(os.path.join(dirpath, f))]
if targetfile in opts and os.path.exists(targetfilepath):
global_memory["restart_override_config_target"] = ""
if targetfile.lower().endswith(".gguf") and overrideconfig:
overrideconfigfilepath = os.path.join(dirpath, overrideconfig)
if overrideconfig and overrideconfig in opts and os.path.exists(overrideconfigfilepath):
print(f"Admin: Override config set to {overrideconfig}")
global_memory["restart_override_config_target"] = overrideconfig
print(f"Admin: Received request to reload config to {targetfile}")
global_memory["restart_target"] = targetfile
resp = {"success": True}
response_body = (json.dumps(resp).encode())
elif self.path.endswith('/set_tts_settings'): #return dummy response
response_body = (json.dumps({"message": "Settings successfully applied"}).encode())
elif self.path=="/api/extra/shutdown":
# if args.singleinstance:
client_ip = self.client_address[0]
is_local = client_ip in ('127.0.0.1', '::1', 'localhost')
if is_local and args.singleinstance:
response_body = (json.dumps({"success": True}).encode())
self.send_response(response_code)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type='application/json')
self.wfile.write(response_body)
print("\nReceived Shutdown Command! Shutting down...\n")
time.sleep(1)
global exitcounter
exitcounter = 999
sys.exit(0)
return
else:
response_body = (json.dumps({"success": False}).encode())
if response_body is not None:
self.send_response(response_code)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type='application/json')
self.wfile.write(response_body)
return
reqblocking = False
muint = int(args.multiuser)
if muint<=0 and ((args.whispermodel and args.whispermodel!="") or (args.sdmodel and args.sdmodel!="") or (args.ttsmodel and args.ttsmodel!="") or (args.embeddingsmodel and args.embeddingsmodel!="")):
muint = 2 # this prevents errors when using voice/img together with text
multiuserlimit = ((muint-1) if muint > 1 else 6)
#backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1
if muint > 0 and requestsinqueue < multiuserlimit:
reqblocking = True
requestsinqueue += 1
if not modelbusy.acquire(blocking=reqblocking):
self.send_response(503)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Server is busy; please try again later.",
"type": "service_unavailable",
}}).encode())
return
if reqblocking:
requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0
# handle endpoints that require mutex locking and handle actual gens
try:
sse_stream_flag = False
api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat,5=interrogate,6=ollama,7=ollamachat
is_imggen = False
is_comfyui_imggen = False
is_oai_imggen = False
is_transcribe = False
is_tts = False
is_embeddings = False
response_body = None
if self.path.endswith('/api/admin/check_state'):
if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
cur_states = []
for sl in range(savestate_limit): #0,1,2
oldstate = handle.calc_old_state_kv(sl)
oldtokencnt = handle.calc_old_state_tokencount(sl)
cur_states.append({"tokens":oldtokencnt,"size":oldstate})
newstate = handle.calc_new_state_kv()
newtokencnt = handle.calc_new_state_tokencount()
response_body = (json.dumps({"success": True, "old_states":cur_states, "new_state_size":newstate, "new_tokens":newtokencnt}).encode())
else:
response_body = (json.dumps({"success": False, "old_states":[], "new_state_size":0, "new_tokens":0}).encode())
elif self.path.endswith('/api/admin/load_state'):
if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
targetslot = 0
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
targetslot = tempbody.get('slot', 0)
except Exception:
pass
targetslot = (targetslot if targetslot<savestate_limit else 0)
result = handle.load_state_kv(targetslot)
tokencnt = handle.calc_new_state_tokencount()
response_body = (json.dumps({"success": result, "new_tokens":tokencnt}).encode())
else:
response_body = (json.dumps({"success": False, "new_tokens":0}).encode())
elif self.path.endswith('/api/admin/save_state'):
if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
targetslot = 0
try:
tempbody = json.loads(body)
if isinstance(tempbody, dict):
targetslot = tempbody.get('slot', 0)
except Exception:
pass
targetslot = (targetslot if targetslot<savestate_limit else 0)
result = handle.save_state_kv(targetslot)
tokencnt = handle.calc_new_state_tokencount()
response_body = (json.dumps({"success": (result>0), "new_state_size":result, "new_tokens":tokencnt}).encode())
else:
response_body = (json.dumps({"success": False, "new_state_size":0, "new_tokens":0}).encode())
elif self.path.endswith('/api/admin/clear_state'):
if global_memory and args.admin and args.admindir and os.path.exists(args.admindir) and self.check_header_password(args.adminpassword):
result = handle.clear_state_kv()
response_body = (json.dumps({"success": result}).encode())
else:
response_body = (json.dumps({"success": False}).encode())
elif self.path.startswith('/api/upload/image') or self.path.startswith("/upload/image"): #comfyui compatible
lastuploadedcomfyimg = b''
formdata = self.extract_formdata_from_file_upload(body)
if "file" in formdata and formdata["file"]:
lastuploadedcomfyimg = formdata["file"]
response_body = (json.dumps({"name": "kcpp_img2img.jpg", "subfolder": "", "type": "input"}).encode())
elif self.path.endswith('/request'):
api_format = 1
elif self.path.endswith(('/api/v1/generate', '/api/latest/generate')):
api_format = 2
elif self.path.endswith('/api/extra/generate/stream'):
api_format = 2
sse_stream_flag = True
elif self.path.endswith('/v1/completions') or self.path.endswith('/v1/completion'):
api_format = 3
elif self.path.endswith('/v1/chat/completions'):
api_format = 4
elif self.path.endswith('/sdapi/v1/interrogate'):
if not has_vision_support:
self.send_response(503)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "No Vision model loaded",
"type": "service_unavailable",
}}).encode())
return
api_format = 5
elif self.path.endswith('/api/generate'): #ollama
api_format = 6
elif self.path.endswith('/api/chat'): #ollama
api_format = 7
elif self.path=="/prompt" or self.path.endswith('/v1/images/generations') or self.path.endswith('/sdapi/v1/txt2img') or self.path.endswith('/sdapi/v1/img2img'):
is_imggen = True
if self.path=="/prompt":
is_comfyui_imggen = True
elif self.path.endswith('/v1/images/generations'):
is_oai_imggen = True
elif self.path.endswith('/api/extra/transcribe') or self.path.endswith('/v1/audio/transcriptions'):
is_transcribe = True
elif self.path.endswith('/api/extra/tts') or self.path.endswith('/v1/audio/speech') or self.path.endswith('/tts_to_audio'):
is_tts = True
elif self.path.endswith('/api/extra/embeddings') or self.path.endswith('/v1/embeddings'):
is_embeddings = True
if response_body is not None:
self.send_response(response_code)
self.send_header('content-length', str(len(response_body)))
self.end_headers(content_type='application/json')
self.wfile.write(response_body)
elif is_imggen or is_transcribe or is_tts or is_embeddings or api_format > 0:
global last_req_time
last_req_time = time.time()
if not is_imggen and not self.path.endswith('/tts_to_audio') and api_format!=5:
if not self.secure_endpoint():
return
genparams = None
try:
genparams = json.loads(body)
except Exception:
genparams = None
if is_transcribe: #fallback handling of file uploads
formdata = self.extract_formdata_from_file_upload(body)
if "file" in formdata and formdata["file"]:
b64wav = formdata["file"]
genparams = {"audio_data":b64wav}
if "prompt" in formdata and formdata["prompt"]:
genparams["prompt"] = formdata["prompt"]
if "language" in formdata and formdata["language"]:
genparams["language"] = formdata["language"]
if not genparams:
utfprint("Body Err: " + str(body))
self.send_response(500)
self.end_headers(content_type='application/json')
self.wfile.write(json.dumps({"detail": {
"msg": "Error parsing input.",
"type": "bad_input",
}}).encode())
return
trunc_len = 8000
if args.debugmode >= 1:
trunc_len = 32000
printablegenparams_raw = truncate_long_json(genparams,trunc_len)
utfprint("\nInput: " + json.dumps(printablegenparams_raw,ensure_ascii=False),1)
# transform genparams (only used for text gen) first
genparams = transform_genparams(genparams, api_format)
if args.debugmode >= 1:
printablegenparams = truncate_long_json(genparams,trunc_len)
utfprint("\nAdapted Input: " + json.dumps(printablegenparams),1)
if args.foreground:
bring_terminal_to_foreground()
if api_format > 0: #text gen
# Check if streaming chat completions, if so, set stream mode to true
if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]:
sse_stream_flag = True
gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag))
try:
# Headers are already sent when streaming
if not sse_stream_flag:
self.send_response(200)
genresp = (json.dumps(gen).encode())
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
elif api_format == 4 and genparams.get('using_openai_tools', False): #special case, fake streaming for openai tool calls
self.send_response(200)
self.send_header("X-Accel-Buffering", "no")
self.send_header("cache-control", "no-cache")
self.send_header("connection", "keep-alive")
self.end_headers(content_type='text/event-stream')
toolsdata_res = []
try:
toolsdata_res = gen['choices'][0]['message']['tool_calls']
if toolsdata_res and len(toolsdata_res)>0:
toolsdata_res[0]["index"] = 0 # need to add an index for OWUI
except Exception:
toolsdata_res = []
toolsdata_p1 = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":None,"delta":{'role':'assistant','content':None, "tool_calls":toolsdata_res}}]})
toolsdata_p2 = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":int(time.time()),"model":friendlymodelname,"choices":[{"index":0,"finish_reason":"tool_calls","delta":{}}]})
self.wfile.write(f'data: {toolsdata_p1}\n\n'.encode())
self.wfile.write(f'data: {toolsdata_p2}\n\n'.encode())
self.wfile.write('data: [DONE]'.encode())
self.wfile.flush()
self.close_connection = True
except Exception as ex:
utfprint(ex,1)
print("Generate: The response could not be sent, maybe connection was terminated?")
handle.abort_generate()
time.sleep(0.2) #short delay
return
elif is_imggen: #image gen
try:
if is_comfyui_imggen:
lastgeneratedcomfyimg = b''
genparams = sd_comfyui_tranform_params(genparams)
elif is_oai_imggen:
genparams = sd_oai_tranform_params(genparams)
gen = sd_generate(genparams)
genresp = None
if is_comfyui_imggen:
if gen:
lastgeneratedcomfyimg = base64.b64decode(gen)
else:
lastgeneratedcomfyimg = b''
genresp = (json.dumps({"prompt_id": "12345678-0000-0000-0000-000000000001","number": 0,"node_errors":{}}).encode())
elif is_oai_imggen:
genresp = (json.dumps({"created":int(time.time()),"data":[{"b64_json":gen}],"background":"opaque","output_format":"png","size":"1024x1024","quality":"medium"}).encode())
else:
genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
utfprint(ex,1)
print("Generate Image: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
elif is_transcribe:
try:
gen = whisper_generate(genparams)
genresp = (json.dumps({"text":gen}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
utfprint(ex,1)
print("Transcribe: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
elif is_tts:
try:
gen = tts_generate(genparams)
wav_data = b''
if gen:
wav_data = base64.b64decode(gen) # Decode the Base64 string into binary data
self.send_response(200)
self.send_header('content-length', str(len(wav_data))) # Set content length
self.send_header('Content-Disposition', 'attachment; filename="output.wav"')
self.end_headers(content_type='audio/wav')
self.wfile.write(wav_data) # Write the binary WAV data to the response
except Exception as ex:
utfprint(ex,1)
print("TTS: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
elif is_embeddings:
try:
gen = embeddings_generate(genparams)
outdatas = []
odidx = 0
for od in gen["data"]:
if genparams.get("encoding_format", "")=="base64":
binary_data = struct.pack('<' + 'f' * len(od), *od)
b64_string = base64.b64encode(binary_data).decode('utf-8')
outdatas.append({"object":"embedding","index":odidx,"embedding":b64_string})
else:
outdatas.append({"object":"embedding","index":odidx,"embedding":od})
odidx += 1
genresp = (json.dumps({"object":"list","data":outdatas,"model":friendlyembeddingsmodelname,"usage":{"prompt_tokens":gen["count"],"total_tokens":gen["count"]}}).encode())
self.send_response(200)
self.send_header('content-length', str(len(genresp)))
self.end_headers(content_type='application/json')
self.wfile.write(genresp)
except Exception as ex:
utfprint(ex,1)
print("Create Embeddings: The response could not be sent, maybe connection was terminated?")
time.sleep(0.2) #short delay
return
finally:
time.sleep(0.05)
modelbusy.release()
self.send_response(404)
self.end_headers(content_type='text/html')
def do_OPTIONS(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def do_HEAD(self):
self.send_response(200)
self.end_headers(content_type='text/html')
def end_headers(self, content_type=None):
self.send_header('access-control-allow-origin', '*')
self.send_header('access-control-allow-methods', '*')
self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey')
self.send_header("cache-control", "no-store")
if content_type is not None:
self.send_header('content-type', content_type)
return super(KcppServerRequestHandler, self).end_headers()
def RunServerMultiThreaded(addr, port, server_handler):
global exitcounter, sslvalid
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui, global_memory
if is_port_in_use(port):
print(f"Warning: Port {port} already appears to be in use by another program.")
ipv4_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ipv4_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
ipv6_sock = None
if is_ipv6_supported():
ipv6_sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
ipv6_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
ipv6_sock.setsockopt(socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 1)
if args.ssl and sslvalid:
import ssl
certpath = os.path.abspath(args.ssl[0])
keypath = os.path.abspath(args.ssl[1])
context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
context.load_cert_chain(certfile=certpath, keyfile=keypath)
ipv4_sock = context.wrap_socket(ipv4_sock, server_side=True)
if ipv6_sock:
ipv6_sock = context.wrap_socket(ipv6_sock, server_side=True)
numThreads = 24
try:
ipv4_sock.bind((addr, port))
ipv4_sock.listen(numThreads)
except Exception:
print("IPv4 Socket Failed to Bind.")
if ipv6_sock:
try:
ipv6_sock.bind((addr, port))
ipv6_sock.listen(numThreads)
except Exception:
ipv6_sock = None
print("IPv6 Socket Failed to Bind. IPv6 will be unavailable.")
class Thread(threading.Thread):
def __init__(self, i):
threading.Thread.__init__(self)
self.i = i
self.daemon = True
self.start()
def run(self):
global exitcounter
handler = server_handler(addr, port)
with http.server.HTTPServer((addr, port), handler, False) as self.httpd:
try:
if ipv6_sock:
self.httpd.socket = ipv4_sock if self.i < 16 else ipv6_sock
else:
self.httpd.socket = ipv4_sock
self.httpd.server_bind = self.server_close = lambda self: None
self.httpd.serve_forever()
except (KeyboardInterrupt,SystemExit):
exitcounter = 999
self.httpd.server_close()
sys.exit(0)
finally:
exitcounter = 999
self.httpd.server_close()
os._exit(0)
def stop(self):
global exitcounter
exitcounter = 999
self.httpd.server_close()
threadArr = []
for i in range(numThreads):
threadArr.append(Thread(i))
while 1:
try:
time.sleep(10)
except (KeyboardInterrupt,SystemExit):
global exitcounter
exitcounter = 999
for i in range(numThreads):
try:
threadArr[i].stop()
except Exception:
continue
sys.exit(0)
# Based on https://github.com/mathgeniuszach/xdialog/blob/main/xdialog/zenity_dialogs.py - MIT license | - Expanded version by Henk717
def zenity(filetypes=None, initialdir="", initialfile="", **kwargs) -> Tuple[int, str]:
global zenity_recent_dir, zenity_permitted
if not zenity_permitted:
raise Exception("Zenity disabled, attempting to use TK GUI.")
if sys.platform != "linux":
raise Exception("Zenity GUI is only usable on Linux, attempting to use TK GUI.")
zenity_bin = shutil.which("yad")
using_yad = True
if not zenity_bin:
zenity_bin = shutil.which("zenity")
using_yad = False
if not zenity_bin:
using_yad = False
raise Exception("Zenity not present, falling back to TK GUI.")
def zenity_clean(txt: str):
return txt.replace("\\", "\\\\").replace("$", "\\$").replace("!", "\\!").replace("*", "\\*")\
.replace("?", "\\?").replace("&", "&amp;").replace("|", "&#124;").replace("<", "&lt;").replace(">", "&gt;")\
.replace("(", "\\(").replace(")", "\\)").replace("[", "\\[").replace("]", "\\]").replace("{", "\\{").replace("}", "\\}")
def zenity_sanity_check(zenity_bin): #make sure zenity is sane
try: # Run `zenity --help` and pipe to grep
sc_clean_env = os.environ.copy()
sc_clean_env.pop("LD_LIBRARY_PATH", None)
sc_clean_env["PATH"] = "/usr/bin:/bin"
scargs = ['/usr/bin/env', zenity_bin, '--help']
result = subprocess.run(scargs, env=sc_clean_env, capture_output=True, text=True, encoding="utf-8", timeout=10)
if result.returncode == 0 and "--file" in result.stdout:
return True
else:
utfprint(f"Zenity/YAD sanity check failed - ReturnCode={result.returncode}",0)
return False
except FileNotFoundError:
utfprint(f"Zenity/YAD sanity check failed - {zenity_bin} not found",0)
return False
if not zenity_sanity_check(zenity_bin):
raise Exception("Zenity not working correctly, falling back to TK GUI.")
# Build args based on keywords
args = ['/usr/bin/env', zenity_bin, ('--file' if using_yad else '--file-selection')]
for k, v in kwargs.items():
if v is True:
args.append(f'--{k.replace("_", "-").strip("-")}')
elif isinstance(v, str):
cv = zenity_clean(v) if k != "title" else v
args.append(f'--{k.replace("_", "-").strip("-")}={cv}')
# Build filetypes specially if specified
if filetypes:
for name, globs in filetypes:
if name:
globlist = globs.split()
args.append(f'--file-filter={name.replace("|", "")} ({", ".join(t for t in globlist)})|{globs}')
# Default filename and folder
if initialdir is None:
initialdir=zenity_recent_dir
if initialfile is None:
initialfile=""
initialpath = os.path.join(initialdir, initialfile)
args.append(f'--filename={initialpath}')
clean_env = os.environ.copy()
clean_env.pop("LD_LIBRARY_PATH", None)
clean_env["PATH"] = "/usr/bin:/bin"
procres = subprocess.run(
args,
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL,
env=clean_env,
check=False
)
result = procres.stdout.decode('utf-8').strip()
if procres.returncode==0 and result:
directory = result
if not os.path.isdir(result):
directory = os.path.dirname(result)
zenity_recent_dir = directory
return (procres.returncode, result)
# note: In this section we wrap around file dialogues to allow for zenity
def zentk_askopenfilename(**options):
try:
result = zenity(filetypes=options.get("filetypes"), initialdir=options.get("initialdir"), title=options.get("title"))[1]
if result and not os.path.isfile(result):
print("A folder was selected while we need a file, ignoring selection.")
return ''
except Exception:
from tkinter.filedialog import askopenfilename
result = askopenfilename(**options)
return result
def zentk_askdirectory(**options):
try:
result = zenity(initialdir=options.get("initialdir"), title=options.get("title"), directory=True)[1]
except Exception:
from tkinter.filedialog import askdirectory
result = askdirectory(**options)
return result
def zentk_asksaveasfilename(**options):
try:
result = zenity(filetypes=options.get("filetypes"), initialdir=options.get("initialdir"), initialfile=options.get("initialfile"), title=options.get("title"), save=True)[1]
except Exception:
from tkinter.filedialog import asksaveasfilename
result = asksaveasfilename(**options)
return result
### End of MIT license
# note: customtkinter-5.2.0
def show_gui():
global using_gui_launcher
using_gui_launcher = True
# if args received, launch
if len(sys.argv) != 1 and not args.showgui:
import tkinter as tk
root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar
root.attributes("-alpha", 0)
args.model_param = zentk_askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config")
root.withdraw()
root.quit()
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt') or args.model_param.lower().endswith('.kcpps?download=true') or args.model_param.lower().endswith('.kcppt?download=true')):
dlfile = download_model_from_url(args.model_param,[".kcpps",".kcppt"]) # maybe download from url
if dlfile:
args.model_param = dlfile
load_config_cli(args.model_param)
if not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.embeddingsmodel and not args.nomodel:
global exitcounter
exitcounter = 999
exit_with_error(2,"No gguf model or kcpps file was selected. Exiting.")
return
#dummy line to get darkdetect imported in pyinstaller
try:
import darkdetect as darkdt
darkdt.isDark()
pass
except Exception:
pass
import customtkinter as ctk
nextstate = 0 #0=exit, 1=launch
original_windowwidth = 580
original_windowheight = 580
windowwidth = original_windowwidth
windowheight = original_windowheight
ctk.set_appearance_mode("dark")
root = ctk.CTk()
root.geometry(str(windowwidth) + "x" + str(windowheight))
root.title(f"KoboldCpp v{KcppVersion}")
gtooltip_box = None
gtooltip_label = None
window_reference_width = None
window_reference_height = None
previous_event_width = None
previous_event_height = None
def on_resize(event):
if not event.widget.master:
nonlocal window_reference_width, window_reference_height, previous_event_width,previous_event_height
if not window_reference_width and not window_reference_height:
window_reference_width = event.width
window_reference_height = event.height
previous_event_width = window_reference_width
previous_event_height = window_reference_height
else:
new_width = event.width
new_height = event.height
incr_w = new_width/window_reference_width
incr_h = new_height/window_reference_height
smallratio = min(incr_w,incr_h)
smallratio = round(smallratio,2)
if new_width != previous_event_width or new_height!=previous_event_height:
lastpos = root.geometry()
lparr = lastpos.split('+', 1)
lastpos = ("+"+str(lparr[1])) if (len(lparr)==2) else ""
previous_event_width = new_width
previous_event_height = new_height
windowwidth = math.floor(original_windowwidth*smallratio)
windowwidth = max(256, min(1024, windowwidth))
windowheight = math.floor(original_windowheight*smallratio)
windowheight = max(256, min(1024, windowheight))
root.geometry(str(windowwidth) + "x" + str(windowheight) + str(lastpos))
ctk.set_widget_scaling(smallratio)
changerunmode(1,1,1)
togglerope(1,1,1)
toggleflashattn(1,1,1)
togglectxshift(1,1,1)
togglehorde(1,1,1)
toggletaesd(1,1,1)
tabbuttonaction(tabnames[curr_tab_idx])
if sys.platform=="darwin":
root.resizable(False,False)
else:
root.resizable(True,True)
root.bind("<Configure>", on_resize)
kcpp_exporting_template = False
# trigger empty tooltip then remove it
def show_tooltip(event, tooltip_text=None):
nonlocal gtooltip_box, gtooltip_label
if not gtooltip_box and not gtooltip_label:
gtooltip_box = ctk.CTkToplevel(root)
gtooltip_box.configure(fg_color="#ffffe0")
gtooltip_box.withdraw()
gtooltip_box.overrideredirect(True)
gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0")
gtooltip_label.pack(expand=True, ipadx=2, ipady=1)
else:
gtooltip_label.configure(text=tooltip_text)
x, y = root.winfo_pointerxy()
gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}")
gtooltip_box.deiconify()
def hide_tooltip(event):
nonlocal gtooltip_box
if gtooltip_box:
gtooltip_box.withdraw()
show_tooltip(None,"") #initialize tooltip objects
hide_tooltip(None)
default_threads = get_default_threads()
tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50)
tabs.grid(row=0, stick="nsew")
tabnames= ["Quick Launch", "Hardware", "Tokens", "Loaded Files", "Network", "Horde Worker","Image Gen","Audio","Admin","Extra"]
navbuttons = {}
navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height")))
navbuttonframe.grid(row=0, column=0, padx=2,pady=2)
navbuttonframe.grid_propagate(False)
tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height")))
tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2)
tabcontentframe.grid_propagate(False)
tabcontent = {}
# slider data
blasbatchsize_values = ["-1","16","32","64","128","256","512","1024","2048","4096"]
blasbatchsize_text = ["Don't Batch BLAS","16","32","64","128","256","512","1024","2048","4096"]
contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "10240", "12288", "14336", "16384", "20480", "24576", "28672", "32768", "40960", "49152", "57344", "65536", "81920", "98304", "114688", "131072"]
antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if opt not in runopts]
quantkv_text = ["F16 (Off)","8-Bit","4-Bit"]
if not any(runopts):
exitcounter = 999
exit_with_error(2,"KoboldCPP couldn't locate any backends to use (i.e Default, Vulkan, CLBlast, CUDA).\n\nTo use the program, please run the 'make' command from the directory.","No Backends Available!")
