koboldcpp/otherarch/otherarch.h
Concedo 6b7d2349a7 Rewrite history to fix bad vulkan shader commits without increasing repo size
added dpe colab (+8 squashed commit)

Squashed commit:

[b8362da4] updated lite

[ed6c037d] move nsigma into the regular sampler stack

[ac5f61c6] relative filepath fixed

[05fe96ab] export template

[ed0a5a3e] nix_example.md: refactor (#1401)

* nix_example.md: add override example

* nix_example.md: drop graphics example, already basic nixos knowledge

* nix_example.md: format

* nix_example.md: Vulkan is disabled on macOS

Disabled in: 1ccd253acc

* nix_examples.md: nixpkgs.config.cuda{Arches -> Capabilities}

Fixes: https://github.com/LostRuins/koboldcpp/issues/1367

[675c62f7] AutoGuess: Phi 4 (mini) (#1402)

[4bf56982] phrasing

[b8c0df04] Add Rep Pen to Top N Sigma sampler chain (#1397)

- place after nsigma and before xtc (+3 squashed commit)

Squashed commit:

[87c52b97] disable VMM from HIP

[ee8906f3] edit description

[e85c0e69] Remove Unnecessary Rep Counting (#1394)

* stop counting reps

* fix range-based initializer

* strike that - reverse it
2025-03-05 00:02:20 +08:00

519 lines
14 KiB
C++

#pragma once
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "utils.h"
#include "model_adapter.h"
//for sampler params
struct kcpp_params {
uint32_t seed = 0xFFFFFFFF; // RNG seed
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int n_threads = -1;
int n_blasthreads = -1;
// sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.0f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float nsigma = 0.00f; // 0.0 - disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float smoothing_factor = 0.00f; // 0.00 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float rep_pen_slope = 1.0f;
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
float dry_multiplier = 0.0f; // penalty multiplier, 0.0 = disabled
float dry_base = 1.75f; // exponential base
int32_t dry_allowed_length = 2; // repeated sequences longer than this are penalized
int32_t dry_penalty_last_n = 0; // how many tokens to scan for repetitions (0 = entire context)
std::vector<std::string> dry_sequence_breakers; // DRY sequence breakers
float xtc_threshold = 0;
float xtc_probability = 0;
float dynatemp_range = 0.0f; // enables DynaTemp if neq 0. dynatemp_min = temperature - dt_range, dynatemp_max = temperature + dt_range
float dynatemp_exponent = 1.0f;
std::string model_filename = ""; // model path
std::string prompt = "";
bool flash_attn = false; // flash attention
bool use_smartcontext = false;
bool use_contextshift = false;
bool use_fastforward = false;
};
// default hparams (GPT-J 6B)
struct gptj_hparams {
int32_t n_vocab = 50400;
int32_t n_ctx = 2048;
int32_t n_embd = 4096;
int32_t n_head = 16;
int32_t n_layer = 28;
int32_t n_rot = 64;
int32_t ftype = 1;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
};
struct gptj_layer {
// normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
// attention
struct ggml_v3_tensor * c_attn_q_proj_w;
struct ggml_v3_tensor * c_attn_k_proj_w;
struct ggml_v3_tensor * c_attn_v_proj_w;
struct ggml_v3_tensor * c_attn_proj_w;
// ff
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gptj_layer_v2 {
// normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
// attention
struct ggml_v2_tensor * c_attn_q_proj_w;
struct ggml_v2_tensor * c_attn_k_proj_w;
struct ggml_v2_tensor * c_attn_v_proj_w;
struct ggml_v2_tensor * c_attn_proj_w;
// ff
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gptj_layer_v1 {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
// attention
struct ggml_v1_tensor * c_attn_q_proj_w;
struct ggml_v1_tensor * c_attn_k_proj_w;
struct ggml_v1_tensor * c_attn_v_proj_w;
struct ggml_v1_tensor * c_attn_proj_w;
// ff
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w;
struct ggml_v1_tensor * c_mlp_proj_w_trans; //for backwards compatibility
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gptj_v1_model {
gptj_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * lmh_g; // language model head
struct ggml_v1_tensor * lmh_b; // language model bias
std::vector<gptj_layer_v1> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gptj_v2_model {
gptj_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * lmh_g; // language model head
struct ggml_v2_tensor * lmh_b; // language model bias
std::vector<gptj_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gptj_model {
gptj_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * lmh_g; // language model head
struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gptj_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t ftype = 1;
};
struct gpt2_v1_layer {
// normalization
struct ggml_v1_tensor * ln_1_g;
struct ggml_v1_tensor * ln_1_b;
struct ggml_v1_tensor * ln_2_g;
struct ggml_v1_tensor * ln_2_b;
// attention
struct ggml_v1_tensor * c_attn_attn_w;
struct ggml_v1_tensor * c_attn_attn_b;
struct ggml_v1_tensor * c_attn_proj_w;
struct ggml_v1_tensor * c_attn_proj_b;
// mlp
struct ggml_v1_tensor * c_mlp_fc_w;
struct ggml_v1_tensor * c_mlp_fc_b;
struct ggml_v1_tensor * c_mlp_proj_w_trans; // transposed for efficiency
struct ggml_v1_tensor * c_mlp_proj_b;
};
