koboldcpp/otherarch/otherarch.h

331 lines
8.1 KiB
C++

#pragma once
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "utils.h"
#include "model_adapter.h"
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t f16 = 1;
};
struct gptj_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
// attention
struct ggml_tensor * c_attn_q_proj_w;
struct ggml_tensor * c_attn_k_proj_w;
struct ggml_tensor * c_attn_v_proj_w;
struct ggml_tensor * c_attn_proj_w;
// ff
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_tensor * c_mlp_proj_b;
};
struct gptj_layer_v1 {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
// attention
struct ggml_v1_tensor * c_attn_q_proj_w;
struct ggml_v1_tensor * c_attn_k_proj_w;
struct ggml_v1_tensor * c_attn_v_proj_w;
struct ggml_v1_tensor * c_attn_proj_w;
// ff
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w;
struct ggml_v1_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gptj_model_v1 {
gptj_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * lmh_g; // language model head
struct ggml_v1_tensor * lmh_b; // language model bias
std::vector<gptj_layer_v1> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * lmh_g; // language model head
struct ggml_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t f16 = 1;
};
struct gpt2_v1_layer {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
struct ggml_v1_tensor * ln_2_g;
struct ggml_v1_tensor * ln_2_b;
// attention
struct ggml_v1_tensor * c_attn_attn_w;
struct ggml_v1_tensor * c_attn_attn_b;
struct ggml_v1_tensor * c_attn_proj_w;
struct ggml_v1_tensor * c_attn_proj_b;
// mlp
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w_trans; // transposed for efficiency
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gpt2_v1_model {
gpt2_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * wpe; // token embedding
std::vector<gpt2_v1_layer> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gpt2_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// mlp
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// default hparams (StableLM 3B)
struct stablelm_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 4096;
int32_t n_embd = 4096;
int32_t n_head = 32;
int32_t n_layer = 16;
int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
int32_t ftype = 1;
};
struct stablelm_layer {
// pre normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// post normalization
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// ff
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct stablelm_model {
stablelm_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * lmh_g; // language model head
//struct ggml_tensor * lmh_b; // language model bias
std::vector<stablelm_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
struct rwkv_layer {
struct ggml_rwkv_tensor * ln1_weight;
struct ggml_rwkv_tensor * ln1_bias;
// RWKV, also called "attention" by the author.
struct ggml_rwkv_tensor * att_time_mix_k;
struct ggml_rwkv_tensor * att_time_mix_v;
struct ggml_rwkv_tensor * att_time_mix_r;
struct ggml_rwkv_tensor * att_time_first;
struct ggml_rwkv_tensor * att_time_decay;
struct ggml_rwkv_tensor * att_key;
struct ggml_rwkv_tensor * att_value;
struct ggml_rwkv_tensor * att_receptance;
struct ggml_rwkv_tensor * att_output;
struct ggml_rwkv_tensor * ln2_weight;
struct ggml_rwkv_tensor * ln2_bias;
// FFN.
struct ggml_rwkv_tensor * ffn_time_mix_k;
struct ggml_rwkv_tensor * ffn_time_mix_r;
struct ggml_rwkv_tensor * ffn_key;
struct ggml_rwkv_tensor * ffn_value;
struct ggml_rwkv_tensor * ffn_receptance;
};
struct rwkv_model {
int32_t n_vocab;
int32_t n_layer;
int32_t n_embed;
// 0 for float32, 1 for float16.
int32_t data_type;
struct ggml_rwkv_tensor * emb;
struct ggml_rwkv_tensor * ln0_weight;
struct ggml_rwkv_tensor * ln0_bias;
std::vector<rwkv_layer> layers;
struct ggml_rwkv_tensor * ln_out_weight;
struct ggml_rwkv_tensor * ln_out_bias;
struct ggml_rwkv_tensor * head;
};
struct rwkv_context {
struct rwkv_model * model;
struct ggml_rwkv_tensor * token_index;
struct ggml_rwkv_tensor * state;
struct ggml_rwkv_tensor ** state_parts;
struct ggml_rwkv_tensor * logits;
struct ggml_rwkv_context * ctx;
struct ggml_rwkv_cgraph * graph;
bool freed;
float * state_in = 0; //stores input state, or use null for a new state
float * state_out = 0; //stores address of output state buffer
float * logits_out = 0; //stores address of output logit buffer
};