# Vars - should be in scope to be used by multiple widgets
gpulayers_var = ctk.StringVar(value="-1")
threads_var = ctk.StringVar(value=str(default_threads))
runopts_var = ctk.StringVar()
gpu_choice_var = ctk.StringVar(value="1")
launchbrowser = ctk.IntVar(value=1)
highpriority = ctk.IntVar()
usemmap = ctk.IntVar(value=0)
usemlock = ctk.IntVar()
debugmode = ctk.IntVar()
keepforeground = ctk.IntVar()
terminalonly = ctk.IntVar()
quietmode = ctk.IntVar(value=0)
nocertifymode = ctk.IntVar(value=0)
lowvram_var = ctk.IntVar()
mmq_var = ctk.IntVar(value=1)
quantkv_var = ctk.IntVar(value=0)
blas_threads_var = ctk.StringVar()
blas_size_var = ctk.IntVar()
version_var = ctk.StringVar(value="0")
tensor_split_str_vars = ctk.StringVar(value="")
rowsplit_var = ctk.IntVar()
maingpu_var = ctk.StringVar(value="")
contextshift_var = ctk.IntVar(value=1)
fastforward_var = ctk.IntVar(value=1)
swa_var = ctk.IntVar(value=0)
remotetunnel_var = ctk.IntVar(value=0)
smartcontext_var = ctk.IntVar()
flashattention_var = ctk.IntVar(value=0)
context_var = ctk.IntVar()
customrope_var = ctk.IntVar()
manualrope_var = ctk.IntVar()
customrope_scale = ctk.StringVar(value="1.0")
customrope_base = ctk.StringVar(value="10000")
customrope_nativectx = ctk.StringVar(value=str(default_native_ctx))
chatcompletionsadapter_var = ctk.StringVar(value="AutoGuess")
moeexperts_var = ctk.StringVar(value=str(-1))
moecpu_var = ctk.StringVar(value=str(0))
defaultgenamt_var = ctk.StringVar(value=str(640))
nobostoken_var = ctk.IntVar(value=0)
override_kv_var = ctk.StringVar(value="")
override_tensors_var = ctk.StringVar(value="")
enableguidance_var = ctk.IntVar(value=0)
model_var = ctk.StringVar()
lora_var = ctk.StringVar()
loramult_var = ctk.StringVar(value="1.0")
preloadstory_var = ctk.StringVar()
savedatafile_var = ctk.StringVar()
mmproj_var = ctk.StringVar()
mmprojcpu_var = ctk.IntVar(value=0)
visionmaxres_var = ctk.StringVar(value=str(default_visionmaxres))
draftmodel_var = ctk.StringVar()
draftamount_var = ctk.StringVar(value=str(default_draft_amount))
draftgpulayers_var = ctk.StringVar(value=str(999))
draftgpusplit_str_vars = ctk.StringVar(value="")
nomodel = ctk.IntVar(value=0)
port_var = ctk.StringVar(value=defaultport)
host_var = ctk.StringVar(value="")
multiuser_var = ctk.IntVar(value=1)
multiplayer_var = ctk.IntVar(value=has_multiplayer)
websearch_var = ctk.IntVar(value=0)
horde_name_var = ctk.StringVar(value="koboldcpp")
horde_gen_var = ctk.StringVar(value=maxhordelen)
horde_context_var = ctk.StringVar(value=maxhordectx)
horde_apikey_var = ctk.StringVar(value="")
horde_workername_var = ctk.StringVar(value="")
usehorde_var = ctk.IntVar()
ssl_cert_var = ctk.StringVar()
ssl_key_var = ctk.StringVar()
password_var = ctk.StringVar()
maxrequestsize_var = ctk.StringVar(value=str(32))
sd_model_var = ctk.StringVar()
sd_lora_var = ctk.StringVar()
sd_loramult_var = ctk.StringVar(value="1.0")
sd_vae_var = ctk.StringVar()
sd_t5xxl_var = ctk.StringVar()
sd_clipl_var = ctk.StringVar()
sd_clipg_var = ctk.StringVar()
sd_photomaker_var = ctk.StringVar()
sd_flash_attention_var = ctk.IntVar(value=0)
sd_vaeauto_var = ctk.IntVar(value=0)
sd_tiled_vae_var = ctk.StringVar(value=str(default_vae_tile_threshold))
sd_convdirect_var = ctk.StringVar(value=str(sd_convdirect_choices[0]))
sd_clamped_var = ctk.StringVar(value="0")
sd_clamped_soft_var = ctk.StringVar(value="0")
sd_threads_var = ctk.StringVar(value=str(default_threads))
sd_quant_var = ctk.StringVar(value=sd_quant_choices[0])
whisper_model_var = ctk.StringVar()
tts_model_var = ctk.StringVar()
wavtokenizer_var = ctk.StringVar()
ttsgpu_var = ctk.IntVar(value=0)
tts_threads_var = ctk.StringVar(value=str(default_threads))
ttsmaxlen_var = ctk.StringVar(value=str(default_ttsmaxlen))
embeddings_model_var = ctk.StringVar()
embeddings_ctx_var = ctk.StringVar(value=str(""))
embeddings_gpu_var = ctk.IntVar(value=0)
admin_var = ctk.IntVar(value=0)
admin_dir_var = ctk.StringVar()
admin_password_var = ctk.StringVar()
singleinstance_var = ctk.IntVar(value=0)
nozenity_var = ctk.IntVar(value=0)
curr_tab_idx = 0
def tabbuttonaction(name):
nonlocal curr_tab_idx
idx = 0
for t in tabcontent:
if name == t:
tabcontent[t].grid(row=0, column=0)
navbuttons[t].configure(fg_color="#6f727b")
curr_tab_idx = idx
else:
tabcontent[t].grid_remove()
navbuttons[t].configure(fg_color="transparent")
idx += 1
# Dynamically create tabs + buttons based on values of [tabnames]
for idx, name in enumerate(tabnames):
tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent")
tabcontent[name].grid_propagate(False)
if idx == 0:
tabcontent[name].grid(row=idx, sticky="nsew")
ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw')
navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" )
navbuttons[name].grid(row=idx)
tabbuttonaction(tabnames[0])
# Quick Launch Tab
quick_tab = tabcontent["Quick Launch"]
# helper functions
def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, padx=8,tooltiptxt=""):
temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=1, offvalue=0)
if command is not None and variable is not None:
variable.trace_add("write", command)
temp.grid(row=row,column=column, padx=padx, pady=1, stick="nw")
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makelabelcombobox(parent, text, variable=None, row=0, width=50, command=None, padx=8,tooltiptxt="", values=[], labelpadx=8):
label = makelabel(parent, text, row, 0, tooltiptxt, padx=labelpadx)
label=None
combo = ctk.CTkComboBox(parent, variable=variable, width=width, values=values, state="readonly")
if command is not None and variable is not None:
variable.trace_add("write", command)
combo.grid(row=row,column=0, padx=padx, sticky="nw")
if tooltiptxt!="":
combo.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
combo.bind("<Leave>", hide_tooltip)
return combo, label
def makelabel(parent, text, row, column=0, tooltiptxt="", columnspan=1, padx=8):
temp = ctk.CTkLabel(parent, text=text)
temp.grid(row=row, column=column, padx=padx, pady=1, stick="nw", columnspan=columnspan)
if tooltiptxt!="":
temp.bind("<Enter>", lambda event: show_tooltip(event, tooltiptxt))
temp.bind("<Leave>", hide_tooltip)
return temp
def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""):
sliderLabel = makelabel(parent, options[set], row + 1, 0, columnspan=2, padx=(width+12))
titleLabel = makelabel(parent, label, row,0,tooltip)
def sliderUpdate(a,b,c):
sliderLabel.configure(text = options[int(var.get())])
var.trace_add("write", sliderUpdate)
slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1)
slider.grid(row=row+1, column=0, padx = 8, stick="w", columnspan=2)
slider.set(set)
return slider, sliderLabel, titleLabel
def makelabelentry(parent, text, var, row=0, width=50, padx=8, singleline=False, tooltip="", labelpadx=8):
label = makelabel(parent, text, row, 0, tooltip, padx=labelpadx)
entry = ctk.CTkEntry(parent, width=width, textvariable=var)
entry.grid(row=row, column=(0 if singleline else 1), padx=padx, sticky="nw")
return entry, label
#file dialog types: 0=openfile,1=savefile,2=opendir
def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, singlecol=True, dialog_type=0, tooltiptxt=""):
label = makelabel(parent, text, row,0,tooltiptxt,columnspan=3)
def getfilename(var, text):
initialDir = os.path.dirname(var.get())
initialDir = initialDir if os.path.isdir(initialDir) else None
fnam = None
if dialog_type==2:
fnam = zentk_askdirectory(title=text, mustexist=True, initialdir=initialDir)
elif dialog_type==1:
fnam = zentk_asksaveasfilename(title=text, filetypes=filetypes, defaultextension=filetypes, initialdir=initialDir)
if not fnam:
fnam = ""
else:
fnam = str(fnam).strip()
fnam = f"{fnam}.jsondb" if ".jsondb" not in fnam.lower() else fnam
else:
fnam = zentk_askopenfilename(title=text,filetypes=filetypes, initialdir=initialDir)
if fnam:
var.set(fnam)
if onchoosefile:
onchoosefile(var.get())
entry = ctk.CTkEntry(parent, width, textvariable=var)
button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b))
if singlerow:
if singlecol:
entry.grid(row=row, column=0, padx=(94+8), pady=2, stick="w")
button.grid(row=row, column=0, padx=(94+width+12), pady=2, stick="w")
else:
entry.grid(row=row, column=1, padx=8, pady=2, stick="w")
button.grid(row=row, column=1, padx=(width+12), pady=2, stick="w")
else:
if singlecol:
entry.grid(row=row+1, column=0, columnspan=3, padx=8, pady=2, stick="w")
button.grid(row=row+1, column=0, columnspan=3, padx=(width+12), pady=2, stick="w")
else:
entry.grid(row=row+1, column=0, columnspan=1, padx=8, pady=2, stick="w")
button.grid(row=row+1, column=1, columnspan=1, padx=8, pady=2, stick="w")
return label, entry, button
def model_searcher():
searchbox1 = None
searchbox2 = None
modelsearch1_var = ctk.StringVar(value="")
modelsearch2_var = ctk.StringVar(value="")
fileinfotxt_var = ctk.StringVar(value="")
# Create popup window
popup = ctk.CTkToplevel(root)
popup.title("Model File Browser")
popup.geometry("400x400")
searchedmodels = []
searchedsizes = []
def confirm_search_model_choice():
nonlocal modelsearch1_var, modelsearch2_var, model_var, fileinfotxt_var
if modelsearch1_var.get()!="" and modelsearch2_var.get()!="":
model_var.set(f"https://huggingface.co/{modelsearch1_var.get()}/resolve/main/{modelsearch2_var.get()}")
popup.destroy()
def update_search_quant_file_size(a,b,c):
nonlocal modelsearch1_var, modelsearch2_var, fileinfotxt_var, searchedmodels, searchedsizes, searchbox2
try:
selected_index = searchbox2.cget("values").index(modelsearch2_var.get())
pickedsize = searchedsizes[selected_index]
fileinfotxt_var.set(f"Size: {round(pickedsize/1024/1024/1024,2)} GB")
except Exception:
fileinfotxt_var.set("")
def fetch_search_quants(a,b,c):
nonlocal modelsearch1_var, modelsearch2_var, fileinfotxt_var, searchedmodels, searchedsizes
try:
if modelsearch1_var.get()=="":
return
searchedmodels = []
searchedsizes = []
resp = make_url_request(f"https://huggingface.co/api/models/{modelsearch1_var.get()}/tree/main?recursive=true",None,'GET',{},10)
for m in resp:
if m["type"]=="file" and ".gguf" in m["path"]:
if "-of-0" in m["path"] and "00001" not in m["path"]:
continue
searchedmodels.append(m["path"])
searchedsizes.append(m["size"])
searchbox2.configure(values=searchedmodels)
if len(searchedmodels)>0:
quants = ["q4k","q4_k","q4", "q3", "q5", "q6", "q8"] #autopick priority
chosen_model = searchedmodels[0]
found_good = False
for quant in quants:
for filename in searchedmodels:
if quant in filename.lower():
chosen_model = filename
found_good = True
break
if found_good:
break
modelsearch2_var.set(chosen_model)
update_search_quant_file_size(1,1,1)
else:
modelsearch2_var.set("")
fileinfotxt_var.set("")
except Exception as e:
modelsearch1_var.set("")
modelsearch2_var.set("")
fileinfotxt_var.set("")
print(f"Error: {e}")
def fetch_search_models():
from tkinter import messagebox
nonlocal searchbox1, searchbox2, modelsearch1_var, modelsearch2_var, fileinfotxt_var
try:
modelsearch1_var.set("")
modelsearch2_var.set("")
fileinfotxt_var.set("")
searchbox1.configure(values=[])
searchbox2.configure(values=[])
searchedmodels = []
searchbase = model_search.get()
if searchbase.strip()=="":
return
urlcode = urllib.parse.urlencode({"search":( "GGUF " + searchbase),"limit":10}, doseq=True)
urlcode2 = urllib.parse.urlencode({"search":searchbase,"limit":6}, doseq=True)
resp = make_url_request(f"https://huggingface.co/api/models?{urlcode}",None,'GET',{},10)
for m in resp:
searchedmodels.append(m["id"])
if len(resp)<=3: #too few results, repeat search without GGUF in the string
resp2 = make_url_request(f"https://huggingface.co/api/models?{urlcode2}",None,'GET',{},10)
for m in resp2:
searchedmodels.append(m["id"])
if len(searchedmodels)==0:
messagebox.showinfo("No Results Found", "Search found no results")
searchbox1.configure(values=searchedmodels)
if len(searchedmodels)>0:
modelsearch1_var.set(searchedmodels[0])
else:
modelsearch1_var.set("")
except Exception as e:
modelsearch1_var.set("")
modelsearch2_var.set("")
fileinfotxt_var.set("")
print(f"Error: {e}")
ctk.CTkLabel(popup, text="Enter Search String:").pack(pady=(10, 0))
model_search = ctk.CTkEntry(popup, width=300)
model_search.pack(pady=5)
model_search.insert(0, "")
ctk.CTkButton(popup, text="Search Huggingface", command=fetch_search_models).pack(pady=5)
ctk.CTkLabel(popup, text="Selected Model:").pack(pady=(10, 0))
searchbox1 = ctk.CTkComboBox(popup, values=[], width=340, variable=modelsearch1_var, state="readonly")
searchbox1.pack(pady=5)
ctk.CTkLabel(popup, text="Selected Quant:").pack(pady=(10, 0))
searchbox2 = ctk.CTkComboBox(popup, values=[], width=340, variable=modelsearch2_var, state="readonly")
searchbox2.pack(pady=5)
modelsearch1_var.trace_add("write", fetch_search_quants)
modelsearch2_var.trace_add("write", update_search_quant_file_size)
ctk.CTkLabel(popup, text="", textvariable=fileinfotxt_var, text_color="#ffff00").pack(pady=(10, 0))
ctk.CTkButton(popup, text="Confirm Selection", command=confirm_search_model_choice).pack(pady=5)
popup.transient(root)
# decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers
# run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI
def auto_set_backend_gui(manual_select=False):
global exitcounter, runmode_untouched
if manual_select:
print("\nA .kcppt template was selected from GUI - automatically selecting your backend...")
runmode_untouched = True
fetch_gpu_properties(False,True,True)
else:
fetch_gpu_properties(True,True,True)
found_new_backend = False
# check for avx2 and avx support
is_oldpc_ver = "Use CPU" not in runopts #on oldcpu ver, default lib does not exist
cpusupport = old_cpu_check() # 0 if has avx2, 1 if has avx, 2 if has nothing
eligible_cuda = (cpusupport<1 and not is_oldpc_ver) or (cpusupport<2 and is_oldpc_ver)
#autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick
#we do not want to autoselect hip/cublas if the user has already changed their desired backend!