struct gpt2_v1_model {
gpt2_hparams hparams;
// normalization
struct ggml_v1_tensor * ln_f_g;
struct ggml_v1_tensor * ln_f_b;
struct ggml_v1_tensor * wte; // position embedding
struct ggml_v1_tensor * wpe; // token embedding
std::vector<gpt2_v1_layer> layers;
// key + value memory
struct ggml_v1_tensor * memory_k;
struct ggml_v1_tensor * memory_v;
//
struct ggml_v1_context * ctx;
std::map<std::string, struct ggml_v1_tensor *> tensors;
};
struct gpt2_layer_v2 {
// normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
struct ggml_v2_tensor * ln_2_g;
struct ggml_v2_tensor * ln_2_b;
// attention
struct ggml_v2_tensor * c_attn_attn_w;
struct ggml_v2_tensor * c_attn_attn_b;
struct ggml_v2_tensor * c_attn_proj_w;
struct ggml_v2_tensor * c_attn_proj_b;
// mlp
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gpt2_v2_model {
gpt2_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * wpe; // token embedding
struct ggml_v2_tensor * lm_head; // language model head
std::vector<gpt2_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gpt2_layer {
// normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
struct ggml_v3_tensor * ln_2_g;
struct ggml_v3_tensor * ln_2_b;
// attention
struct ggml_v3_tensor * c_attn_attn_w;
struct ggml_v3_tensor * c_attn_attn_b;
struct ggml_v3_tensor * c_attn_proj_w;
struct ggml_v3_tensor * c_attn_proj_b;
// mlp
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * wpe; // token embedding
struct ggml_v3_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// default hparams (StableLM 3B)
struct gpt_neox_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 4096;
int32_t n_embd = 4096;
int32_t n_head = 32;
int32_t n_layer = 16;
int32_t n_rot = 32; // rotary_pct * (n_embd / n_head)
int32_t par_res = 1; // 1 = true, 0 = false
int32_t ftype = 1;
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
};
struct gpt_neox_layer_v2 {
// pre normalization
struct ggml_v2_tensor * ln_1_g;
struct ggml_v2_tensor * ln_1_b;
// attention
struct ggml_v2_tensor * c_attn_attn_w;
struct ggml_v2_tensor * c_attn_attn_b;
struct ggml_v2_tensor * c_attn_proj_w;
struct ggml_v2_tensor * c_attn_proj_b;
// post normalization
struct ggml_v2_tensor * ln_2_g;
struct ggml_v2_tensor * ln_2_b;
// ff
struct ggml_v2_tensor * c_mlp_fc_w;
struct ggml_v2_tensor * c_mlp_fc_b;
struct ggml_v2_tensor * c_mlp_proj_w;
struct ggml_v2_tensor * c_mlp_proj_b;
};
struct gpt_neox_v2_model {
gpt_neox_hparams hparams;
// normalization
struct ggml_v2_tensor * ln_f_g;
struct ggml_v2_tensor * ln_f_b;
struct ggml_v2_tensor * wte; // position embedding
struct ggml_v2_tensor * lmh_g; // language model head
//struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gpt_neox_layer_v2> layers;
// key + value memory
struct ggml_v2_tensor * memory_k;
struct ggml_v2_tensor * memory_v;
//
struct ggml_v2_context * ctx;
std::map<std::string, struct ggml_v2_tensor *> tensors;
};
struct gpt_neox_layer {
// pre normalization
struct ggml_v3_tensor * ln_1_g;
struct ggml_v3_tensor * ln_1_b;
// attention
struct ggml_v3_tensor * c_attn_attn_w;
struct ggml_v3_tensor * c_attn_attn_b;
struct ggml_v3_tensor * c_attn_proj_w;
struct ggml_v3_tensor * c_attn_proj_b;
// post normalization
struct ggml_v3_tensor * ln_2_g;
struct ggml_v3_tensor * ln_2_b;
// ff
struct ggml_v3_tensor * c_mlp_fc_w;
struct ggml_v3_tensor * c_mlp_fc_b;
struct ggml_v3_tensor * c_mlp_proj_w;
struct ggml_v3_tensor * c_mlp_proj_b;
};
struct gpt_neox_model {
gpt_neox_hparams hparams;
// normalization
struct ggml_v3_tensor * ln_f_g;
struct ggml_v3_tensor * ln_f_b;
struct ggml_v3_tensor * wte; // position embedding
struct ggml_v3_tensor * lmh_g; // language model head
//struct ggml_v3_tensor * lmh_b; // language model bias
std::vector<gpt_neox_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
//
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
// no defaults for now
struct mpt_hparams {
int32_t d_model = 0;
int32_t max_seq_len = 0;
int32_t n_heads = 0;
int32_t n_layers = 0;
int32_t n_vocab = 0;
float alibi_bias_max = 0;
float clip_qkv = 0;
int32_t ftype = 0;
int32_t n_ctx = 0;
};
struct mpt_layer {
// pre normalization
struct ggml_v3_tensor * norm_1_weight;
// attention
struct ggml_v3_tensor * c_attn_wqkv_weight;
struct ggml_v3_tensor * c_attn_out_proj_weight;
// post normalization
struct ggml_v3_tensor * norm_2_weight;
// ff
struct ggml_v3_tensor * ffn_up_proj;
struct ggml_v3_tensor * ffn_down_proj;
};
struct mpt_model {
mpt_hparams hparams;
struct ggml_v3_tensor * wte_weight; // position embedding
struct ggml_v3_tensor * norm_f_weight; // language model head
std::vector<mpt_layer> layers;
// key + value memory
struct ggml_v3_tensor * memory_k;
struct ggml_v3_tensor * memory_v;
struct ggml_v3_context * ctx;
std::map<std::string, struct ggml_v3_tensor *> tensors;
};
struct llava_image
{
std::string b64data = "";
int32_t clp_image_tokens = 0; //holds number of tokens llava used
float * clp_img_embd = nullptr; //this holds dynamic memory and must be freed each use!
};
struct speculative_draft_result
{
std::vector<int32_t> draftids;
std::vector<float *> actual_logits;
bool draft_success = false;
int drafted_amount = 0;
};
const float default_norm_eps = 1e-5f;