if eligible_cuda and exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CUDA" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched:
if "Use CUDA" in runopts:
runopts_var.set("Use CUDA")
gpu_choice_var.set("1")
print(f"Auto Selected CUDA Backend (flag={cpusupport})\n")
found_new_backend = True
elif "Use hipBLAS (ROCm)" in runopts:
runopts_var.set("Use hipBLAS (ROCm)")
gpu_choice_var.set("1")
print(f"Auto Selected HIP Backend (flag={cpusupport})\n")
found_new_backend = True
elif exitcounter < 100 and (1 in VKIsDGPU) and runmode_untouched and ("Use Vulkan" in runopts or "Use Vulkan (Old CPU)" in runopts):
for i in range(0,len(VKIsDGPU)):
if VKIsDGPU[i]==1:
if cpusupport<1 and "Use Vulkan" in runopts:
runopts_var.set("Use Vulkan")
else:
runopts_var.set("Use Vulkan (Old CPU)")
gpu_choice_var.set(str(i+1))
print(f"Auto Selected Vulkan Backend (flag={cpusupport})\n")
found_new_backend = True
break
else:
if runopts_var.get()=="Use CPU" and cpusupport==1 and "Use CPU (Old CPU)" in runopts:
runopts_var.set("Use CPU (Old CPU)")
elif runopts_var.get()=="Use CPU" and cpusupport==2 and "Failsafe Mode (Older CPU)" in runopts:
runopts_var.set("Failsafe Mode (Older CPU)")
if not found_new_backend:
print(f"Auto Selected Default Backend (flag={cpusupport})\n")
changed_gpu_choice_var()
def on_picked_model_file(filepath):
if filepath and (filepath.lower().endswith('.kcpps') or filepath.lower().endswith('.kcppt')):
#load it as a config file instead
if filepath.lower().endswith('.kcpps'):
global runmode_untouched
runmode_untouched = False
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
dict = json.load(f)
import_vars(dict)
def setup_backend_tooltip(parent):
# backend count label with the tooltip function
nl = '\n'
tooltxt = "Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) < 8 else "")
num_backends_built = makelabel(parent, str(len(runopts)) + "/9", 5, 2,tooltxt)
num_backends_built.grid(row=1, column=1, padx=205, pady=0)
num_backends_built.configure(text_color="#00ff00")
def gui_changed_modelfile(*args):
global importvars_in_progress
if not importvars_in_progress:
filepath = model_var.get()
sdfilepath = sd_model_var.get()
whisperfilepath = whisper_model_var.get()
mmprojfilepath = mmproj_var.get()
draftmodelpath = draftmodel_var.get()
ttsmodelpath = tts_model_var.get() if ttsgpu_var.get()==1 else ""
embdmodelpath = embeddings_model_var.get() if embeddings_gpu_var.get()==1 else ""
extract_modelfile_params(filepath,sdfilepath,whisperfilepath,mmprojfilepath,draftmodelpath,ttsmodelpath,embdmodelpath)
changed_gpulayers_estimate()
pass
def changed_gpulayers_estimate(*args):
predicted_gpu_layers = autoset_gpu_layers(int(contextsize_text[context_var.get()]),sd_quant_option(sd_quant_var.get()),int(blasbatchsize_values[int(blas_size_var.get())]),(quantkv_var.get() if flashattention_var.get()==1 else 0))
max_gpu_layers = (f"/{modelfile_extracted_meta[1][0]+3}" if (modelfile_extracted_meta and modelfile_extracted_meta[1] and modelfile_extracted_meta[1][0]!=0) else "")
index = runopts_var.get()
gpu_be = (index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CUDA" or index == "Use hipBLAS (ROCm)")
layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
if sys.platform=="darwin" and gpulayers_var.get()=="-1":
quick_layercounter_label.configure(text="(Auto: All Layers)")
layercounter_label.configure(text="(Auto: All Layers)")
elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers>0:
quick_layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)")
layercounter_label.configure(text=f"(Auto: {predicted_gpu_layers}{max_gpu_layers} Layers)")
elif gpu_be and gpulayers_var.get()=="-1" and predicted_gpu_layers<=0 and (modelfile_extracted_meta and modelfile_extracted_meta[2]):
quick_layercounter_label.configure(text="(Auto: No Offload)")
layercounter_label.configure(text="(Auto: No Offload)")
elif gpu_be and gpulayers_var.get()=="":
quick_layercounter_label.configure(text="(Set -1 for Auto)")
layercounter_label.configure(text="(Set -1 for Auto)")
else:
layercounter_label.grid_remove()
quick_layercounter_label.grid_remove()
def changed_gpu_choice_var(*args):
global exitcounter
if exitcounter > 100:
return
if gpu_choice_var.get()!="All":
try:
s = int(gpu_choice_var.get())-1
v = runopts_var.get()
if v == "Use Vulkan" or v == "Use Vulkan (Old CPU)":
quick_gpuname_label.configure(text=VKDevicesNames[s])
gpuname_label.configure(text=VKDevicesNames[s])
elif v == "Use CLBlast" or v == "Use CLBlast (Old CPU)" or v == "Use CLBlast (Older CPU)":
quick_gpuname_label.configure(text=CLDevicesNames[s])
gpuname_label.configure(text=CLDevicesNames[s])
else:
quick_gpuname_label.configure(text=CUDevicesNames[s])
gpuname_label.configure(text=CUDevicesNames[s])
except Exception:
pass
else:
quick_gpuname_label.configure(text="(dGPUs only, tensor split sets ratio)")
gpuname_label.configure(text="(dGPUs only, tensor split sets ratio)")
gpu_choice_var.trace_add("write", changed_gpu_choice_var)
gpulayers_var.trace_add("write", changed_gpulayers_estimate)
def toggleswa(a,b,c):
if swa_var.get()==1:
contextshift_var.set(0)
def togglefastforward(a,b,c):
if fastforward_var.get()==0:
contextshift_var.set(0)
smartcontext_var.set(0)
def togglectxshift(a,b,c):
if contextshift_var.get()==0:
smartcontextbox.grid()
else:
fastforward_var.set(1)
swa_var.set(0)
smartcontextbox.grid_remove()
qkvslider.grid()
qkvlabel.grid()
if flashattention_var.get()==0 and quantkv_var.get()>0:
noqkvlabel.grid()
else:
noqkvlabel.grid_remove()
def toggleflashattn(a,b,c):
qkvslider.grid()
qkvlabel.grid()
if flashattention_var.get()==0 and quantkv_var.get()>0:
noqkvlabel.grid()
else:
noqkvlabel.grid_remove()
changed_gpulayers_estimate()
def guibench():
args.benchmark = "stdout"
launchbrowser.set(0)
guilaunch()
def changerunmode(a,b,c):
global runmode_untouched
runmode_untouched = False
index = runopts_var.get()
if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CUDA" or index == "Use hipBLAS (ROCm)":
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw")
if index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)":
gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
CUDA_gpu_selector_box.grid_remove()
CUDA_quick_gpu_selector_box.grid_remove()
maingpu_label.grid_remove()
maingpu_entry.grid_remove()
if gpu_choice_var.get()=="All":
gpu_choice_var.set("1")
elif index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CUDA" or index == "Use hipBLAS (ROCm)":
gpu_selector_box.grid_remove()
quick_gpu_selector_box.grid_remove()
CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw")
maingpu_label.grid(row=10, column=0, padx = 8, pady=1, stick="nw")
maingpu_entry.grid(row=10, column=1, padx = 8, pady=1, stick="nw")
else:
quick_gpuname_label.grid_remove()
gpuname_label.grid_remove()
gpu_selector_label.grid_remove()
gpu_selector_box.grid_remove()
CUDA_gpu_selector_box.grid_remove()
quick_gpu_selector_label.grid_remove()
quick_gpu_selector_box.grid_remove()
CUDA_quick_gpu_selector_box.grid_remove()
maingpu_label.grid_remove()
maingpu_entry.grid_remove()
if index == "Use CUDA" or index == "Use hipBLAS (ROCm)":
lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw")
mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw")
splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw")
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
else:
lowvram_box.grid_remove()
mmq_box.grid_remove()
quick_mmq_box.grid_remove()
tensor_split_label.grid_remove()
tensor_split_entry.grid_remove()
splitmode_box.grid_remove()
if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)":
tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw")
tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw")
if index == "Use Vulkan" or index == "Use Vulkan (Old CPU)" or index == "Use CLBlast" or index == "Use CLBlast (Old CPU)" or index == "Use CLBlast (Older CPU)" or index == "Use CUDA" or index == "Use hipBLAS (ROCm)":
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
elif sys.platform=="darwin":
gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw")
quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw")
else:
gpu_layers_label.grid_remove()
gpu_layers_entry.grid_remove()
quick_gpu_layers_label.grid_remove()
quick_gpu_layers_entry.grid_remove()
changed_gpulayers_estimate()
changed_gpu_choice_var()
# presets selector
makelabel(quick_tab, "Backend:", 1,0,"Select a backend to use.\nCUDA runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=190,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(quick_tab)
# gpu options
quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
quick_gpuname_label = ctk.CTkLabel(quick_tab, text="")
quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
quick_gpuname_label.configure(text_color="#ffff00")
quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nUsage varies based on model type and increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nNote: The auto estimation is often inaccurate! Please set layers yourself for best results!")
quick_layercounter_label = ctk.CTkLabel(quick_tab, text="")
quick_layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
quick_layercounter_label.configure(text_color="#ffff00")
quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.")
# quick boxes
quick_boxes = {
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
"Use MMAP": [usemmap, "Use mmap to load models if enabled, model will not be unloadable"],
"Use ContextShift": [contextshift_var, "Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info."],
"Remote Tunnel": [remotetunnel_var, "Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."],
"Quiet Mode": [quietmode, "Prevents all generation related terminal output from being displayed."]
}
for idx, (name, properties) in enumerate(quick_boxes.items()):
makecheckbox(quick_tab, name, properties[0], int(idx/2) + 20, idx % 2, tooltiptxt=properties[1])
makecheckbox(quick_tab, "Use FlashAttention", flashattention_var, 22, 1, tooltiptxt="Enable flash attention for GGUF models.")
# context size
makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, width=280, set=7,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
# load model
makefileentry(quick_tab, "GGUF Text Model:", "Select GGUF or GGML Model File", model_var, 40, 280, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
model_var.trace_add("write", gui_changed_modelfile)
ctk.CTkButton(quick_tab, width=70, text = "HF Search", command = model_searcher ).grid(row=41,column=1, stick="sw", padx= 202, pady=2)
# Hardware Tab
hardware_tab = tabcontent["Hardware"]
# presets selector
makelabel(hardware_tab, "Backend:", 1,0,"Select a backend to use.\nCUDA runs on Nvidia GPUs, and is much faster.\nVulkan and CLBlast works on all GPUs but is somewhat slower.\nOtherwise, runs on CPU only.\nNoAVX2 and Failsafe modes support older PCs.")
runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly")
runoptbox.grid(row=1, column=1,padx=8, stick="nw")
runoptbox.set(runopts[0]) # Set to first available option
# Tell user how many backends are available
setup_backend_tooltip(hardware_tab)
# gpu options
gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.")
gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly")
CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly")
gpuname_label = ctk.CTkLabel(hardware_tab, text="")
gpuname_label.grid(row=3, column=1, padx=75, sticky="W")
gpuname_label.configure(text_color="#ffff00")
gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,tooltip="How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81")
layercounter_label = ctk.CTkLabel(hardware_tab, text="")
layercounter_label.grid(row=6, column=1, padx=75, sticky="W")
layercounter_label.configure(text_color="#ffff00")
tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.')
lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.')
mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.")
splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.")
maingpu_entry,maingpu_label = makelabelentry(hardware_tab, "Main GPU:" , maingpu_var, 10, 50,tooltip="Only for multi-gpu, which GPU to set as main?\nIf left blank, uses default value.")
# threads
makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,tooltip="How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.")
# hardware checkboxes
hardware_boxes = {
"Launch Browser": [launchbrowser, "Launches your default browser after model loading is complete"],
"High Priority": [highpriority, "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended."],
"Use MMAP": [usemmap, "Use mmap to load models if enabled, model will not be unloadable"],
"Use mlock": [usemlock, "Enables mlock, preventing the RAM used to load the model from being paged out."],
"Debug Mode": [debugmode, "Enables debug mode, with extra info printed to the terminal."],
"Keep Foreground": [keepforeground, "Bring KoboldCpp to the foreground every time there is a new generation."],
"CLI Terminal Only": [terminalonly, "Does not launch KoboldCpp HTTP server. Instead, enables KoboldCpp from the command line, accepting interactive console input and displaying responses to the terminal."]
}
for idx, (name, properties) in enumerate(hardware_boxes.items()):
makecheckbox(hardware_tab, name, properties[0], int(idx/2) + 30, idx % 2, tooltiptxt=properties[1])
# blas thread specifier
makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,tooltip="How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.")
# blas batch size
makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, len(blasbatchsize_values)-1, 16,width=200, set=6,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.")
blas_size_var.trace_add("write", changed_gpulayers_estimate)
# force version
makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,tooltip="If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.")
ctk.CTkButton(hardware_tab , text = "Run Benchmark", command = guibench ).grid(row=110,column=0, stick="se", padx= 0, pady=2)
# Tokens Tab
tokens_tab = tabcontent["Tokens"]
# tokens checkboxes
smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext_var, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.")
makecheckbox(tokens_tab, "Use ContextShift", contextshift_var, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift)
makecheckbox(tokens_tab, "Use FastForwarding", fastforward_var, 3,tooltiptxt="Use fast forwarding to recycle previous context (always reprocess if disabled).\nRecommended.", command=togglefastforward)
makecheckbox(tokens_tab, "Use Sliding Window Attention (SWA)", swa_var, 4,tooltiptxt="Allows Sliding Window Attention (SWA) KV Cache, which saves memory but cannot be used with context shifting.", command=toggleswa)
# context size
makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 18, width=280, set=7,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.")
context_var.trace_add("write", changed_gpulayers_estimate)
makelabelentry(tokens_tab, "Default Gen Amt:", defaultgenamt_var, row=20, padx=120, singleline=True, tooltip="How many tokens to generate by default, if not specified. Must be smaller than context size. Usually, your frontend GUI will override this.")
nativectx_entry, nativectx_label = makelabelentry(tokens_tab, "Override Native Context:", customrope_nativectx, row=23, padx=146, singleline=True, tooltip="Overrides the native trained context of the loaded model with a custom value to be used for Rope scaling.")
customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale, row=23, padx=100, singleline=True, tooltip="For Linear RoPE scaling. RoPE frequency scale.")
customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base, row=24, padx=100, singleline=True, tooltip="For NTK Aware Scaling. RoPE frequency base.")
def togglerope(a,b,c):
if customrope_var.get() == 1:
manualropebox.grid()
enabled_items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry]
disabled_items = [nativectx_entry,nativectx_label]
for idx, item in enumerate(enabled_items):
if manualrope_var.get() == 1:
item.grid()
else:
item.grid_remove()
for idx, item in enumerate(disabled_items):
if manualrope_var.get() == 0:
item.grid()
else:
item.grid_remove()
else:
disabled_items = [manualropebox, nativectx_entry,nativectx_label, customrope_scale_label, customrope_scale_entry, customrope_base_label, customrope_base_entry]
for idx, item in enumerate(disabled_items):
item.grid_remove()
manualropebox = makecheckbox(tokens_tab, "Manual Rope Scale", variable=manualrope_var, row=22, command=togglerope, padx=166, tooltiptxt="Set RoPE base and scale manually.")
makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.")
makecheckbox(tokens_tab, "Use FlashAttention", flashattention_var, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.")
noqkvlabel = makelabel(tokens_tab,"(Note: QuantKV works best with flash attention)",28,0,"Only K cache can be quantized, and performance can suffer.\nIn some cases, it might even use more VRAM when doing a full offload.",padx=160)
noqkvlabel.configure(text_color="#ff5555")
qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention for full effect, otherwise only K cache is quantized.")
quantkv_var.trace_add("write", toggleflashattn)
makecheckbox(tokens_tab, "No BOS Token", nobostoken_var, 43, tooltiptxt="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.")
makecheckbox(tokens_tab, "Enable Guidance", enableguidance_var, 43,padx=140, tooltiptxt="Enables the use of Classifier-Free-Guidance, which allows the use of negative prompts. Has performance and memory impact.")
makelabelentry(tokens_tab, "MoE Experts:", moeexperts_var, row=55, padx=120, singleline=True, tooltip="Override number of MoE experts.")
makelabelentry(tokens_tab, "MoE CPU Layers:", moecpu_var, row=55, padx=320, singleline=True, tooltip="Keep Mixture of Experts (MoE) weights of the first N layers in the CPU.", labelpadx=210)
makelabelentry(tokens_tab, "Override KV:", override_kv_var, row=57, padx=120, singleline=True, width=150, tooltip="Advanced option to override model metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str")
makelabelentry(tokens_tab, "Override Tensors:", override_tensors_var, row=59, padx=120, singleline=True, width=150, tooltip="Advanced option to override tensor backend selection, same as in llama.cpp.")
# Model Tab
model_tab = tabcontent["Loaded Files"]
makefileentry(model_tab, "Text Model:", "Select GGUF or GGML Model File", model_var, 1,width=205,singlerow=True, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.")
ctk.CTkButton(model_tab, width=70, text = "HF Search", command = model_searcher ).grid(row=1,column=0, stick="nw", padx=370, pady=2)
makefileentry(model_tab, "Text Lora:", "Select Lora File",lora_var, 3,width=160,singlerow=True,tooltiptxt="Select an optional GGML Text LoRA adapter to use.\nLeave blank to skip.")
makelabelentry(model_tab, "Multiplier: ", loramult_var, 3, 50,padx=390,singleline=True,tooltip="Scale multiplier for Text LoRA Strength. Default is 1.0", labelpadx=330)
makefileentry(model_tab, "Mmproj File:", "Select Audio or Vision mmproj File", mmproj_var, 7,width=280,singlerow=True,tooltiptxt="Select a mmproj file to use for multimodal models for vision and audio recognition.\nLeave blank to skip.")
makecheckbox(model_tab, "Vision Force CPU", mmprojcpu_var, 9, tooltiptxt="Force CLIP for Vision mmproj always on CPU.")
makelabelentry(model_tab, "Vision MaxRes:", visionmaxres_var, 9, padx=320, singleline=True, tooltip=f"Clamp MMProj vision maximum allowed resolution. Allowed values are between 512 to 2048 px (default {default_visionmaxres}).", labelpadx=220)
makefileentry(model_tab, "Draft Model:", "Select Speculative Text Model File", draftmodel_var, 11,width=280,singlerow=True,tooltiptxt="Select a draft text model file to use for speculative decoding.\nLeave blank to skip.")
makelabelentry(model_tab, "Draft Amount: ", draftamount_var, 13, 50,padx=100,singleline=True,tooltip="How many tokens to draft per chunk before verifying results")
makelabelentry(model_tab, "Splits: ", draftgpusplit_str_vars, 13, 50,padx=210,singleline=True,tooltip="Distribution of draft model layers. Leave blank to follow main model's gpu split. Only works if multi-gpu (All) selected in main model.", labelpadx=160)
makelabelentry(model_tab, "Layers: ", draftgpulayers_var, 13, 50,padx=320,singleline=True,tooltip="How many layers to GPU offload for the draft model", labelpadx=270)
makefileentry(model_tab, "Embeds Model:", "Select Embeddings Model File", embeddings_model_var, 15, width=130,singlerow=True, filetypes=[("*.gguf","*.gguf")], tooltiptxt="Select an embeddings GGUF model that can be used to generate embedding vectors.")
makelabelentry(model_tab, "ECtx: ", embeddings_ctx_var, 15, 50,padx=335,singleline=True,tooltip="If set above 0, limits max context for embedding model to save memory.", labelpadx=302)
makecheckbox(model_tab, "GPU", embeddings_gpu_var, 15, 0,padx=390,tooltiptxt="Uses the GPU for TTS.")
embeddings_gpu_var.trace_add("write", gui_changed_modelfile)
makefileentry(model_tab, "Preload Story:", "Select Preloaded Story File", preloadstory_var, 17,width=280,singlerow=True,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.")
makefileentry(model_tab, "SaveData File:", "Select or Create New SaveData Database File", savedatafile_var, 19,width=280,filetypes=[("KoboldCpp SaveDB", "*.jsondb")],singlerow=True,dialog_type=1,tooltiptxt="Selecting a file will allow data to be loaded and saved persistently to this KoboldCpp server remotely. File is created if it does not exist.")
makefileentry(model_tab, "ChatCompletions Adapter:", "Select ChatCompletions Adapter File", chatcompletionsadapter_var, 24, width=250, filetypes=[("JSON Adapter", "*.json")], tooltiptxt="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.")
def pickpremadetemplate():
initialDir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
initialDir = initialDir if os.path.isdir(initialDir) else None
fnam = zentk_askopenfilename(title="Pick Premade ChatCompletions Adapter",filetypes=[("JSON Adapter", "*.json")], initialdir=initialDir)
if fnam:
chatcompletionsadapter_var.set(fnam)
ctk.CTkButton(model_tab, 64, text="Pick Premade", command=pickpremadetemplate).grid(row=25, column=0, padx=322, pady=2, stick="nw")
mmproj_var.trace_add("write", gui_changed_modelfile)
draftmodel_var.trace_add("write", gui_changed_modelfile)
makecheckbox(model_tab, "Allow Launch Without Models", nomodel, 27, tooltiptxt="Allows running the WebUI with no model loaded.")
# Network Tab
network_tab = tabcontent["Network"]
# interfaces
makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip=f"Select the port to host the KoboldCPP webserver.\n(Defaults to {defaultport})")
makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)")
makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.")
makecheckbox(network_tab, "Remote Tunnel", remotetunnel_var, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.")
makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.")
makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.")
makecheckbox(network_tab, "Shared Multiplayer", multiplayer_var, 5,tooltiptxt="Hosts a shared multiplayer session that others can join.")
makecheckbox(network_tab, "Enable WebSearch", websearch_var, 5, 1,tooltiptxt="Enable the local search engine proxy so Web Searches can be done.")
makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 7, width=200 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True, singlecol=False,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.")
makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 9, width=200, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True, singlecol=False, tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.")
makelabelentry(network_tab, "Password: ", password_var, 10, 200,tooltip="Enter a password required to use this instance.\nThis key will be required for all text endpoints.\nImage endpoints are not secured.")
makelabelentry(network_tab, "Max Req. Size (MB):", maxrequestsize_var, row=20, width=50, tooltip="Specify a max request payload size. Any requests to the server larger than this size will be dropped. Do not change if unsure.")
# Horde Tab
horde_tab = tabcontent["Horde Worker"]
makelabel(horde_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10)
horde_name_entry, horde_name_label = makelabelentry(horde_tab, "Horde Model Name:", horde_name_var, 20, 180,tooltip="The model name to be displayed on the AI Horde.")
horde_gen_entry, horde_gen_label = makelabelentry(horde_tab, "Gen. Length:", horde_gen_var, 21, 50,tooltip="The maximum amount to generate per request that this worker will accept jobs for.")
horde_context_entry, horde_context_label = makelabelentry(horde_tab, "Max Context:",horde_context_var, 22, 50,tooltip="The maximum context length that this worker will accept jobs for.\nIf 0, matches main context limit.")
horde_apikey_entry, horde_apikey_label = makelabelentry(horde_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,tooltip="Your AI Horde API Key that you have registered.")
horde_workername_entry, horde_workername_label = makelabelentry(horde_tab, "Horde Worker Name:",horde_workername_var, 24, 180,tooltip="Your worker's name to be displayed.")
def togglehorde(a,b,c):
horde_items = zip([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry],
[horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label])
for item, label in horde_items:
if usehorde_var.get() == 1:
item.grid()
label.grid()
else:
item.grid_remove()
label.grid_remove()
if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="":
basefile = os.path.basename(model_var.get())
horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0]))
makecheckbox(horde_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.")
# Image Gen Tab
images_tab = tabcontent["Image Gen"]
makefileentry(images_tab, "Image Gen. Model (safetensors/gguf):", "Select Image Gen Model File", sd_model_var, 1, width=280, singlecol=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Image Generation model file on disk to be loaded.")
makelabelentry(images_tab, "Clamp Resolution Limit (Hard):", sd_clamped_var, 4, 50, padx=190,singleline=True,tooltip="Limit generation steps and output image size for shared use.\nSet to 0 to disable, otherwise value is clamped to the max size limit (min 512px).")
makelabelentry(images_tab, "(Soft):", sd_clamped_soft_var, 4, 50, padx=290,singleline=True,tooltip="Square image size restriction, to protect the server against memory crashes.\nAllows width-height tradeoffs, eg. 640 allows 640x640 and 512x768\nLeave at 0 for the default value: 832 for SD1.5/SD2, 1024 otherwise.",labelpadx=250)
makelabelentry(images_tab, "Image Threads:" , sd_threads_var, 8, 50,padx=290,singleline=True,tooltip="How many threads to use during image generation.\nIf left blank, uses same value as threads.")
sd_model_var.trace_add("write", gui_changed_modelfile)
makelabelcombobox(images_tab, "Compress Weights (Saves Memory): ", sd_quant_var, 10, width=60, padx=220, labelpadx=8, tooltiptxt="Quantizes the SD model weights to save memory.\nHigher levels save more memory, and cause more quality degradation.", values=sd_quant_choices)
sd_quant_var.trace_add("write", changed_gpulayers_estimate)
makefileentry(images_tab, "Image LoRA (safetensors/gguf):", "Select SD lora file",sd_lora_var, 20, width=280, singlecol=True, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD LoRA model file to be loaded. Should be unquantized!")
makelabelentry(images_tab, "Image LoRA Multiplier:" , sd_loramult_var, 22, 50,padx=290,singleline=True,tooltip="What mutiplier value to apply the SD LoRA with.")
makefileentry(images_tab, "T5-XXL File:", "Select Optional T5-XXL model file (SD3 or flux)",sd_t5xxl_var, 24, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.")
makefileentry(images_tab, "Clip-L File:", "Select Optional Clip-L model file (SD3 or flux)",sd_clipl_var, 26, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.")
makefileentry(images_tab, "Clip-G File:", "Select Optional Clip-G model file (SD3)",sd_clipg_var, 28, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="Select a .safetensors t5xxl file to be loaded.")
makefileentry(images_tab, "PhotoMaker:", "Select Optional PhotoMaker model file (SDXL)",sd_photomaker_var, 30, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")],tooltiptxt="PhotoMaker is a model that allows face cloning.\nSelect a .safetensors PhotoMaker file to be loaded (SDXL only).")
sdvaeitem1,sdvaeitem2,sdvaeitem3 = makefileentry(images_tab, "Image VAE:", "Select Optional SD VAE file",sd_vae_var, 40, width=280, singlerow=True, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD VAE file to be loaded.")
def toggletaesd(a,b,c):
if sd_vaeauto_var.get()==1:
sdvaeitem1.grid_remove()
sdvaeitem2.grid_remove()
sdvaeitem3.grid_remove()
else:
if not sdvaeitem1.grid_info() or not sdvaeitem2.grid_info() or not sdvaeitem3.grid_info():
sdvaeitem1.grid()
sdvaeitem2.grid()
sdvaeitem3.grid()
makecheckbox(images_tab, "TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 42,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.")
makelabelcombobox(images_tab, "Conv2D Direct:", sd_convdirect_var, row=42, labelpadx=220, padx=310, width=90, tooltiptxt="Use Conv2D Direct operation. May save memory or improve performance.\nMight crash if not supported by the backend.\n", values=sd_convdirect_choices)
makelabelentry(images_tab, "VAE Tiling Threshold:", sd_tiled_vae_var, 44, 50, padx=144,singleline=True,tooltip="Enable VAE Tiling for images above this size, to save memory.\nSet to 0 to disable VAE tiling.")
makecheckbox(images_tab, "SD Flash Attention", sd_flash_attention_var, 46, tooltiptxt="Enable Flash Attention for image diffusion. May save memory or improve performance.")
# audio tab
audio_tab = tabcontent["Audio"]
makefileentry(audio_tab, "Whisper Model (Speech-To-Text):", "Select Whisper .bin Model File", whisper_model_var, 1, width=280, filetypes=[("*.bin","*.bin")], tooltiptxt="Select a Whisper .bin model file on disk to be loaded for Voice Recognition.")
whisper_model_var.trace_add("write", gui_changed_modelfile)
makefileentry(audio_tab, "TTS Model (Text-To-Speech):", "Select TTS GGUF Model File", tts_model_var, 3, width=280, filetypes=[("*.gguf","*.gguf")], tooltiptxt="Select a TTS GGUF model file on disk to be loaded for Narration.")
tts_model_var.trace_add("write", gui_changed_modelfile)
makelabelentry(audio_tab, "TTS Threads:" , tts_threads_var, 5, 50,padx=290,singleline=True,tooltip="How many threads to use during TTS generation.\nIf left blank, uses same value as threads.")
makelabelentry(audio_tab, "TTS Max Tokens:" , ttsmaxlen_var, 7, 50,padx=290,singleline=True,tooltip="Max allowed audiotokens to generate per TTS request.")
makecheckbox(audio_tab, "TTS Use GPU", ttsgpu_var, 9, 0,tooltiptxt="Uses the GPU for TTS.")
ttsgpu_var.trace_add("write", gui_changed_modelfile)
makefileentry(audio_tab, "WavTokenizer Model (Required for OuteTTS):", "Select WavTokenizer GGUF Model File", wavtokenizer_var, 11, width=280, filetypes=[("*.gguf","*.gguf")], tooltiptxt="Select a WavTokenizer GGUF model file on disk to be loaded for Narration.")
wavtokenizer_var.trace_add("write", gui_changed_modelfile)
admin_tab = tabcontent["Admin"]
def toggleadmin(a,b,c):
if admin_var.get()==1 and admin_dir_var.get()=="":
autopath = os.path.realpath(__file__)
if getattr(sys, 'frozen', False):
autopath = sys.executable
autopath = os.path.dirname(autopath)
admin_dir_var.set(autopath)
makecheckbox(admin_tab, "Enable Model Administration", admin_var, 1, 0, command=toggleadmin,tooltiptxt="Enable a admin server, allowing you to remotely relaunch and swap models and configs.")
makelabelentry(admin_tab, "Admin Password:" , admin_password_var, 3, 150,padx=120,singleline=True,tooltip="Require a password to access admin functions. You are strongly advised to use one for publically accessible instances!")
makefileentry(admin_tab, "Config Directory (Required):", "Select directory containing .gguf or .kcpps files to relaunch from", admin_dir_var, 5, width=280, dialog_type=2, tooltiptxt="Specify a directory to look for .kcpps configs in, which can be used to swap models.")
makecheckbox(admin_tab, "SingleInstance Mode", singleinstance_var, 10, 0,tooltiptxt="Allows this server to be shut down by another KoboldCpp instance with singleinstance starting on the same port.")
def kcpp_export_template():
nonlocal kcpp_exporting_template
kcpp_exporting_template = True
export_vars()
kcpp_exporting_template = False
savdict = json.loads(json.dumps(args.__dict__))
file_type = [("KoboldCpp LaunchTemplate", "*.kcppt")]
#remove blacklisted fields
savdict = convert_args_to_template(savdict)
filename = zentk_asksaveasfilename(filetypes=file_type, defaultextension=".kcppt")
if not filename:
return
filenamestr = str(filename).strip()
if not filenamestr.endswith(".kcppt"):
filenamestr += ".kcppt"
file = open(filenamestr, 'w')
file.write(json.dumps(savdict))
file.close()
pass
# extra tab
extra_tab = tabcontent["Extra"]
makelabel(extra_tab, "Extract KoboldCpp Files", 3, 0,tooltiptxt="Unpack KoboldCpp to a local directory to modify its files. You can also launch via koboldcpp.py for faster startup.")
ctk.CTkButton(extra_tab , text = "Unpack KoboldCpp To Folder", command = unpack_to_dir ).grid(row=3,column=0, stick="w", padx= 170, pady=2)
makelabel(extra_tab, "Export as .kcppt template", 4, 0,tooltiptxt="Creates a KoboldCpp launch template for others to use.\nEmbeds JSON files directly into exported file when saving.\nWhen loaded, forces the backend to be automatically determined.\nWarning! Not recommended for beginners!")
ctk.CTkButton(extra_tab , text = "Generate LaunchTemplate", command = kcpp_export_template ).grid(row=4,column=0, stick="w", padx= 170, pady=2)
makelabel(extra_tab, "Analyze GGUF Metadata", 6, 0,tooltiptxt="Reads the metadata, weight types and tensor names in any GGUF file.")
ctk.CTkButton(extra_tab , text = "Analyze GGUF", command = analyze_gguf_model_wrapper ).grid(row=6,column=0, stick="w", padx= 170, pady=2)
if os.name == 'nt':
makelabel(extra_tab, "File Extensions Handler", 10, 0,tooltiptxt="Makes KoboldCpp the default handler for .kcpps, .kcppt, .ggml and .gguf files.")
ctk.CTkButton(extra_tab , text = "Register", width=90, command = register_koboldcpp ).grid(row=10,column=0, stick="w", padx= 170, pady=2)
ctk.CTkButton(extra_tab , text = "Unregister", width=90, command = unregister_koboldcpp ).grid(row=10,column=0, stick="w", padx= 264, pady=2)
if sys.platform == "linux":
def togglezenity(a,b,c):
global zenity_permitted
zenity_permitted = (nozenity_var.get()==0)
makecheckbox(extra_tab, "Use Classic FilePicker", nozenity_var, 20, tooltiptxt="Use the classic TKinter file picker instead.")
nozenity_var.trace_add("write", togglezenity)
# refresh
runopts_var.trace_add("write", changerunmode)
changerunmode(1,1,1)
global runmode_untouched
runmode_untouched = True
togglerope(1,1,1)
toggleflashattn(1,1,1)
togglectxshift(1,1,1)
togglehorde(1,1,1)
# launch
def guilaunch():
if model_var.get() == "" and sd_model_var.get() == "" and whisper_model_var.get() == "" and tts_model_var.get() == "" and embeddings_model_var.get() == "" and nomodel.get()!=1:
tmp = zentk_askopenfilename(title="Select ggml model .bin or .gguf file")
model_var.set(tmp)
nonlocal nextstate
nextstate = 1
root.withdraw()
root.quit()
pass
def export_vars():
nonlocal kcpp_exporting_template
args.threads = (get_default_threads() if threads_var.get()=="" else int(threads_var.get()))
args.usemlock = usemlock.get() == 1
args.debugmode = debugmode.get()
args.launch = launchbrowser.get()==1
args.highpriority = highpriority.get()==1
args.usemmap = usemmap.get()==1
args.smartcontext = smartcontext_var.get()==1
args.flashattention = flashattention_var.get()==1
args.noshift = contextshift_var.get()==0
args.nofastforward = fastforward_var.get()==0
args.useswa = swa_var.get()==1
args.remotetunnel = remotetunnel_var.get()==1
args.foreground = keepforeground.get()==1
args.cli = terminalonly.get()==1
args.quiet = quietmode.get()==1
args.nocertify = nocertifymode.get()==1
args.nomodel = nomodel.get()==1
args.quantkv = quantkv_var.get()
gpuchoiceidx = 0
args.usecpu = False
args.usevulkan = None
args.usecuda = None
args.useclblast = None
args.noavx2 = False
if gpu_choice_var.get()!="All":
gpuchoiceidx = int(gpu_choice_var.get())-1
if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "Use CLBlast (Old CPU)" or runopts_var.get() == "Use CLBlast (Older CPU)":
args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx]
if runopts_var.get() == "Use CLBlast (Old CPU)":
args.noavx2 = True
elif runopts_var.get() == "Use CLBlast (Older CPU)":
args.noavx2 = True
args.failsafe = True
if runopts_var.get() == "Use CUDA" or runopts_var.get() == "Use hipBLAS (ROCm)":
if gpu_choice_var.get()=="All":
args.usecuda = ["lowvram"] if lowvram_var.get() == 1 else ["normal"]
else:
args.usecuda = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)]
if mmq_var.get()==1:
args.usecuda.append("mmq")
else:
args.usecuda.append("nommq")
if rowsplit_var.get()==1:
args.usecuda.append("rowsplit")
if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Use Vulkan (Old CPU)":
if gpu_choice_var.get()=="All":
args.usevulkan = []
else:
args.usevulkan = [int(gpuchoiceidx)]
if runopts_var.get() == "Use Vulkan (Old CPU)":
args.noavx2 = True
if gpulayers_var.get():
args.gpulayers = (0 if gpulayers_var.get()=="" else int(gpulayers_var.get()))
if runopts_var.get()=="Use CPU":
args.usecpu = True
if runopts_var.get()=="Use CPU (Old CPU)":
args.noavx2 = True
if runopts_var.get()=="Failsafe Mode (Older CPU)":
args.noavx2 = True
args.usecpu = True
args.usemmap = False
args.failsafe = True
if tensor_split_str_vars.get()!="":
tssv = tensor_split_str_vars.get()
if "," in tssv:
args.tensor_split = [float(x) for x in tssv.split(",")]
else:
args.tensor_split = [float(x) for x in tssv.split(" ")]
if draftgpusplit_str_vars.get()!="":
tssv = draftgpusplit_str_vars.get()
if "," in tssv:
args.draftgpusplit = [float(x) for x in tssv.split(",")]
else:
args.draftgpusplit = [float(x) for x in tssv.split(" ")]
args.maingpu = -1 if maingpu_var.get()=="" else int(maingpu_var.get())
args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get())
args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())])
args.forceversion = 0 if version_var.get()=="" else int(version_var.get())
args.contextsize = int(contextsize_text[context_var.get()])
if customrope_var.get()==1:
if manualrope_var.get()==1:
args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())]
args.overridenativecontext = 0
else:
args.ropeconfig = [0.0, 10000.0]
args.overridenativecontext = int(customrope_nativectx.get())
else:
args.ropeconfig = [0.0, 10000.0]
args.overridenativecontext = 0
args.moeexperts = int(moeexperts_var.get()) if moeexperts_var.get()!="" else -1
args.moecpu = int(moecpu_var.get()) if moecpu_var.get()!="" else 0
args.defaultgenamt = int(defaultgenamt_var.get()) if defaultgenamt_var.get()!="" else 640
args.nobostoken = (nobostoken_var.get()==1)
args.enableguidance = (enableguidance_var.get()==1)
args.overridekv = None if override_kv_var.get() == "" else override_kv_var.get()
args.overridetensors = None if override_tensors_var.get() == "" else override_tensors_var.get()
args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get()
try:
if kcpp_exporting_template and isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="" and os.path.exists(args.chatcompletionsadapter):
print("Embedding chat completions adapter...") # parse and save embedded preload story
with open(args.chatcompletionsadapter, 'r', encoding='utf-8', errors='ignore') as f:
args.chatcompletionsadapter = json.load(f)
except Exception:
pass
args.model_param = None if model_var.get() == "" else model_var.get()
args.lora = None if lora_var.get() == "" else ([lora_var.get()])
args.loramult = (float(loramult_var.get()) if loramult_var.get()!="" else 1.0)
args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get()
args.savedatafile = None if savedatafile_var.get() == "" else savedatafile_var.get()
try:
if kcpp_exporting_template and isinstance(args.preloadstory, str) and args.preloadstory!="" and os.path.exists(args.preloadstory):
print("Embedding preload story...") # parse and save embedded preload story
with open(args.preloadstory, 'r', encoding='utf-8', errors='ignore') as f:
args.preloadstory = json.load(f)
except Exception:
pass
args.mmproj = None if mmproj_var.get() == "" else mmproj_var.get()
args.mmprojcpu = (mmprojcpu_var.get()==1)
args.visionmaxres = int(visionmaxres_var.get()) if visionmaxres_var.get()!="" else default_visionmaxres
args.draftmodel = None if draftmodel_var.get() == "" else draftmodel_var.get()
args.draftamount = int(draftamount_var.get()) if draftamount_var.get()!="" else default_draft_amount
args.draftgpulayers = int(draftgpulayers_var.get()) if draftgpulayers_var.get()!="" else 999
args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()])
args.password = None if (password_var.get() == "") else (password_var.get())
args.port_param = defaultport if port_var.get()=="" else int(port_var.get())
args.host = host_var.get()
args.multiuser = multiuser_var.get()
args.multiplayer = (multiplayer_var.get()==1)
args.websearch = (websearch_var.get()==1)
args.maxrequestsize = int(maxrequestsize_var.get()) if maxrequestsize_var.get()!="" else 32
if usehorde_var.get() != 0:
args.hordemodelname = horde_name_var.get()
args.hordegenlen = int(horde_gen_var.get())
args.hordemaxctx = int(horde_context_var.get())
if horde_apikey_var.get()!="" and horde_workername_var.get()!="":
args.hordekey = horde_apikey_var.get()
args.hordeworkername = horde_workername_var.get()
if sd_model_var.get() != "":
args.sdmodel = sd_model_var.get()
if sd_flash_attention_var.get()==1:
args.sdflashattention = True
args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get()))
args.sdclamped = (0 if int(sd_clamped_var.get())<=0 else int(sd_clamped_var.get()))
args.sdclampedsoft = (0 if int(sd_clamped_soft_var.get())<=0 else int(sd_clamped_soft_var.get()))
args.sdtiledvae = (default_vae_tile_threshold if sd_tiled_vae_var.get()=="" else int(sd_tiled_vae_var.get()))
if sd_vaeauto_var.get()==1:
args.sdvaeauto = True
args.sdvae = ""
else:
args.sdvaeauto = False
args.sdvae = ""
if sd_vae_var.get() != "":
args.sdvae = sd_vae_var.get()
args.sdconvdirect = sd_convdirect_option(sd_convdirect_var.get())
if sd_t5xxl_var.get() != "":
args.sdt5xxl = sd_t5xxl_var.get()
if sd_clipl_var.get() != "":
args.sdclipl = sd_clipl_var.get()
if sd_clipg_var.get() != "":
args.sdclipg = sd_clipg_var.get()
if sd_photomaker_var.get() != "":
args.sdphotomaker = sd_photomaker_var.get()
args.sdquant = sd_quant_option(sd_quant_var.get())
if sd_lora_var.get() != "":
args.sdlora = sd_lora_var.get()
args.sdloramult = float(sd_loramult_var.get())
else:
args.sdlora = ""
if whisper_model_var.get() != "":
args.whispermodel = whisper_model_var.get()
if embeddings_model_var.get() != "":
args.embeddingsmodel = embeddings_model_var.get()
if embeddings_ctx_var.get() != "":
args.embeddingsmaxctx = (0 if embeddings_ctx_var.get()=="" else int(embeddings_ctx_var.get()))
args.embeddingsgpu = (embeddings_gpu_var.get()==1)
if tts_model_var.get() != "":
args.ttsthreads = (0 if tts_threads_var.get()=="" else int(tts_threads_var.get()))
args.ttsmodel = tts_model_var.get()
args.ttswavtokenizer = wavtokenizer_var.get()
args.ttsgpu = (ttsgpu_var.get()==1)
args.ttsmaxlen = (default_ttsmaxlen if ttsmaxlen_var.get()=="" else int(ttsmaxlen_var.get()))
args.admin = (admin_var.get()==1 and not args.cli)
args.admindir = admin_dir_var.get()
args.adminpassword = admin_password_var.get()
args.singleinstance = (singleinstance_var.get()==1)
def import_vars(dict):
global importvars_in_progress
importvars_in_progress = True
dict = convert_invalid_args(dict)
if "threads" in dict:
threads_var.set(dict["threads"])
usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0)
if "debugmode" in dict:
debugmode.set(dict["debugmode"])
launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0)
highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0)
usemmap.set(1 if "usemmap" in dict and dict["usemmap"] else 0)
smartcontext_var.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0)
flashattention_var.set(1 if "flashattention" in dict and dict["flashattention"] else 0)
contextshift_var.set(0 if "noshift" in dict and dict["noshift"] else 1)
fastforward_var.set(0 if "nofastforward" in dict and dict["nofastforward"] else 1)
swa_var.set(1 if "useswa" in dict and dict["useswa"] else 0)
remotetunnel_var.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0)
keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0)
terminalonly.set(1 if "cli" in dict and dict["cli"] else 0)
quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0)
nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0)
nomodel.set(1 if "nomodel" in dict and dict["nomodel"] else 0)
if "quantkv" in dict:
quantkv_var.set(dict["quantkv"])
if "useclblast" in dict and dict["useclblast"]:
if "noavx2" in dict and dict["noavx2"]:
if clblast_noavx2_option is not None:
runopts_var.set(clblast_noavx2_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
else:
if clblast_option is not None:
runopts_var.set(clblast_option)
gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1))
elif "usecuda" in dict and dict["usecuda"]:
if cublas_option is not None or hipblas_option is not None:
if cublas_option:
runopts_var.set(cublas_option)
elif hipblas_option:
runopts_var.set(hipblas_option)
lowvram_var.set(1 if "lowvram" in dict["usecuda"] else 0)
mmq_var.set(1 if "mmq" in dict["usecuda"] else 0)
rowsplit_var.set(1 if "rowsplit" in dict["usecuda"] else 0)
gpu_choice_var.set("All")
for g in range(4):
if str(g) in dict["usecuda"]:
gpu_choice_var.set(str(g+1))
break
elif "usevulkan" in dict and dict['usevulkan'] is not None:
if "noavx2" in dict and dict["noavx2"]:
if vulkan_noavx2_option is not None:
runopts_var.set(vulkan_noavx2_option)
gpu_choice_var.set("All")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
else:
if vulkan_option is not None:
runopts_var.set(vulkan_option)
gpu_choice_var.set("All")
for opt in range(0,4):
if opt in dict["usevulkan"]:
gpu_choice_var.set(str(opt+1))
break
elif ("noavx2" in dict and "usecpu" in dict and dict["usecpu"] and dict["noavx2"]) or ("failsafe" in dict and dict["failsafe"]):
if failsafe_option is not None:
runopts_var.set(failsafe_option)
elif "noavx2" in dict and dict["noavx2"]:
if noavx2_option is not None:
runopts_var.set(noavx2_option)
elif "usecpu" in dict and dict["usecpu"]:
if default_option is not None:
runopts_var.set(default_option)
if "gpulayers" in dict and dict["gpulayers"]:
gpulayers_var.set(dict["gpulayers"])
else:
gpulayers_var.set("0")
if "maingpu" in dict:
maingpu_var.set(dict["maingpu"])
else:
maingpu_var.set("")
if "tensor_split" in dict and dict["tensor_split"]:
tssep = ','.join(map(str, dict["tensor_split"]))
tensor_split_str_vars.set(tssep)
if "draftgpusplit" in dict and dict["draftgpusplit"]:
tssep = ','.join(map(str, dict["draftgpusplit"]))
draftgpusplit_str_vars.set(tssep)
if "blasthreads" in dict and dict["blasthreads"]:
blas_threads_var.set(str(dict["blasthreads"]))
else:
blas_threads_var.set("")
if "contextsize" in dict and dict["contextsize"]:
context_var.set(contextsize_text.index(str(dict["contextsize"])))
if "overridenativecontext" in dict and dict["overridenativecontext"]>0:
customrope_var.set(1)
manualrope_var.set(0)
customrope_nativectx.set(str(dict["overridenativecontext"]))
elif "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1:
customrope_nativectx.set(default_native_ctx)
if dict["ropeconfig"][0]>0:
customrope_var.set(1)
manualrope_var.set(1)
customrope_scale.set(str(dict["ropeconfig"][0]))
customrope_base.set(str(dict["ropeconfig"][1]))
else:
customrope_var.set(0)
manualrope_var.set(0)
else:
customrope_nativectx.set(default_native_ctx)
customrope_var.set(0)
manualrope_var.set(0)
if "moeexperts" in dict and dict["moeexperts"]:
moeexperts_var.set(dict["moeexperts"])
if "moecpu" in dict and dict["moecpu"]:
moecpu_var.set(dict["moecpu"])
if "defaultgenamt" in dict and dict["defaultgenamt"]:
defaultgenamt_var.set(dict["defaultgenamt"])
nobostoken_var.set(dict["nobostoken"] if ("nobostoken" in dict) else 0)
enableguidance_var.set(dict["enableguidance"] if ("enableguidance" in dict) else 0)
if "overridekv" in dict and dict["overridekv"]:
override_kv_var.set(dict["overridekv"])
if "overridetensors" in dict and dict["overridetensors"]:
override_tensors_var.set(dict["overridetensors"])
if "blasbatchsize" in dict and dict["blasbatchsize"]:
blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"])))
version_var.set(str(dict["forceversion"]) if ("forceversion" in dict and dict["forceversion"]) else "0")
model_var.set(dict["model_param"] if ("model_param" in dict and dict["model_param"]) else "")
lora_var.set("")
if "lora" in dict and dict["lora"]:
if len(dict["lora"]) > 1:
lora_var.set(dict["lora"][0])
else:
lora_var.set(dict["lora"][0])
loramult_var.set(str(dict["loramult"]) if ("loramult" in dict and dict["loramult"]) else "1.0")
mmproj_var.set(dict["mmproj"] if ("mmproj" in dict and dict["mmproj"]) else "")
mmprojcpu_var.set(1 if ("mmprojcpu" in dict and dict["mmprojcpu"]) else 0)
if "visionmaxres" in dict and dict["visionmaxres"]:
visionmaxres_var.set(dict["visionmaxres"])
draftmodel_var.set(dict["draftmodel"] if ("draftmodel" in dict and dict["draftmodel"]) else "")
if "draftamount" in dict:
draftamount_var.set(dict["draftamount"])
if "draftgpulayers" in dict:
draftgpulayers_var.set(dict["draftgpulayers"])
ssl_cert_var.set("")
ssl_key_var.set("")
if "ssl" in dict and dict["ssl"]:
if len(dict["ssl"]) == 2:
ssl_cert_var.set(dict["ssl"][0])
ssl_key_var.set(dict["ssl"][1])
password_var.set(dict["password"] if ("password" in dict and dict["password"]) else "")
preloadstory_var.set(dict["preloadstory"] if ("preloadstory" in dict and dict["preloadstory"]) else "")
savedatafile_var.set(dict["savedatafile"] if ("savedatafile" in dict and dict["savedatafile"]) else "")
chatcompletionsadapter_var.set(dict["chatcompletionsadapter"] if ("chatcompletionsadapter" in dict and dict["chatcompletionsadapter"]) else "")
port_var.set(dict["port_param"] if ("port_param" in dict and dict["port_param"]) else defaultport)
host_var.set(dict["host"] if ("host" in dict and dict["host"]) else "")
multiuser_var.set(dict["multiuser"] if ("multiuser" in dict) else 1)
multiplayer_var.set(dict["multiplayer"] if ("multiplayer" in dict) else 0)
websearch_var.set(dict["websearch"] if ("websearch" in dict) else 0)
horde_name_var.set(dict["hordemodelname"] if ("hordemodelname" in dict and dict["hordemodelname"]) else "koboldcpp")
horde_context_var.set(dict["hordemaxctx"] if ("hordemaxctx" in dict and dict["hordemaxctx"]) else maxhordectx)
horde_gen_var.set(dict["hordegenlen"] if ("hordegenlen" in dict and dict["hordegenlen"]) else maxhordelen)
horde_apikey_var.set(dict["hordekey"] if ("hordekey" in dict and dict["hordekey"]) else "")
horde_workername_var.set(dict["hordeworkername"] if ("hordeworkername" in dict and dict["hordeworkername"]) else "")
usehorde_var.set(1 if ("hordekey" in dict and dict["hordekey"]) else 0)
if "maxrequestsize" in dict and dict["maxrequestsize"]:
maxrequestsize_var.set(dict["maxrequestsize"])
sd_model_var.set(dict["sdmodel"] if ("sdmodel" in dict and dict["sdmodel"]) else "")
sd_clamped_var.set(int(dict["sdclamped"]) if ("sdclamped" in dict and dict["sdclamped"]) else 0)
sd_clamped_soft_var.set(int(dict["sdclampedsoft"]) if ("sdclampedsoft" in dict and dict["sdclampedsoft"]) else 0)
sd_threads_var.set(str(dict["sdthreads"]) if ("sdthreads" in dict and dict["sdthreads"]) else str(default_threads))
sd_quant_var.set(sd_quant_choices[(dict["sdquant"] if ("sdquant" in dict and dict["sdquant"]>=0 and dict["sdquant"]<len(sd_quant_choices)) else 0)])
sd_flash_attention_var.set(1 if ("sdflashattention" in dict and dict["sdflashattention"]) else 0)
sd_convdirect_var.set(sd_convdirect_option(dict.get("sdconvdirect")))
sd_vae_var.set(dict["sdvae"] if ("sdvae" in dict and dict["sdvae"]) else "")
sd_t5xxl_var.set(dict["sdt5xxl"] if ("sdt5xxl" in dict and dict["sdt5xxl"]) else "")
sd_clipl_var.set(dict["sdclipl"] if ("sdclipl" in dict and dict["sdclipl"]) else "")
sd_clipg_var.set(dict["sdclipg"] if ("sdclipg" in dict and dict["sdclipg"]) else "")
sd_photomaker_var.set(dict["sdphotomaker"] if ("sdphotomaker" in dict and dict["sdphotomaker"]) else "")
sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0)
sd_tiled_vae_var.set(str(dict["sdtiledvae"]) if ("sdtiledvae" in dict and dict["sdtiledvae"]) else str(default_vae_tile_threshold))
sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "")
sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0")
whisper_model_var.set(dict["whispermodel"] if ("whispermodel" in dict and dict["whispermodel"]) else "")
tts_threads_var.set(str(dict["ttsthreads"]) if ("ttsthreads" in dict and dict["ttsthreads"]) else str(default_threads))
tts_model_var.set(dict["ttsmodel"] if ("ttsmodel" in dict and dict["ttsmodel"]) else "")
wavtokenizer_var.set(dict["ttswavtokenizer"] if ("ttswavtokenizer" in dict and dict["ttswavtokenizer"]) else "")
ttsgpu_var.set(dict["ttsgpu"] if ("ttsgpu" in dict) else 0)
ttsmaxlen_var.set(str(dict["ttsmaxlen"]) if ("ttsmaxlen" in dict and dict["ttsmaxlen"]) else str(default_ttsmaxlen))
embeddings_model_var.set(dict["embeddingsmodel"] if ("embeddingsmodel" in dict and dict["embeddingsmodel"]) else "")
embeddings_ctx_var.set(str(dict["embeddingsmaxctx"]) if ("embeddingsmaxctx" in dict and dict["embeddingsmaxctx"]) else "")
embeddings_gpu_var.set(dict["embeddingsgpu"] if ("embeddingsgpu" in dict) else 0)
admin_var.set(dict["admin"] if ("admin" in dict) else 0)
admin_dir_var.set(dict["admindir"] if ("admindir" in dict and dict["admindir"]) else "")
admin_password_var.set(dict["adminpassword"] if ("adminpassword" in dict and dict["adminpassword"]) else "")
singleinstance_var.set(dict["singleinstance"] if ("singleinstance" in dict) else 0)
importvars_in_progress = False
gui_changed_modelfile()
if "istemplate" in dict and dict["istemplate"]:
auto_set_backend_gui(True)
def save_config_gui():
nonlocal kcpp_exporting_template
kcpp_exporting_template = False
export_vars()
savdict = json.loads(json.dumps(args.__dict__))
file_type = [("KoboldCpp Settings", "*.kcpps")]
filename = zentk_asksaveasfilename(filetypes=file_type, defaultextension=".kcpps",title="Save kcpps settings config file")
if not filename:
return
filenamestr = str(filename).strip()
if not filenamestr.lower().endswith(".kcpps"):
filenamestr += ".kcpps"
file = open(filenamestr, 'w')
file.write(json.dumps(savdict))
file.close()
pass
def load_config_gui(): #this is used to populate the GUI with a config file, whereas load_config_cli simply overwrites cli args
file_type = [("KoboldCpp Settings", "*.kcpps *.kcppt")]
global runmode_untouched, zenity_permitted
filename = zentk_askopenfilename(filetypes=file_type, defaultextension=".kcppt", initialdir=None, title="Select kcpps or kcppt settings config file")
if not filename or filename=="":
return
if not os.path.exists(filename) or os.path.getsize(filename)<4 or os.path.getsize(filename)>50000000: #for sanity, check invaid kcpps
print("The selected config file seems to be invalid.")
if zenity_permitted:
print("You can try using the legacy filepicker instead (in Extra).")
return
runmode_untouched = False
with open(filename, 'r', encoding='utf-8', errors='ignore') as f:
dict = json.load(f)
import_vars(dict)
pass
def display_help_models():
LaunchWebbrowser("https://github.com/LostRuins/koboldcpp/wiki#what-models-does-koboldcpp-support-what-architectures-are-supported","Cannot launch help in browser.")
def display_updates():
LaunchWebbrowser("https://github.com/LostRuins/koboldcpp/releases/latest","Cannot launch updates in browser.")
ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5)
ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Save Config", fg_color="#084a66", hover_color="#085a88", command = save_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5)
ctk.CTkButton(tabs , text = "Load Config", fg_color="#084a66", hover_color="#085a88", command = load_config_gui, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 92, pady=5)
ctk.CTkButton(tabs , text = "Help (Find Models)", fg_color="#992222", hover_color="#bb3333", command = display_help_models, width=100, height = 35 ).grid(row=1,column=1, stick="sw", padx= 180, pady=5)
# start a thread that tries to get actual gpu names and layer counts
gpuinfo_thread = threading.Thread(target=auto_set_backend_gui)
gpuinfo_thread.start() #submit job in new thread so nothing is waiting
if args.showgui:
if isinstance(args, argparse.Namespace):
dict = vars(args)
import_vars(dict)
# runs main loop until closed or launch clicked
try:
root.mainloop()
except (KeyboardInterrupt,SystemExit):
exitcounter = 999
print("Exiting by user request.")
sys.exit(0)
if nextstate==0:
exitcounter = 999
print("Exiting by user request.")
sys.exit(0)
else:
# processing vars
kcpp_exporting_template = False
export_vars()
if not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.embeddingsmodel and not args.nomodel:
exitcounter = 999
print("")
time.sleep(0.5)
if using_gui_launcher:
givehelp = show_gui_yesnobox("No Model Loaded","No text or image model file was selected. Need a model to continue.\n\nDo you want help finding a GGUF model?")
if givehelp == 'yes':
display_help_models()
else:
print("No text or image model file was selected. Cannot continue.", flush=True)
time.sleep(2)
sys.exit(2)
def show_gui_msgbox(title,message):
print(title + ": " + message, flush=True)
try:
from tkinter import messagebox
import tkinter as tk
root2 = tk.Tk()
root2.attributes("-alpha", 0)
messagebox.showerror(title=title, message=message)
root2.withdraw()
root2.destroy()
except Exception:
pass
def show_gui_yesnobox(title,message,icon='error'):
print(title + ": " + message, flush=True)
try:
from tkinter import messagebox
import tkinter as tk
root2 = tk.Tk()
root2.attributes("-alpha", 0)
result = messagebox.askquestion(title=title, message=message,icon=icon)
root2.withdraw()
root2.destroy()
return result
except Exception:
return False
pass
def print_with_time(txt):
print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True)
def make_url_request(url, data, method='POST', headers={}, timeout=300):
global nocertify
try:
request = None
ssl_cert_dir = os.environ.get('SSL_CERT_DIR')
if not ssl_cert_dir and not nocertify and os.name != 'nt':
os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs'
if method=='POST':
json_payload = json.dumps(data).encode('utf-8')
request = urllib.request.Request(url, data=json_payload, headers=headers, method=method)
request.add_header('content-type', 'application/json')
else:
request = urllib.request.Request(url, headers=headers, method=method)
response_data = ""
with urllib.request.urlopen(request,timeout=timeout) as response:
response_data = response.read().decode('utf-8',"ignore")
json_response = json.loads(response_data)
return json_response
except urllib.error.HTTPError as e:
try:
errmsg = e.read().decode('utf-8',"ignore")
print_with_time(f"Error: {e} - {errmsg}")
except Exception as e:
print_with_time(f"Error: {e}")
return None
except Exception as e:
print_with_time(f"Error: {e} - {response_data}")
return None
#A very simple and stripped down embedded horde worker with no dependencies
def run_horde_worker(args, api_key, worker_name):
global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime, sslvalid
httpsaffix = ("https" if sslvalid else "http")
epurl = f"{httpsaffix}://localhost:{args.port}"
if args.host!="":
epurl = f"{httpsaffix}://{args.host}:{args.port}"
def submit_completed_generation(url, jobid, sessionstart, submit_dict):
global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter
reply = make_url_request_horde(url, submit_dict)
if not reply:
punishcounter += 1
print_with_time("Error, Job submit failed.")
else:
reward = reply["reward"]
session_kudos_earned += reward
session_jobs += 1
curtime = datetime.now()
elapsedtime=curtime-sessionstart
hrs = int(elapsedtime.total_seconds()) // 3600
mins = elapsedtime.seconds // 60 % 60
secs = elapsedtime.seconds % 60
elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s"
earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600)
print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]')
rewardcounter += 1
if rewardcounter > 50:
rewardcounter = 0
if exitcounter > 1:
exitcounter -= 1
def make_url_request_horde(url, data, method='POST',addmykey=False):
global password
headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'}
if addmykey and password!="":
headers["Authorization"] = f"Bearer {password}"
ret = make_url_request(url, data, method, headers)
if not ret:
print("Make sure your Horde API key and worker name is valid!")
return ret
current_id = None
current_payload = None
current_generation = None
session_starttime = datetime.now()
sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower)
exitcounter = 0
print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own Horde Bridge/Scribe worker instead, don't set your API key)\n")
BRIDGE_AGENT = "KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp"
cluster = "https://aihorde.net"
while exitcounter < 10:
time.sleep(3)
readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET',addmykey=True)
if readygo:
print_with_time(f"Embedded Horde Worker '{worker_name}' is started.")
break
while exitcounter < 10:
currentjob_attempts = 0
current_generation = None
if punishcounter >= 5:
punishcounter = 0
exitcounter += 1
if exitcounter < 10:
penaltytime = (2 ** exitcounter)
print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.")
print_with_time("Caution: Too many failed jobs may lead to entering maintenance mode.")
time.sleep(60 * penaltytime)
else:
print_with_time("Horde Worker Exit limit reached, too many errors.")
global last_non_horde_req_time
sec_since_non_horde = time.time() - last_non_horde_req_time
no_recent_local_usage = sec_since_non_horde>20
if not no_recent_local_usage:
#print_with_time(f"Recent Local Usage - Horde Worker Waiting...")
time.sleep(1)
continue
#first, make sure we are not generating
if modelbusy.locked():
time.sleep(0.2)
continue
#pop new request
gen_dict = {
"name": worker_name,
"models": [friendlymodelname],
"max_length": maxhordelen,
"max_context_length": min(maxctx,(maxctx if maxhordectx==0 else maxhordectx)),
"priority_usernames": [],
"softprompts": [],
"bridge_agent": BRIDGE_AGENT,
}
pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict)
if not pop:
punishcounter += 1
print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...")
time.sleep(10)
continue
if not pop["id"]:
slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3))
time.sleep(slp)
sleepy_counter += 1
if sleepy_counter==20:
print_with_time("No recent jobs, entering low power mode...")
continue
sleepy_counter = 0
current_id = pop['id']
current_payload = pop['payload']
print("") #empty newline
print_with_time(f"Job {current_id} received from {cluster} for {current_payload.get('max_length',0)} tokens and {current_payload.get('max_context_length',0)} max context. Starting generation...")
#do gen
while exitcounter < 10:
if not modelbusy.locked():
#horde gets a genkey to avoid KCPP overlap
current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}"
current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload, method='POST',addmykey=True)
if current_generation:
break
else:
currentjob_attempts += 1
if currentjob_attempts>5:
break
print_with_time("Server Busy - Not ready to generate...")
time.sleep(5)
#submit reply
print("") #empty newline
if current_generation:
submit_dict = {
"id": current_id,
"generation": current_generation["results"][0]["text"],
"state": "ok"
}
submiturl = cluster + '/api/v2/generate/text/submit'
submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict))
submit_thread.start() #submit job in new thread so nothing is waiting
else:
print_with_time("Error, Abandoned current job due to errors. Getting new job.")
current_id = None
current_payload = None
time.sleep(0.1)
if exitcounter<100:
print_with_time("Horde Worker Shutdown - Too many errors.")
else:
print_with_time("Horde Worker Shutdown - Server Closing.")
exitcounter = 999
time.sleep(3)
sys.exit(2)
def convert_invalid_args(args):
dict = args
if isinstance(args, argparse.Namespace):
dict = vars(args)
if "usecuda" not in dict and "usecublas" in dict and dict["usecublas"]:
dict["usecuda"] = dict["usecublas"]
if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"])>0:
dict["sdmodel"] = dict["sdconfig"][0]
if dict["sdconfig"] and len(dict["sdconfig"]) > 1:
dict["sdclamped"] = 512
if dict["sdconfig"] and len(dict["sdconfig"]) > 2:
dict["sdthreads"] = int(dict["sdconfig"][2])
if dict["sdconfig"] and len(dict["sdconfig"]) > 3:
dict["sdquant"] = (2 if dict["sdconfig"][3]=="quant" else 0)
if "hordeconfig" in dict and dict["hordeconfig"] and dict["hordeconfig"][0]!="":
dict["hordemodelname"] = dict["hordeconfig"][0]
if len(dict["hordeconfig"]) > 1:
dict["hordegenlen"] = int(dict["hordeconfig"][1])
if len(dict["hordeconfig"]) > 2:
dict["hordemaxctx"] = int(dict["hordeconfig"][2])
if len(dict["hordeconfig"]) > 4:
dict["hordekey"] = dict["hordeconfig"][3]
dict["hordeworkername"] = dict["hordeconfig"][4]
if "noblas" in dict and dict["noblas"]:
dict["usecpu"] = True
if "failsafe" in dict and dict["failsafe"]: #failsafe implies noavx2
dict["noavx2"] = True
if "skiplauncher" in dict and dict["skiplauncher"]:
dict["showgui"] = False
if "useswa" in dict and dict["useswa"]:
dict["noshift"] = True
if ("model_param" not in dict or not dict["model_param"]) and ("model" in dict):
model_value = dict["model"] #may be null, empty/non-empty string, empty/non empty array
if isinstance(model_value, str) and model_value: # Non-empty string
dict["model_param"] = model_value
elif isinstance(model_value, list) and model_value: # Non-empty list
dict["model_param"] = model_value[0] # Take the first file in the list
if "sdnotile" in dict and "sdtiledvae" not in dict:
dict["sdtiledvae"] = (0 if (dict["sdnotile"]) else default_vae_tile_threshold) # convert legacy option
if 'sdquant' in dict and type(dict['sdquant']) is bool:
dict['sdquant'] = 2 if dict['sdquant'] else 0
return args
def setuptunnel(global_memory, has_sd):
# This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet
# It should work out of the box on both linux and windows
try:
global sslvalid
httpsaffix = ("https" if sslvalid else "http")
ssladd = (" --no-tls-verify" if sslvalid else "")
def run_tunnel():
tunnelproc = None
tunneloutput = ""
tunnelrawlog = ""
time.sleep(0.2)
tunnelbinary = ""
if os.name == 'nt':
print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True)
tunnelbinary = "cloudflared.exe"
elif sys.platform=="darwin":
print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True)
tunnelbinary = "./cloudflared"
elif sys.platform == "linux" and platform.machine().lower() == "aarch64":
print("Starting Cloudflare Tunnel for ARM64 Linux, please wait...", flush=True)
tunnelbinary = "./cloudflared-linux-arm64"
else:
print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True)
tunnelbinary = "./cloudflared-linux-amd64"
tunnelproc = None
if sys.platform == "linux":
clean_env = os.environ.copy()
clean_env.pop("LD_LIBRARY_PATH", None)
clean_env["PATH"] = "/usr/bin:/bin"
tunnelproc = subprocess.Popen(f"{tunnelbinary} tunnel --url {httpsaffix}://localhost:{int(args.port)}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, env=clean_env)
else:
tunnelproc = subprocess.Popen(f"{tunnelbinary} tunnel --url {httpsaffix}://localhost:{int(args.port)}{ssladd}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE)
time.sleep(10)
def tunnel_reader():
nonlocal tunnelproc,tunneloutput,tunnelrawlog
pattern = r'https://[\w\.-]+\.trycloudflare\.com'
while True:
line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason
tunnelrawlog += line+"\n"
if not line:
return
found = re.findall(pattern, line)
for x in found:
tunneloutput = x
if global_memory and global_memory["load_complete"]:
print(f"Your remote Kobold API can be found at {tunneloutput}/api")
print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1")
if has_sd:
print(f"StableUI is available at {tunneloutput}/sdui/")
print("======\n")
print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True)
if global_memory:
global_memory["tunnel_url"] = tunneloutput
return
tunnel_reader_thread = threading.Thread(target=tunnel_reader)
tunnel_reader_thread.start()
time.sleep(5)
if tunneloutput=="":
print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True)
time.sleep(0.5)
tunnelproc.wait()
if os.name == 'nt':
downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe", "cloudflared.exe", True, 500000)
elif sys.platform=="darwin":
downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz", "cloudflared-darwin-amd64.tgz", True, 500000)
subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True)
subprocess.run("chmod +x 'cloudflared'", shell=True)
elif sys.platform == "linux" and platform.machine().lower() == "aarch64":
downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-arm64", "cloudflared-linux-arm64", True, 500000)
subprocess.run("chmod +x 'cloudflared-linux-arm64'", shell=True)
else:
downloader_internal("https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64", "cloudflared-linux-amd64", True, 500000)
subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True)
print("Attempting to start tunnel thread...", flush=True)
tunnel_thread = threading.Thread(target=run_tunnel)
tunnel_thread.start()
except Exception as ex:
print("Remote Tunnel Failed!")
print(str(ex))
return None
def reload_from_new_args(newargs):
try:
args.istemplate = False
newargs = convert_invalid_args(newargs)
for key, value in newargs.items(): #do not overwrite certain values
if key not in ["remotetunnel","showgui","port","host","port_param","admin","adminpassword","admindir","ssl","nocertify","benchmark","prompt","config"]:
setattr(args, key, value)
setattr(args,"showgui",False)
setattr(args,"benchmark",False)
setattr(args,"prompt","")
setattr(args,"config",None)
setattr(args,"launch",None)
if "istemplate" in newargs and newargs["istemplate"]:
auto_set_backend_cli()
except Exception as e:
print(f"Reload New Config Failed: {e}")
def reload_new_config(filename): #for changing config after launch
with open(filename, 'r', encoding='utf-8', errors='ignore') as f:
try:
config = json.load(f)
reload_from_new_args(config)
except Exception as e:
print(f"Reload New Config Failed: {e}")
def load_config_cli(filename):
print("Loading .kcpps configuration file...")
with open(filename, 'r', encoding='utf-8', errors='ignore') as f:
config = json.load(f)
config = convert_invalid_args(config)
if "onready" in config:
config["onready"] = "" #do not allow onready commands from config
args.istemplate = False
raw_args = (sys.argv[1:]) #a lousy hack to allow for overriding kcpps
for key, value in config.items():
if f"--{key}" in raw_args:
if key!="config":
print(f"Overriding Config Value: {key}")
else:
setattr(args, key, value)
if args.istemplate:
print("\nA .kcppt template was selected from CLI...")
if (args.usecuda is None) and (args.usevulkan is None) and (args.useclblast is None):
print("Automatically selecting your backend...")
auto_set_backend_cli()
def convert_args_to_template(savdict):
savdict["istemplate"] = True
savdict["gpulayers"] = -1
savdict["threads"] = -1
savdict["hordekey"] = ""
savdict["hordeworkername"] = ""
savdict["sdthreads"] = 0
savdict["password"] = None
savdict["usemmap"] = False
savdict["usemlock"] = False
savdict["debugmode"] = 0
savdict["ssl"] = None
savdict["useclblast"] = None
savdict["usecuda"] = None
savdict["usevulkan"] = None
savdict["usecpu"] = None
savdict["tensor_split"] = None
savdict["draftgpusplit"] = None
savdict["config"] = None
savdict["ttsthreads"] = 0
return savdict
def save_config_cli(filename, template):
savdict = json.loads(json.dumps(args.__dict__))
if template:
savdict = convert_args_to_template(savdict)
if filename is None:
return
filenamestr = str(filename).strip()
if not filenamestr.endswith(".kcpps") and not template:
filenamestr += ".kcpps"
if not filenamestr.endswith(".kcppt") and template:
filenamestr += ".kcppt"
file = open(filenamestr, 'w')
file.write(json.dumps(savdict))
file.close()
print(f"\nSaved configuration file as {filenamestr}\nIt can be loaded with --config [filename] in future.")
pass
def delete_old_pyinstaller():
try:
base_path = sys._MEIPASS
except Exception:
return # not running from pyinstaller
if not base_path:
return
selfdirpath = os.path.abspath(base_path)
temp_parentdir_path = os.path.abspath(os.path.join(base_path, '..'))
for dirname in os.listdir(temp_parentdir_path):
absdirpath = os.path.abspath(os.path.join(temp_parentdir_path, dirname))
if os.path.isdir(absdirpath) and os.path.basename(absdirpath).startswith('_MEI'): #only delete kobold pyinstallers
if absdirpath!=selfdirpath and (time.time() - os.path.getctime(absdirpath)) > 14400: # remove if older than 4 hours
kobold_itemcheck1 = os.path.join(absdirpath, 'koboldcpp_default.dll')
kobold_itemcheck2 = os.path.join(absdirpath, 'koboldcpp_default.so')
kobold_itemcheck3 = os.path.join(absdirpath, 'klite.embd')
kobold_itemcheck4 = os.path.join(absdirpath, 'cublasLt64_11.dll')
kobold_itemcheck5 = os.path.join(absdirpath, 'cublas64_11.dll')
kobold_itemcheck6 = os.path.join(absdirpath, 'clblast.dll')
if os.path.exists(kobold_itemcheck1) or os.path.exists(kobold_itemcheck2) or os.path.exists(kobold_itemcheck3) or (os.path.exists(kobold_itemcheck4) and os.path.exists(kobold_itemcheck5) and os.path.exists(kobold_itemcheck6)):
try:
shutil.rmtree(absdirpath)
print(f"Deleted orphaned pyinstaller dir: {absdirpath}")
except Exception as e:
print(f"Error deleting orphaned pyinstaller dir: {absdirpath}: {e}")
def sanitize_string(input_string):
# alphanumeric characters, dots, dashes, and underscores
sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string)
return sanitized_string
def downloader_internal(input_url, output_filename, capture_output, min_file_size=64): # 64 bytes required by default
if "https://huggingface.co/" in input_url and "/blob/main/" in input_url:
input_url = input_url.replace("/blob/main/", "/resolve/main/")
if output_filename == "auto":
output_filename = os.path.basename(input_url).split('?')[0].split('#')[0]
incomplete_dl_exist = (os.path.exists(output_filename+".aria2") and os.path.getsize(output_filename+".aria2") > 16)
if os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size and not incomplete_dl_exist:
print(f"{output_filename} already exists, using existing file.")
return output_filename
print(f"Downloading {input_url}", flush=True)
dl_success = False
try:
if os.name == 'nt':
basepath = os.path.abspath(os.path.dirname(__file__))
a2cexe = (os.path.join(basepath, "aria2c-win.exe"))
if os.path.exists(a2cexe): #on windows try using embedded a2cexe
rc = subprocess.run([
a2cexe, "-x", "16", "-s", "16", "--summary-interval=15", "--console-log-level=error", "--log-level=error",
"--download-result=default", "--continue=true", "--allow-overwrite=true", "--file-allocation=none", "--max-tries=3", "-o", output_filename, input_url
], capture_output=capture_output, text=True, check=True, encoding='utf-8')
dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size)
except subprocess.CalledProcessError as e:
print(f"aria2c-win failed: {e}")
try:
if not dl_success and shutil.which("aria2c") is not None:
rc = subprocess.run([
"aria2c", "-x", "16", "-s", "16", "--summary-interval=15", "--console-log-level=error", "--log-level=error",
"--download-result=default", "--allow-overwrite=true", "--file-allocation=none", "--max-tries=3", "-o", output_filename, input_url
], capture_output=capture_output, text=True, check=True, encoding='utf-8')
dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size)
except subprocess.CalledProcessError as e:
print(f"aria2c failed: {e}")
try:
if not dl_success and shutil.which("curl") is not None:
rc = subprocess.run(["curl", "-fLo", output_filename, input_url],
capture_output=capture_output, text=True, check=True, encoding="utf-8")
dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size)
except subprocess.CalledProcessError as e:
print(f"curl failed: {e}")
try:
if not dl_success and shutil.which("wget") is not None:
rc = subprocess.run(["wget", "-O", output_filename, input_url],
capture_output=capture_output, text=True, check=True, encoding="utf-8")
dl_success = (rc.returncode == 0 and os.path.exists(output_filename) and os.path.getsize(output_filename) > min_file_size)
except subprocess.CalledProcessError as e:
print(f"wget failed: {e}")
if not dl_success:
print("Could not find suitable download software, or all download methods failed. Please install aria2, curl, or wget.")
return None
return output_filename
def download_model_from_url(url, permitted_types=[".gguf",".safetensors", ".ggml", ".bin"], min_file_size=64,handle_multipart=False):
if url and url!="":
if url.endswith("?download=true"):
url = url.replace("?download=true","")
end_ext_ok = False
for t in permitted_types:
if url.endswith(t):
end_ext_ok = True
break
if ((url.startswith("http://") or url.startswith("https://")) and end_ext_ok):
dlfile = downloader_internal(url, "auto", False, min_file_size)
if handle_multipart and "-00001-of-00" in url: #handle multipart files up to 9 parts
match = re.search(r'-(\d{5})-of-(\d{5})\.', url)
if match:
total_parts = int(match.group(2))
if total_parts > 1 and total_parts <= 999:
current_part = 1
base_url = url
for part_num in range(current_part + 1, total_parts + 1):
part_str = f"-{part_num:05d}-of-{total_parts:05d}"
new_url = re.sub(r'-(\d{5})-of-(\d{5})', part_str, base_url)
downloader_internal(new_url, "auto", False, min_file_size)
return dlfile
return None
def analyze_gguf_model(args,filename):
try:
stime = datetime.now()
dump_gguf_metadata(filename)
atime = (datetime.now() - stime).total_seconds()
print(f"---\nAnalyzing completed in {atime:.2f}s.\n---",flush=True)
except Exception as e:
print(f"Cannot Analyze File: {e}")
return
def analyze_gguf_model_wrapper(filename=""):
if not filename or filename=="":
try:
filename = zentk_askopenfilename(title="Select GGUF to analyze")
except Exception as e:
print(f"Cannot select file to analyze: {e}")
if not filename or filename=="" or not os.path.exists(filename):
print("Selected GGUF file not found. Please select a valid GGUF file to analyze.")
return
print("---")
print(f"Analyzing {filename}, please wait...\n---",flush=True)
dumpthread = threading.Thread(target=analyze_gguf_model, args=(args,filename))
dumpthread.start()
def register_koboldcpp():
try:
exe_path = ""
if getattr(sys, 'frozen', False):
exe_path = sys.executable
if os.name == 'nt' and exe_path!="":
confirmyes = show_gui_yesnobox("Confirm Add File Extensions","Do you want to register KoboldCpp as the default file associations for .gguf, .kcpps, .kcppt and .ggml files?",icon="question")
if confirmyes == 'yes':
import winreg
print(f"Registering file associations to {exe_path}")
entries = [
(r"Software\Classes\KoboldCpp\DefaultIcon", "", f"{exe_path},0"),
(r"Software\Classes\KoboldCpp\shell\Open\command", "", f'"{exe_path}" "%1" --singleinstance'),
(r"Software\Classes\KoboldCpp\shell\Edit\command", "", f'"{exe_path}" "%1" --singleinstance --showgui'),
(r"Software\Classes\.gguf", "", "KoboldCpp"),
(r"Software\Classes\.kcpps", "", "KoboldCpp"),
(r"Software\Classes\.kcppt", "", "KoboldCpp"),
(r"Software\Classes\.ggml", "", "KoboldCpp"),
]
for key_path, value_name, value_data in entries:
with winreg.CreateKey(winreg.HKEY_CURRENT_USER, key_path) as key:
winreg.SetValueEx(key, value_name, 0, winreg.REG_SZ, value_data)
print("KoboldCpp file associations registered successfully.")
else:
show_gui_msgbox("Cannot Set File Association","File Associations only available for Windows standalone executables.")
except Exception as e:
print(f"Register Extensions: An error occurred: {e}")
def unregister_koboldcpp():
try:
if os.name == 'nt':
confirmyes = show_gui_yesnobox("Confirm Remove File Extensions","Do you want to unregister KoboldCpp as the default file associations for .gguf, .kcpps, .kcppt and .ggml files?",icon="question")
if confirmyes == 'yes':
import winreg
keys_to_delete = [
r"Software\Classes\KoboldCpp\shell\Edit\command",
r"Software\Classes\KoboldCpp\shell\Edit",
r"Software\Classes\KoboldCpp\shell\Open\command",
r"Software\Classes\KoboldCpp\shell\Open",
r"Software\Classes\KoboldCpp\shell",
r"Software\Classes\KoboldCpp\DefaultIcon",
r"Software\Classes\KoboldCpp",
r"Software\Classes\.gguf",
r"Software\Classes\.kcpps",
r"Software\Classes\.kcppt",
r"Software\Classes\.ggml",
]
for key_path in keys_to_delete:
try:
winreg.DeleteKey(winreg.HKEY_CURRENT_USER, key_path)
except Exception:
print(f"Failed to delete registry key: {key_path}")
print("KoboldCpp file associations unregistered.")
else:
show_gui_msgbox("Cannot Set File Association","File Associations only available for Windows standalone executables.")
except Exception as e:
print(f"Unregister Extensions: An error occurred: {e}")
def main(launch_args, default_args):
global args, showdebug, kcpp_instance, exitcounter, using_gui_launcher, sslvalid, global_memory
args = launch_args #note: these are NOT shared with the child processes!
if (args.version) and len(sys.argv) <= 2:
print(f"{KcppVersion}") # just print version and exit
return
#prevent disallowed combos
if (args.nomodel or args.benchmark or args.launch or args.admin) and args.cli:
exit_with_error(1, "Error: --cli cannot be combined with --launch, --nomodel, --admin or --benchmark")
args = convert_invalid_args(args)
temp_hide_print = (args.model_param and (args.prompt and not args.cli) and not args.benchmark and not (args.debugmode >= 1))
if not temp_hide_print:
print(f"***\nWelcome to KoboldCpp - Version {KcppVersion}")
if args.debugmode != 1:
showdebug = False #not shared with child process!
if args.debugmode >= 1:
print("Debug Mode is Enabled!")
args.quiet = False # verbose outputs
# assign title to terminal on windows
try:
if os.name == 'nt':
windowtitle = f"KoboldCpp {KcppVersion} Terminal"
os.system(f'title {windowtitle}')
except Exception:
pass
try:
delete_old_pyinstaller() #perform some basic cleanup of old temporary directories
except Exception as e:
print(f"Error cleaning up orphaned pyinstaller dirs: {e}")
if args.unpack:
unpack_to_dir(args.unpack)
return
if args.analyze:
analyze_gguf_model_wrapper(args.analyze)
return
if args.exportconfig and args.exportconfig!="":
save_config_cli(args.exportconfig,False)
return
if args.exporttemplate and args.exporttemplate!="":
save_config_cli(args.exporttemplate,True)
return
if args.config and len(args.config)==1: #handle initial config loading for launch
cfgname = args.config[0]
if isinstance(cfgname, str):
dlfile = download_model_from_url(cfgname,[".kcpps",".kcppt"])
if dlfile:
cfgname = dlfile
if isinstance(cfgname, str) and os.path.exists(cfgname):
load_config_cli(cfgname)
elif args.ignoremissing:
print("Ignoring missing kcpp config file...")
else:
exitcounter = 999
exit_with_error(2,"Specified kcpp config file invalid or not found.")
args = convert_invalid_args(args)
#positional handling for kcpps files (drag and drop)
if args.model_param and args.model_param!="" and (args.model_param.lower().endswith('.kcpps') or args.model_param.lower().endswith('.kcppt') or args.model_param.lower().endswith('.kcpps?download=true') or args.model_param.lower().endswith('.kcppt?download=true')):
dlfile = download_model_from_url(args.model_param,[".kcpps",".kcppt"]) # maybe download from url
if dlfile:
args.model_param = dlfile
load_config_cli(args.model_param)
# show the GUI launcher if a model was not provided
if args.showgui or (not args.model_param and not args.sdmodel and not args.whispermodel and not args.ttsmodel and not args.embeddingsmodel and not args.nomodel):
#give them a chance to pick a file
print("For command line arguments, please refer to --help")
print("***")
try:
show_gui()
except Exception as ex:
exitcounter = 999
ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\n\nYou must use the command line instead, e.g. python ./koboldcpp.py --help"
show_gui_msgbox("Warning, GUI failed to start",ermsg)
if args.skiplauncher:
print("Note: In order to use --skiplauncher, you need to specify a model with --model")
time.sleep(3)
sys.exit(2)
if args.ssl: #need to duplicate here for the tunnel
if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]):
sslvalid = True
if args.admin and not args.admindir:
args.admin = False
print("\nWARNING: Admin was set without selecting an admin directory. Admin cannot be used.\n")
if not args.admin: #run in single process mode
if args.remotetunnel and not args.prompt and not args.benchmark and not args.cli:
setuptunnel(global_memory, True if args.sdmodel else False)
kcpp_main_process(args,global_memory,using_gui_launcher)
if global_memory["input_to_exit"]:
print("===")
print("Press ENTER key to exit.", flush=True)
input()
else: # manager command queue for admin mode
with multiprocessing.Manager() as mp_manager:
global_memory = mp_manager.dict({"tunnel_url": "", "restart_target":"", "input_to_exit":False, "load_complete":False, "restart_override_config_target":""})
if args.remotetunnel and not args.prompt and not args.benchmark and not args.cli:
setuptunnel(global_memory, True if args.sdmodel else False)
# invoke the main koboldcpp process
original_args = copy.deepcopy(args)
kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": using_gui_launcher})
kcpp_instance.daemon = True
kcpp_instance.start()
fault_recovery_mode = False #if a config reload fails, recover back to old settings
while True: # keep the manager alive
try:
restart_target = ""
restart_override_config_target = ""
if not kcpp_instance or not kcpp_instance.is_alive():
if fault_recovery_mode:
#attempt to recover
print("Attempting to recover to safe mode, launching known-good config...")
fault_recovery_mode = False
args = copy.deepcopy(original_args) #restore known good original launcher args
if kcpp_instance:
kcpp_instance.terminate()
kcpp_instance.join(timeout=10) # Ensure process is stopped
kcpp_instance = None
kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": False})
kcpp_instance.daemon = True
kcpp_instance.start()
global_memory["restart_target"] = ""
global_memory["restart_override_config_target"] = ""
time.sleep(3)
else:
break # kill the program
if fault_recovery_mode and global_memory["load_complete"]:
fault_recovery_mode = False
restart_target = global_memory["restart_target"]
restart_override_config_target = global_memory["restart_override_config_target"]
if restart_target!="":
overridetxt = ("" if not restart_override_config_target else f" with override config {restart_override_config_target}")
print(f"Reloading new model/config: {restart_target}{overridetxt}")
global_memory["restart_target"] = ""
global_memory["restart_override_config_target"] = ""
time.sleep(0.5) #sleep for 0.5s then restart
if args.admin and args.admindir:
dirpath = os.path.abspath(args.admindir)
targetfilepath = os.path.join(dirpath, restart_target)
targetfilepath2 = os.path.join(dirpath, restart_override_config_target)
if (os.path.exists(targetfilepath) or restart_target=="unload_model") and (restart_override_config_target=="" or os.path.exists(targetfilepath2)):
print("Terminating old process...")
global_memory["load_complete"] = False
kcpp_instance.terminate()
kcpp_instance.join(timeout=10) # Ensure process is stopped
kcpp_instance = None
print("Restarting KoboldCpp...")
fault_recovery_mode = True
if restart_target=="unload_model":
reload_from_new_args(vars(default_args))
args.model_param = None
args.model = None
args.nomodel = True
elif targetfilepath.endswith(".gguf") and restart_override_config_target=="":
reload_from_new_args(vars(default_args))
args.model_param = targetfilepath
elif targetfilepath.endswith(".gguf") and restart_override_config_target!="":
reload_new_config(targetfilepath2)
args.model_param = targetfilepath
else:
reload_new_config(targetfilepath)
kcpp_instance = multiprocessing.Process(target=kcpp_main_process,kwargs={"launch_args": args, "g_memory": global_memory, "gui_launcher": False})
kcpp_instance.daemon = True
kcpp_instance.start()
global_memory["restart_target"] = ""
global_memory["restart_override_config_target"] = ""
time.sleep(3)
else:
time.sleep(0.2)
except (KeyboardInterrupt,SystemExit):
break
if global_memory["input_to_exit"]:
print("===")
print("Press ENTER key to exit.", flush=True)
input()
def kcpp_main_process(launch_args, g_memory=None, gui_launcher=False):
global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui, start_time, exitcounter, global_memory, using_gui_launcher
global libname, args, friendlymodelname, friendlysdmodelname, fullsdmodelpath, password, fullwhispermodelpath, ttsmodelpath, embeddingsmodelpath, friendlyembeddingsmodelname, has_audio_support, has_vision_support
start_server = True
args = launch_args
global_memory = g_memory
using_gui_launcher = gui_launcher
start_time = time.time()
if args.model_param and (args.prompt and not args.cli) and not args.benchmark and not (args.debugmode >= 1):
suppress_stdout()
if args.model_param and (args.benchmark or args.prompt or args.cli):
start_server = False
#try to read story if provided
if args.preloadstory:
global preloaded_story
canload = False
if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory):
print(f"Preloading saved story {args.preloadstory} into server...")
with open(args.preloadstory, mode='rb') as f:
preloaded_story = f.read()
canload = True
elif isinstance(args.preloadstory, str):
print("Preloading saved story as JSON into server...")
try:
import ast
parsed = ast.literal_eval(args.preloadstory)
preloaded_story = json.dumps(parsed).encode()
canload = True
except Exception as ex:
print(ex)
elif isinstance(args.preloadstory, dict):
try:
preloaded_story = json.dumps(args.preloadstory).encode()
canload = True
except Exception as ex:
print(ex)
if canload:
print("Saved story preloaded.")
else:
print("Warning: Saved story file invalid or not found. No story will be preloaded into server.")
# try to read chat completions adapter
if args.chatcompletionsadapter:
global chatcompl_adapter, chatcompl_adapter_list
ccadapter_path = None
canload = False
adapt_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'kcpp_adapters')
adapt_dir = adapt_dir if os.path.isdir(adapt_dir) else None
if isinstance(args.chatcompletionsadapter, str) and os.path.exists(args.chatcompletionsadapter):
ccadapter_path = os.path.abspath(args.chatcompletionsadapter)
elif isinstance(args.chatcompletionsadapter, str) and adapt_dir:
filename = args.chatcompletionsadapter
if filename.lower().strip()=="autoguess":
filename = "AutoGuess"
if not filename.endswith(".json"):
filename += ".json"
#strip to just the filename
filename = os.path.basename(filename)
premade_adapt_path = os.path.join(adapt_dir,filename)
if premade_adapt_path and os.path.exists(premade_adapt_path):
ccadapter_path = os.path.abspath(premade_adapt_path)
if ccadapter_path:
print(f"Loading Chat Completions Adapter: {ccadapter_path}")
with open(ccadapter_path, 'r', encoding='utf-8', errors='replace') as f:
chatcompl_adapter = json.load(f)
canload = True
else:
if isinstance(args.chatcompletionsadapter, str) and args.chatcompletionsadapter!="":
try:
import ast
parsed = ast.literal_eval(args.chatcompletionsadapter)
chatcompl_adapter = json.loads(json.dumps(parsed))
canload = True
except Exception as ex:
print(ex)
elif isinstance(args.chatcompletionsadapter, dict):
try:
chatcompl_adapter = json.loads(json.dumps(args.chatcompletionsadapter))
canload = True
except Exception as ex:
print(ex)
if canload:
print("Chat Completions Adapter Loaded")
else:
print("Warning: Chat Completions Adapter invalid or not found.")
if (chatcompl_adapter is not None and isinstance(chatcompl_adapter, list)):
chatcompl_adapter_list = chatcompl_adapter
chatcompl_adapter = None
# handle model downloads if needed
if args.model_param and args.model_param!="":
dlfile = download_model_from_url(args.model_param,[".gguf",".bin", ".ggml"],min_file_size=500000,handle_multipart=True)
if dlfile:
args.model_param = dlfile
if args.model and isinstance(args.model, list) and len(args.model)>1: #handle multi file downloading
for extramodel in args.model[1:]:
download_model_from_url(extramodel,[".gguf",".bin", ".ggml"],min_file_size=500000)
if args.sdmodel and args.sdmodel!="":
dlfile = download_model_from_url(args.sdmodel,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdmodel = dlfile
if args.sdt5xxl and args.sdt5xxl!="":
dlfile = download_model_from_url(args.sdt5xxl,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdt5xxl = dlfile
if args.sdclipl and args.sdclipl!="":
dlfile = download_model_from_url(args.sdclipl,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdclipl = dlfile
if args.sdclipg and args.sdclipg!="":
dlfile = download_model_from_url(args.sdclipg,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdclipg = dlfile
if args.sdphotomaker and args.sdphotomaker!="":
dlfile = download_model_from_url(args.sdphotomaker,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdphotomaker = dlfile
if args.sdvae and args.sdvae!="":
dlfile = download_model_from_url(args.sdvae,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdvae = dlfile
if args.sdlora and args.sdlora!="":
dlfile = download_model_from_url(args.sdlora,[".gguf",".safetensors"],min_file_size=500000)
if dlfile:
args.sdlora = dlfile
if args.mmproj and args.mmproj!="":
dlfile = download_model_from_url(args.mmproj,[".gguf"],min_file_size=500000)
if dlfile:
args.mmproj = dlfile
if args.whispermodel and args.whispermodel!="":
dlfile = download_model_from_url(args.whispermodel,[".gguf",".bin"],min_file_size=500000)
if dlfile:
args.whispermodel = dlfile
if args.draftmodel and args.draftmodel!="":
dlfile = download_model_from_url(args.draftmodel,[".gguf"],min_file_size=500000)
if dlfile:
args.draftmodel = dlfile
if args.ttsmodel and args.ttsmodel!="":
dlfile = download_model_from_url(args.ttsmodel,[".gguf"],min_file_size=500000)
if dlfile:
args.ttsmodel = dlfile
if args.ttswavtokenizer and args.ttswavtokenizer!="":
dlfile = download_model_from_url(args.ttswavtokenizer,[".gguf"],min_file_size=500000)
if dlfile:
args.ttswavtokenizer = dlfile
if args.embeddingsmodel and args.embeddingsmodel!="":
dlfile = download_model_from_url(args.embeddingsmodel,[".gguf"],min_file_size=500000)
if dlfile:
args.embeddingsmodel = dlfile
# sanitize and replace the default vanity name. remember me....
if args.model_param and args.model_param!="":
newmdldisplayname = os.path.basename(args.model_param)
newmdldisplayname = os.path.splitext(newmdldisplayname)[0]
friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname)
# horde worker settings
global maxhordelen, maxhordectx, showdebug, has_multiplayer, savedata_obj
if args.hordemodelname and args.hordemodelname!="":
friendlymodelname = args.hordemodelname
if args.debugmode == 1:
friendlymodelname = "debug-" + friendlymodelname
if not friendlymodelname.startswith("koboldcpp/"):
friendlymodelname = "koboldcpp/" + friendlymodelname
if (args.hordemodelname and args.hordemodelname!="") or (args.hordeworkername and args.hordeworkername!="") or (args.hordekey and args.hordekey!=""):
if args.debugmode == 0:
args.debugmode = -1
if args.hordegenlen and args.hordegenlen > 0:
maxhordelen = int(args.hordegenlen)
if args.hordemaxctx and args.hordemaxctx >= 0:
maxhordectx = int(args.hordemaxctx)
if args.debugmode != 1:
showdebug = False
else:
showdebug = True
if args.multiplayer:
has_multiplayer = True
if args.savedatafile and isinstance(args.savedatafile, str):
filepath = os.path.abspath(args.savedatafile) # Ensure it's an absolute path
if not filepath.lower().endswith(".jsondb"):
filepath += ".jsondb"
args.savedatafile += ".jsondb"
try:
with open(filepath, 'r+', encoding='utf-8', errors='ignore') as f:
loaded = json.load(f)
savedata_obj = loaded
print(f"Loaded existing savedatafile at '{filepath}'.")
except FileNotFoundError:
try:
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, 'w+', encoding='utf-8', errors='ignore') as f:
savedata_obj = {}
print(f"File '{filepath}' did not exist. Created new savedatafile.")
json.dump(savedata_obj, f)
except Exception as e:
print(f"Failed to create savedatafile '{filepath}': {e}")
except Exception as e:
print(f"Failed to access savedatafile '{filepath}': {e}")
if args.highpriority:
print("Setting process to Higher Priority - Use Caution")
try:
import psutil
os_used = sys.platform
process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU
oldprio = process.nice()
if os.name == 'nt': # Windows (either 32-bit or 64-bit)
process.nice(psutil.REALTIME_PRIORITY_CLASS)
print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice()))
elif os_used == "linux": # linux
process.nice(psutil.IOPRIO_CLASS_RT)
print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice()))
else: # MAC OS X or other
process.nice(-18)
print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice()))
except Exception as ex:
print("Error, Could not change process priority: " + str(ex))
if args.contextsize:
global maxctx
maxctx = args.contextsize
args.defaultgenamt = max(128, min(args.defaultgenamt, 8192))
args.defaultgenamt = min(args.defaultgenamt, maxctx / 2)
if args.port_param!=defaultport:
args.port = args.port_param
if start_server and args.singleinstance and is_port_in_use(args.port):
try:
print(f"Warning: Port {args.port} already appears to be in use by another program.")
print(f"Attempting to request shutdown of previous instance on port {args.port}...")
shutdownreq = make_url_request(f'http://localhost:{args.port}/api/extra/shutdown',{},timeout=5)
shutdownok = (shutdownreq and "success" in shutdownreq and shutdownreq["success"] is True)
time.sleep(2)
print("Shutdown existing successful!" if shutdownok else "Shutdown existing failed!")
time.sleep(1)
except Exception:
pass
if args.nocertify:
import ssl
global nocertify
nocertify = True
ssl._create_default_https_context = ssl._create_unverified_context
if args.gpulayers:
shouldavoidgpu = False
if args.usecpu and sys.platform!="darwin":
shouldavoidgpu = True
if args.gpulayers and args.gpulayers>0:
print("WARNING: GPU layers is set, but a GPU backend was not selected! GPU will not be used!")
args.gpulayers = 0
elif args.gpulayers==-1 and sys.platform=="darwin" and args.model_param and os.path.exists(args.model_param):
print("MacOS detected: Auto GPU layers set to maximum")
args.gpulayers = 200
elif not shouldavoidgpu and args.model_param and os.path.exists(args.model_param):
if (args.usecuda is None) and (args.usevulkan is None) and (args.useclblast is None):
print("No GPU or CPU backend was selected. Trying to assign one for you automatically...")
auto_set_backend_cli()
if MaxMemory[0] == 0: #try to get gpu vram for cuda if not picked yet
fetch_gpu_properties(False,True,True)
pass
if args.gpulayers==-1:
if MaxMemory[0] > 0 and (not args.usecpu) and ((args.usecuda is not None) or (args.usevulkan is not None) or (args.useclblast is not None) or sys.platform=="darwin"):
extract_modelfile_params(args.model_param,args.sdmodel,args.whispermodel,args.mmproj,args.draftmodel,args.ttsmodel if args.ttsgpu else "",args.embeddingsmodel if args.embeddingsgpu else "")
layeramt = autoset_gpu_layers(args.contextsize,args.sdquant,args.blasbatchsize,(args.quantkv if args.flashattention else 0))
print(f"Auto Recommended GPU Layers: {layeramt}")
args.gpulayers = layeramt
else:
print("No GPU backend found, or could not automatically determine GPU layers. Please set it manually.")
args.gpulayers = 0
if args.threads <= 0:
args.threads = get_default_threads()
print(f"Auto Set Threads: {args.threads}")
print(f"System: {platform.system()} {platform.version()} {platform.machine()} {platform.processor()}")
if MaxMemory[0]>0:
print(f"Detected Available GPU Memory: {int(MaxMemory[0]/1024/1024)} MB")
else:
print("Unable to determine GPU Memory")
try:
import psutil
vmem = psutil.virtual_memory()
print(f"Detected Available RAM: {int(vmem.available/1024/1024)} MB")
except Exception:
print("Unable to determine available RAM")
init_library() # Note: if blas does not exist and is enabled, program will crash.
print("==========")
time.sleep(1)
if args.password and args.password!="":
password = args.password.strip()
#handle loading text model
if args.model_param:
if not os.path.exists(args.model_param):
if args.ignoremissing:
print(f"Ignoring missing model file: {args.model_param}")
args.model_param = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find text model file: {args.model_param}")
if args.lora and args.lora[0]!="":
if not os.path.exists(args.lora[0]):
if args.ignoremissing:
print(f"Ignoring missing lora file: {args.lora[0]}")
args.lora = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find lora file: {args.lora[0]}")
else:
args.lora[0] = os.path.abspath(args.lora[0])
if len(args.lora) > 1:
if not os.path.exists(args.lora[1]):
if args.ignoremissing:
print(f"Ignoring missing lora base: {args.lora[1]}")
args.lora = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find lora base: {args.lora[1]}")
else:
args.lora[1] = os.path.abspath(args.lora[1])
if args.mmproj and args.mmproj!="":
if not os.path.exists(args.mmproj):
if args.ignoremissing:
print(f"Ignoring missing mmproj file: {args.mmproj}")
args.mmproj = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find mmproj file: {args.mmproj}")
else:
args.mmproj = os.path.abspath(args.mmproj)
if not args.blasthreads or args.blasthreads <= 0:
args.blasthreads = args.threads
modelname = os.path.abspath(args.model_param)
print(args)
# Flush stdout for win32 issue with regards to piping in terminals,
# especially before handing over to C++ context.
print(f"==========\nLoading Text Model: {modelname}", flush=True)
if not modelname.endswith(".bin") and not modelname.endswith(".gguf"):
print("WARNING: Selected Text Model does not seem to be a GGUF file! Are you sure you picked the right file?")
loadok = load_model(modelname)
print("Load Text Model OK: " + str(loadok))
if args.mmproj and args.mmproj!="": # multimodal vision and audio support is only known at runtime
has_audio_support = handle.has_audio_support()
has_vision_support = handle.has_vision_support()
else:
has_audio_support = False
has_vision_support = False
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load text model: " + modelname)
if (chatcompl_adapter_list is not None and isinstance(chatcompl_adapter_list, list)):
# The chat completions adapter is a list that needs derivation from chat templates
# Try to derive chat completions adapter from chat template, now that we have the model loaded
if not args.nomodel and args.model_param:
ctbytes = handle.get_chat_template()
chat_template = ctypes.string_at(ctbytes).decode("UTF-8","ignore")
if chat_template != "":
for entry in chatcompl_adapter_list:
if all(s in chat_template for s in entry['search']):
print(f"Chat completion heuristic: {entry['name']}")
chatcompl_adapter = entry['adapter']
break
if chatcompl_adapter is None:
print("Chat template heuristics failed to identify chat completions format. Alpaca will be used.")
#handle loading image model
if args.sdmodel and args.sdmodel!="":
imgmodel = args.sdmodel
if not imgmodel or not os.path.exists(imgmodel):
if args.ignoremissing:
print(f"Ignoring missing img model file: {imgmodel}")
args.sdmodel = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find image model file: {imgmodel}")
else:
imglora = ""
imgvae = ""
imgt5xxl = ""
imgclipl = ""
imgclipg = ""
imgphotomaker = ""
if args.sdlora:
if os.path.exists(args.sdlora):
imglora = os.path.abspath(args.sdlora)
else:
print("Missing SD LORA model file...")
if args.sdvae:
if os.path.exists(args.sdvae):
imgvae = os.path.abspath(args.sdvae)
else:
print("Missing SD VAE model file...")
if args.sdt5xxl:
if os.path.exists(args.sdt5xxl):
imgt5xxl = os.path.abspath(args.sdt5xxl)
else:
print("Missing SD T5-XXL model file...")
if args.sdclipl:
if os.path.exists(args.sdclipl):
imgclipl = os.path.abspath(args.sdclipl)
else:
print("Missing SD Clip-L model file...")
if args.sdclipg:
if os.path.exists(args.sdclipg):
imgclipg = os.path.abspath(args.sdclipg)
else:
print("Missing SD Clip-G model file...")
if args.sdphotomaker:
if os.path.exists(args.sdphotomaker):
imgphotomaker = os.path.abspath(args.sdphotomaker)
else:
print("Missing SD Photomaker model file...")
imgmodel = os.path.abspath(imgmodel)
fullsdmodelpath = imgmodel
friendlysdmodelname = os.path.basename(imgmodel)
friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0]
friendlysdmodelname = sanitize_string(friendlysdmodelname)
loadok = sd_load_model(imgmodel,imgvae,imglora,imgt5xxl,imgclipl,imgclipg,imgphotomaker)
print("Load Image Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load image model: " + imgmodel)
#handle whisper model
if args.whispermodel and args.whispermodel!="":
whispermodel = args.whispermodel
if not whispermodel or not os.path.exists(whispermodel):
if args.ignoremissing:
print(f"Ignoring missing whisper model file: {whispermodel}")
args.whispermodel = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find whisper model file: {whispermodel}")
else:
whispermodel = os.path.abspath(whispermodel)
fullwhispermodelpath = whispermodel
loadok = whisper_load_model(whispermodel)
print("Load Whisper Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load whisper model: " + whispermodel)
#handle tts model
if args.ttsmodel and args.ttsmodel!="":
if not os.path.exists(args.ttsmodel) or (args.ttswavtokenizer and args.ttswavtokenizer!="" and not os.path.exists(args.ttswavtokenizer)):
if args.ignoremissing:
print("Ignoring missing TTS model files!")
args.ttsmodel = None
args.ttswavtokenizer = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find tts model files: {args.ttsmodel} or {args.ttswavtokenizer}")
else:
ttsmodelpath = args.ttsmodel
ttsmodelpath = os.path.abspath(ttsmodelpath)
wavtokpath = args.ttswavtokenizer
if wavtokpath:
wavtokpath = os.path.abspath(wavtokpath)
loadok = tts_load_model(ttsmodelpath,wavtokpath)
print("Load TTS Model OK: " + str(loadok))
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load TTS model!")
#handle embeddings model
if args.embeddingsmodel and args.embeddingsmodel!="":
if not os.path.exists(args.embeddingsmodel):
if args.ignoremissing:
print("Ignoring missing TTS model files!")
args.embeddingsmodel = None
else:
exitcounter = 999
exit_with_error(2,f"Cannot find embeddings model files: {args.embeddingsmodel}")
else:
embeddingsmodelpath = args.embeddingsmodel
embeddingsmodelpath = os.path.abspath(embeddingsmodelpath)
loadok = embeddings_load_model(embeddingsmodelpath)
print("Load Embeddings Model OK: " + str(loadok))
friendlyembeddingsmodelname = os.path.basename(embeddingsmodelpath)
friendlyembeddingsmodelname = os.path.splitext(friendlyembeddingsmodelname)[0]
friendlyembeddingsmodelname = sanitize_string(friendlyembeddingsmodelname)
if not loadok:
exitcounter = 999
exit_with_error(3,"Could not load Embeddings model!")
#load embedded lite
try:
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
with open(os.path.join(basepath, "klite.embd"), mode='rb') as f:
embedded_kailite = f.read()
# patch it with extra stuff
patches = [{"find":"Sorry, KoboldAI Lite requires Javascript to function.","replace":"Sorry, KoboldAI Lite requires Javascript to function.<br>You can use <a class=\"color_blueurl\" href=\"/noscript\">KoboldCpp NoScript mode</a> instead."},
{"find":"var localflag = urlParams.get('local');","replace":"var localflag = true;"},
{"find":"<p id=\"tempgtloadtxt\">Loading...</p>","replace":"<p id=\"tempgtloadtxt\">Loading...<br>(If load fails, try <a class=\"color_blueurl\" href=\"/noscript\">KoboldCpp NoScript mode</a> instead, or adding /noscript at this url.)</p>"}]
embedded_kailite = embedded_kailite.decode("UTF-8","ignore")
for p in patches:
embedded_kailite = embedded_kailite.replace(p["find"], p["replace"])
embedded_kailite = embedded_kailite.encode()
print("Embedded KoboldAI Lite loaded.")
except Exception:
print("Could not find KoboldAI Lite. Embedded KoboldAI Lite will not be available.")
try:
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f:
embedded_kcpp_docs = f.read()
print("Embedded API docs loaded.")
except Exception:
print("Could not find Embedded KoboldCpp API docs.")
try:
basepath = os.path.abspath(os.path.dirname(os.path.realpath(__file__)))
with open(os.path.join(basepath, "kcpp_sdui.embd"), mode='rb') as f:
embedded_kcpp_sdui = f.read()
if args.sdmodel:
print("Embedded SDUI loaded.")
except Exception:
print("Could not find Embedded SDUI.")
# print enabled modules
caps = get_capabilities()
enabledmlist = []
disabledmlist = []
apimlist = ["KoboldCppApi"]
if "llm" in caps and caps["llm"]:
apimlist.append("OpenAiApi")
apimlist.append("OllamaApi")
if "txt2img" in caps and caps["txt2img"]:
apimlist.append("A1111ForgeApi")
apimlist.append("ComfyUiApi")
if "transcribe" in caps and caps["transcribe"]:
apimlist.append("WhisperTranscribeApi")
if "tts" in caps and caps["tts"]:
apimlist.append("XttsApi")
apimlist.append("OpenAiSpeechApi")
enabledmlist.append("TextGeneration") if "llm" in caps and caps["llm"] else disabledmlist.append("TextGeneration")
enabledmlist.append("ImageGeneration") if "txt2img" in caps and caps["txt2img"] else disabledmlist.append("ImageGeneration")
enabledmlist.append("VoiceRecognition") if "transcribe" in caps and caps["transcribe"] else disabledmlist.append("VoiceRecognition")
enabledmlist.append("MultimodalVision") if "vision" in caps and caps["vision"] else disabledmlist.append("MultimodalVision")
enabledmlist.append("MultimodalAudio") if "audio" in caps and caps["audio"] else disabledmlist.append("MultimodalAudio")
enabledmlist.append("NetworkMultiplayer") if "multiplayer" in caps and caps["multiplayer"] else disabledmlist.append("NetworkMultiplayer")
enabledmlist.append("ApiKeyPassword") if "protected" in caps and caps["protected"] else disabledmlist.append("ApiKeyPassword")
enabledmlist.append("WebSearchProxy") if "websearch" in caps and caps["websearch"] else disabledmlist.append("WebSearchProxy")
enabledmlist.append("TextToSpeech") if "tts" in caps and caps["tts"] else disabledmlist.append("TextToSpeech")
enabledmlist.append("VectorEmbeddings") if "embeddings" in caps and caps["embeddings"] else disabledmlist.append("VectorEmbeddings")
enabledmlist.append("AdminControl") if "admin" in caps and caps["admin"]!=0 else disabledmlist.append("AdminControl")
print(f"======\nActive Modules: {' '.join(enabledmlist)}")
print(f"Inactive Modules: {' '.join(disabledmlist)}")
print(f"Enabled APIs: {' '.join(apimlist)}")
global sslvalid
if args.ssl:
if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]):
sslvalid = True
print("SSL configuration is valid and will be used.")
else:
print("Your SSL configuration is INVALID. SSL will not be used.")
endpoint_url = ""
remote_url = ""
httpsaffix = ("https" if sslvalid else "http")
if args.host=="":
endpoint_url = f"{httpsaffix}://localhost:{args.port}"
else:
endpoint_url = f"{httpsaffix}://{args.host}:{args.port}"
if start_server:
if not args.remotetunnel:
print(f"Starting Kobold API on port {args.port} at {endpoint_url}/api/")
print(f"Starting OpenAI Compatible API on port {args.port} at {endpoint_url}/v1/")
if args.sdmodel:
print(f"StableUI is available at {endpoint_url}/sdui/")
elif global_memory:
val = global_memory["tunnel_url"]
if val:
endpoint_url = val
remote_url = val
print(f"Your remote Kobold API can be found at {endpoint_url}/api")
print(f"Your remote OpenAI Compatible API can be found at {endpoint_url}/v1")
if args.sdmodel:
print(f"StableUI is available at {endpoint_url}/sdui/")
global_memory["load_complete"] = True
if args.launch:
def launch_browser_thread():
LaunchWebbrowser(endpoint_url,"--launch was set, but could not launch web browser automatically.")
browser_thread = threading.Timer(2, launch_browser_thread) #2 second delay
browser_thread.start()
if args.hordekey and args.hordekey!="":
if args.hordeworkername and args.hordeworkername!="":
horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordekey,args.hordeworkername))
horde_thread.daemon = True
horde_thread.start()
else:
print("Horde worker could not start. You need to specify a horde worker name with --hordeworkername")
#if post-ready script specified, execute it
if args.onready:
def onready_subprocess():
print("Starting Post-Load subprocess...")
subprocess.run(args.onready[0], shell=True)
timer_thread = threading.Timer(1, onready_subprocess) #1 second delay
timer_thread.start()
if not start_server:
if args.cli:
print("\n===\nNow running KoboldCpp in Interactive Terminal Chat mode.\nType /quit or /exit to end session.\n")
lastturns = []
if args.prompt and args.prompt!="":
lastturns.append({"role":"system","content":args.prompt})
print(f"System Prompt:\n{args.prompt}\n")
while True:
lastuserinput = input("> ")
if lastuserinput=="/quit" or lastuserinput=="/exit":
break
if not lastuserinput:
continue
lastturns.append({"role":"user","content":lastuserinput})
payload = {"messages":lastturns,"rep_pen":1.07,"temperature":0.8}
payload = transform_genparams(payload, 4) #to chat completions
if args.debugmode < 1:
suppress_stdout()
genout = generate(genparams=payload)
if args.debugmode < 1:
restore_stdout()
result = (genout["text"] if "text" in genout else "")
if result:
lastturns.append({"role":"assistant","content":result})
print(result.strip() + "\n", flush=True)
else:
print("(No Response Received)\n", flush=True)
else:
save_to_file = (args.benchmark and args.benchmark!="stdout" and args.benchmark!="")
benchmaxctx = maxctx
benchlen = args.promptlimit
benchtemp = 0.1
benchtopk = 1
benchreppen = 1
benchbaneos = True
benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0])
benchprompt = ""
if args.prompt:
benchprompt = args.prompt
benchtopk = 100
benchreppen = 1.07
benchtemp = 0.8
if not args.benchmark:
benchbaneos = False
if args.benchmark:
if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000:
print("\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.")
save_to_file = False
if save_to_file:
print(f"\nRunning benchmark (Save to File: {args.benchmark})...")
else:
print("\nRunning benchmark (Not Saved)...")
if benchprompt=="":
benchprompt = " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
for i in range(0,14): #generate massive prompt
benchprompt += benchprompt
genp = {
"prompt":benchprompt,
"max_length":benchlen,
"max_context_length":benchmaxctx,
"temperature":benchtemp,
"top_k":benchtopk,
"rep_pen":benchreppen,
"ban_eos_token":benchbaneos
}
genout = generate(genparams=genp)
result = genout['text']
if args.prompt and not args.benchmark:
restore_stdout()
print(result)
if args.benchmark:
result = (result[:8] if len(result)>8 else "") if not args.prompt else result
t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001
t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001
s_pp = float(benchmaxctx-benchlen)/t_pp
s_gen = float(benchlen)/t_gen
datetimestamp = datetime.now(timezone.utc)
benchflagstr = f"NoAVX2={args.noavx2} Threads={args.threads} HighPriority={args.highpriority} Cuda_Args={args.usecuda} Tensor_Split={args.tensor_split} BlasThreads={args.blasthreads} BlasBatchSize={args.blasbatchsize} FlashAttention={args.flashattention} KvCache={args.quantkv}"
print(f"\nBenchmark Completed - v{KcppVersion} Results:\n======")
print(f"Flags: {benchflagstr}")
print(f"Timestamp: {datetimestamp}")
print(f"Backend: {libname}")
print(f"Layers: {args.gpulayers}")
print(f"Model: {benchmodel}")
print(f"MaxCtx: {benchmaxctx}")
print(f"GenAmount: {benchlen}\n-----")
print(f"ProcessingTime: {t_pp:.3f}s")
print(f"ProcessingSpeed: {s_pp:.2f}T/s")
print(f"GenerationTime: {t_gen:.3f}s")
print(f"GenerationSpeed: {s_gen:.2f}T/s")
print(f"TotalTime: {(t_pp+t_gen):.3f}s")
print(f"Output: {result}\n-----")
if save_to_file:
try:
with open(args.benchmark, "a") as file:
file.seek(0, 2)
if file.tell() == 0: #empty file
file.write("Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Output,Flags")
file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{result},\"{benchflagstr}\"")
except Exception as e:
print(f"Error writing benchmark to file: {e}")
if global_memory and using_gui_launcher and not save_to_file:
global_memory["input_to_exit"] = True
time.sleep(1)
if start_server:
if args.remotetunnel:
if remote_url:
print(f"======\nYour remote tunnel is ready, please connect to {remote_url}", flush=True)
else:
# Flush stdout for previous win32 issue so the client can see output.
print(f"======\nPlease connect to custom endpoint at {endpoint_url}", flush=True)
asyncio.run(RunServerMultiThreaded(args.host, args.port, KcppServerRequestHandler))
else:
# Flush stdout for previous win32 issue so the client can see output.
if not args.prompt or args.benchmark or args.cli:
print("Server was not started, main function complete. Idling.", flush=True)
if __name__ == '__main__':
multiprocessing.freeze_support()
def check_range(value_type, min_value, max_value):
def range_checker(arg: str):
try:
f = value_type(arg)
except ValueError:
raise argparse.ArgumentTypeError(f'must be a valid {value_type}')
if f < min_value or f > max_value:
raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]')
return f
return range_checker
parser = argparse.ArgumentParser(description=f'KoboldCpp Server - Version {KcppVersion}')
modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
modelgroup.add_argument("--model", metavar=('[filenames]'), help="Model file to load. Accepts multiple values if they are URLs.", type=str, nargs='+', default=[])
modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?")
portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args
portgroup.add_argument("--port", metavar=('[portnumber]'), help=f"Port to listen on. (Defaults to {defaultport})", default=defaultport, type=int, action='store')
portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store')
parser.add_argument("--host", metavar=('[ipaddr]'), help="Host IP to listen on. If this flag is not set, all routable interfaces are accepted.", default="")
parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true')
parser.add_argument("--config", metavar=('[filename]'), help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1)
parser.add_argument("--threads", metavar=('[threads]'), help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=get_default_threads())
compatgroup = parser.add_mutually_exclusive_group()
compatgroup.add_argument("--usecuda", "--usecublas", "--usehipblas", help="Use CUDA for GPU Acceleration. Requires CUDA. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq|nommq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'all', 'mmq', 'nommq', 'rowsplit'])
compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify one or more GPU Device ID (e.g. --usevulkan 0), leave blank to autodetect.", metavar=('[Device IDs]'), nargs='*', type=int, default=None)
compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2)
compatgroup.add_argument("--usecpu", help="Do not use any GPU acceleration (CPU Only)", action='store_true')
parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 8192).",metavar=('[256 to 262144]'), type=check_range(int,256,262144), default=8192)
parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU. Set to -1 to try autodetect, set to 0 to disable GPU offload.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=-1)
parser.add_argument("--tensor_split", "--tensorsplit", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+')
#more advanced params
advparser = parser.add_argument_group('Advanced Commands')
advparser.add_argument("--version", help="Prints version and exits.", action='store_true')
advparser.add_argument("--analyze", metavar=('[filename]'), help="Reads the metadata, weight types and tensor names in any GGUF file.", default="")
advparser.add_argument("--maingpu", help="Only used in a multi-gpu setup. Sets the index of the main GPU that will be used.",metavar=('[Device ID]'), type=int, default=-1)
advparser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,16,32,64,128,256,512,1024,2048,4096], default=512)
advparser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0)
advparser.add_argument("--lora", help="GGUF models only, applies a lora file on top of model.", metavar=('[lora_filename]'), nargs='+')
advparser.add_argument("--loramult", metavar=('[amount]'), help="Multiplier for the Text LORA model to be applied.", type=float, default=1.0)
advparser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true')
advparser.add_argument("--nofastforward", help="If set, do not attempt to fast forward GGUF context (always reprocess). Will also enable noshift", action='store_true')
advparser.add_argument("--useswa", help="If set, allows Sliding Window Attention (SWA) KV Cache, which saves memory but cannot be used with context shifting.", action='store_true')
advparser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+')
advparser.add_argument("--overridenativecontext", help="Overrides the native trained context of the loaded model with a custom value to be used for Rope scaling.",metavar=('[trained context]'), type=int, default=0)
compatgroup3 = advparser.add_mutually_exclusive_group()
compatgroup3.add_argument("--usemmap", help="If set, uses mmap to load model.", action='store_true')
advparser.add_argument("--usemlock", help="Enables mlock, preventing the RAM used to load the model from being paged out. Not usually recommended.", action='store_true')
advparser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true')
advparser.add_argument("--failsafe", help="Use failsafe mode, extremely slow CPU only compatibility mode that should work on all devices. Can be combined with useclblast if your device supports OpenCL.", action='store_true')
advparser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0)
advparser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1)
advparser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None)
advparser.add_argument("--prompt", metavar=('[prompt]'), help="Passing a prompt string triggers a direct inference, loading the model, outputs the response to stdout and exits. Can be used alone or with benchmark.", type=str, default="")
advparser.add_argument("--cli", help="Does not launch KoboldCpp HTTP server. Instead, enables KoboldCpp from the command line, accepting interactive console input and displaying responses to the terminal.", action='store_true')
advparser.add_argument("--promptlimit", help="Sets the maximum number of generated tokens, usable only with --prompt or --benchmark",metavar=('[token limit]'), type=int, default=100)
advparser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=1)
advparser.add_argument("--multiplayer", help="Hosts a shared multiplayer session that others can join.", action='store_true')
advparser.add_argument("--websearch", help="Enable the local search engine proxy so Web Searches can be done.", action='store_true')
advparser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true')
advparser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true')
advparser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true')
advparser.add_argument("--preloadstory", metavar=('[savefile]'), help="Configures a prepared story json save file to be hosted on the server, which frontends (such as KoboldAI Lite) can access over the API.", default="")
advparser.add_argument("--savedatafile", metavar=('[savefile]'), help="If enabled, creates or opens a persistent database file on the server, that allows users to save and load their data remotely. A new file is created if it does not exist.", default="")
advparser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running a horde worker.", action='store_true')
advparser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+')
advparser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true')
advparser.add_argument("--mmproj", metavar=('[filename]'), help="Select a multimodal projector file for vision models like LLaVA.", default="")
advparser.add_argument("--mmprojcpu", help="Force CLIP for Vision mmproj always on CPU.", action='store_true')
advparser.add_argument("--visionmaxres", metavar=('[max px]'), help="Clamp MMProj vision maximum allowed resolution. Allowed values are between 512 to 2048 px (default 1024).", type=int, default=default_visionmaxres)
advparser.add_argument("--draftmodel", metavar=('[filename]'), help="Load a small draft model for speculative decoding. It will be fully offloaded. Vocab must match the main model.", default="")
advparser.add_argument("--draftamount", metavar=('[tokens]'), help="How many tokens to draft per chunk before verifying results", type=int, default=default_draft_amount)
advparser.add_argument("--draftgpulayers", metavar=('[layers]'), help="How many layers to offload to GPU for the draft model (default=full offload)", type=int, default=999)
advparser.add_argument("--draftgpusplit", help="GPU layer distribution ratio for draft model (default=same as main). Only works if multi-GPUs selected for MAIN model and tensor_split is set!", metavar=('[Ratios]'), type=float, nargs='+')
advparser.add_argument("--password", metavar=('[API key]'), help="Enter a password required to use this instance. This key will be required for all text endpoints. Image endpoints are not secured.", default=None)
advparser.add_argument("--ignoremissing", help="Ignores all missing non-essential files, just skipping them instead.", action='store_true')
advparser.add_argument("--chatcompletionsadapter", metavar=('[filename]'), help="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.", default="AutoGuess")
advparser.add_argument("--flashattention", help="Enables flash attention.", action='store_true')
advparser.add_argument("--quantkv", help="Sets the KV cache data type quantization, 0=f16, 1=q8, 2=q4. Requires Flash Attention for full effect, otherwise only K cache is quantized.",metavar=('[quantization level 0/1/2]'), type=int, choices=[0,1,2], default=0)
advparser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0)
advparser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently. Outdated. Not recommended.", action='store_true')
advparser.add_argument("--unpack", help="Extracts the file contents of the KoboldCpp binary into a target directory.", metavar=('destination'), type=str, default="")
advparser.add_argument("--exportconfig", help="Exports the current selected arguments as a .kcpps settings file", metavar=('[filename]'), type=str, default="")
advparser.add_argument("--exporttemplate", help="Exports the current selected arguments as a .kcppt template file", metavar=('[filename]'), type=str, default="")
advparser.add_argument("--nomodel", help="Allows you to launch the GUI alone, without selecting any model.", action='store_true')
advparser.add_argument("--moeexperts", metavar=('[num of experts]'), help="How many experts to use for MoE models (default=follow gguf)", type=int, default=-1)
advparser.add_argument("--moecpu", metavar=('[layers affected]'), help="Keep the Mixture of Experts (MoE) weights of the first N layers in the CPU. If no value is provided, applies to all layers.", nargs='?', const=999, type=int, default=0)
advparser.add_argument("--defaultgenamt", help="How many tokens to generate by default, if not specified. Must be smaller than context size. Usually, your frontend GUI will override this.", type=check_range(int,64,8192), default=640)
advparser.add_argument("--nobostoken", help="Prevents BOS token from being added at the start of any prompt. Usually NOT recommended for most models.", action='store_true')
advparser.add_argument("--enableguidance", help="Enables the use of Classifier-Free-Guidance, which allows the use of negative prompts. Has performance and memory impact.", action='store_true')
advparser.add_argument("--maxrequestsize", metavar=('[size in MB]'), help="Specify a max request payload size. Any requests to the server larger than this size will be dropped. Do not change if unsure.", type=int, default=32)
advparser.add_argument("--overridekv", metavar=('[name=type:value]'), help="Advanced option to override a metadata by key, same as in llama.cpp. Mainly for debugging, not intended for general use. Types: int, float, bool, str", default="")
advparser.add_argument("--overridetensors", metavar=('[tensor name pattern=buffer type]'), help="Advanced option to override tensor backend selection, same as in llama.cpp.", default="")
compatgroup2 = parser.add_mutually_exclusive_group()
compatgroup2.add_argument("--showgui", help="Always show the GUI instead of launching the model right away when loading settings from a .kcpps file.", action='store_true')
compatgroup2.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher. Overrides showgui.", action='store_true')
advparser.add_argument("--singleinstance", help="Allows this KoboldCpp instance to be shut down by any new instance requesting the same port, preventing duplicate servers from clashing on a port.", action='store_true')
hordeparsergroup = parser.add_argument_group('Horde Worker Commands')
hordeparsergroup.add_argument("--hordemodelname", metavar=('[name]'), help="Sets your AI Horde display model name.", default="")
hordeparsergroup.add_argument("--hordeworkername", metavar=('[name]'), help="Sets your AI Horde worker name.", default="")
hordeparsergroup.add_argument("--hordekey", metavar=('[apikey]'), help="Sets your AI Horde API key.", default="")
hordeparsergroup.add_argument("--hordemaxctx", metavar=('[amount]'), help="Sets the maximum context length your worker will accept from an AI Horde job. If 0, matches main context limit.", type=int, default=0)
hordeparsergroup.add_argument("--hordegenlen", metavar=('[amount]'), help="Sets the maximum number of tokens your worker will generate from an AI horde job.", type=int, default=0)
sdparsergroup = parser.add_argument_group('Image Generation Commands')
sdparsergroup.add_argument("--sdmodel", metavar=('[filename]'), help="Specify an image generation safetensors or gguf model to enable image generation.", default="")
sdparsergroup.add_argument("--sdthreads", metavar=('[threads]'), help="Use a different number of threads for image generation if specified. Otherwise, has the same value as --threads.", type=int, default=0)
sdparsergroup.add_argument("--sdclamped", metavar=('[maxres]'), help="If specified, limit generation steps and image size for shared use. Accepts an extra optional parameter that indicates maximum resolution (eg. 768 clamps to 768x768, min 512px, disabled if 0).", nargs='?', const=512, type=int, default=0)
sdparsergroup.add_argument("--sdclampedsoft", metavar=('[maxres]'), help="If specified, limit max image size to curb memory usage. Similar to --sdclamped, but less strict, allows trade-offs between width and height (e.g. 640 would allow 640x640, 512x768 and 768x512 images). Total resolution cannot exceed 1MP.", type=int, default=0)
sdparsergroup.add_argument("--sdt5xxl", metavar=('[filename]'), help="Specify a T5-XXL safetensors model for use in SD3 or Flux. Leave blank if prebaked or unused.", default="")
sdparsergroup.add_argument("--sdclipl", metavar=('[filename]'), help="Specify a Clip-L safetensors model for use in SD3 or Flux. Leave blank if prebaked or unused.", default="")
sdparsergroup.add_argument("--sdclipg", metavar=('[filename]'), help="Specify a Clip-G safetensors model for use in SD3. Leave blank if prebaked or unused.", default="")
sdparsergroup.add_argument("--sdphotomaker", metavar=('[filename]'), help="PhotoMaker is a model that allows face cloning. Specify a PhotoMaker safetensors model which will be applied replacing img2img. SDXL models only. Leave blank if unused.", default="")
sdparsergroup.add_argument("--sdflashattention", help="Enables Flash Attention for image generation.", action='store_true')
sdparsergroup.add_argument("--sdconvdirect", help="Enables Conv2D Direct. May improve performance or reduce memory usage. Might crash if not supported by the backend. Can be 'off' (default) to disable, 'full' to turn it on for all operations, or 'vaeonly' to enable only for the VAE.", type=sd_convdirect_option, choices=sd_convdirect_choices, default=sd_convdirect_choices[0])
sdparsergroupvae = sdparsergroup.add_mutually_exclusive_group()
sdparsergroupvae.add_argument("--sdvae", metavar=('[filename]'), help="Specify an image generation safetensors VAE which replaces the one in the model.", default="")
sdparsergroupvae.add_argument("--sdvaeauto", help="Uses a built-in VAE via TAE SD, which is very fast, and fixed bad VAEs.", action='store_true')
sdparsergrouplora = sdparsergroup.add_mutually_exclusive_group()
sdparsergrouplora.add_argument("--sdquant", metavar=('[quantization level 0/1/2]'), help="If specified, loads the model quantized to save memory. 0=off, 1=q8, 2=q4", type=int, choices=[0,1,2], nargs="?", const=2, default=0)
sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify an image generation LORA safetensors model to be applied.", default="")
sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the image LORA model to be applied.", type=float, default=1.0)
sdparsergroup.add_argument("--sdtiledvae", metavar=('[maxres]'), help="Adjust the automatic VAE tiling trigger for images above this size. 0 disables vae tiling.", type=int, default=default_vae_tile_threshold)
whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands')
whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper .bin model to enable Speech-To-Text transcription.", default="")
ttsparsergroup = parser.add_argument_group('TTS Narration Commands')
ttsparsergroup.add_argument("--ttsmodel", metavar=('[filename]'), help="Specify the TTS Text-To-Speech GGUF model.", default="")
ttsparsergroup.add_argument("--ttswavtokenizer", metavar=('[filename]'), help="Specify the WavTokenizer GGUF model.", default="")
ttsparsergroup.add_argument("--ttsgpu", help="Use the GPU for TTS.", action='store_true')
ttsparsergroup.add_argument("--ttsmaxlen", help="Limit number of audio tokens generated with TTS.", type=int, default=default_ttsmaxlen)
ttsparsergroup.add_argument("--ttsthreads", metavar=('[threads]'), help="Use a different number of threads for TTS if specified. Otherwise, has the same value as --threads.", type=int, default=0)
embeddingsparsergroup = parser.add_argument_group('Embeddings Model Commands')
embeddingsparsergroup.add_argument("--embeddingsmodel", metavar=('[filename]'), help="Specify an embeddings model to be loaded for generating embedding vectors.", default="")
embeddingsparsergroup.add_argument("--embeddingsmaxctx", metavar=('[amount]'), help="Overrides the default maximum supported context of an embeddings model (defaults to trained context).", type=int, default=0)
embeddingsparsergroup.add_argument("--embeddingsgpu", help="Attempts to offload layers of the embeddings model to GPU. Usually not needed.", action='store_true')
admingroup = parser.add_argument_group('Administration Commands')
admingroup.add_argument("--admin", help="Enables admin mode, allowing you to unload and reload different configurations or models.", action='store_true')
admingroup.add_argument("--adminpassword", metavar=('[password]'), help="Require a password to access admin functions. You are strongly advised to use one for publically accessible instances!", default=None)
admingroup.add_argument("--admindir", metavar=('[directory]'), help="Specify a directory to look for .kcpps configs in, which can be used to swap models.", default="")
deprecatedgroup = parser.add_argument_group('Deprecated Commands, DO NOT USE!')
deprecatedgroup.add_argument("--hordeconfig", help=argparse.SUPPRESS, nargs='+')
deprecatedgroup.add_argument("--sdconfig", help=argparse.SUPPRESS, nargs='+')
compatgroup.add_argument("--noblas", help=argparse.SUPPRESS, action='store_true')
compatgroup3.add_argument("--nommap", help=argparse.SUPPRESS, action='store_true')
deprecatedgroup.add_argument("--sdnotile", help=argparse.SUPPRESS, action='store_true') # legacy option, see sdtiledvae
main(launch_args=parser.parse_args(),default_args=parser.parse_args([]))