mirror of
https://github.com/LostRuins/koboldcpp.git
synced 2025-09-10 09:04:36 +00:00
* move Dynatemp changes to new branch * fix float header * Properly reintroduce variable expert count Controllable through experts.txt * first pass at DynaTemp UI Checkbox partial implemented, Min and Max Temp implemented * DynaTemp UI Checkbox Trigger DynaTemp on checkbox * DynaTemp UI checkbox edition Hell Yeah! DynaTemp! * Remove greedy dynatemp * Fix race condition caused by debug print * Fixed broken presets and miro Fixes broken presets and mirostat * Remove debug function + HHI temp Also removed unnecessary softmax double precision * Fix whitespace (?) for generate function * epic upstream renaming scheme fix * fix stupid indents * Other cleanup Reintroduce unused rep pen function, move temp functions first before entropy dynamic temp * Slight indent fix * revert batch pyinstaller maker to mainline and also delete experts.txt since adjustable routing is also being removed for the PR * compact dynatemp into a single value dynatemp_range. This is a float which represents the allowed deviation from the min and max temperature when using dynatemp. Thus, if we want a value of dynatemp_min=0.3, dynatemp_max=0.5, then we would simply set temperature=0.4 and dynatemp_range=0.1. Functionally dynatemp would operate the same, but it would simplify usage and make it a single easy to adjust value. --------- Co-authored-by: Alexander Abushady <aabushady214@gmail.com> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
118 lines
4.5 KiB
C++
118 lines
4.5 KiB
C++
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include "grammar-parser.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
|
|
// sampling parameters
|
|
typedef struct llama_sampling_params {
|
|
int32_t n_prev = 64; // number of previous tokens to remember
|
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
|
int32_t top_k = 40; // <= 0 to use vocab size
|
|
float top_p = 0.95f; // 1.0 = disabled
|
|
float min_p = 0.05f; // 0.0 = disabled
|
|
float tfs_z = 1.00f; // 1.0 = disabled
|
|
float typical_p = 1.00f; // 1.0 = disabled
|
|
float temp = 0.80f; // 1.0 = disabled
|
|
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
|
float penalty_repeat = 1.10f; // 1.0 = disabled
|
|
float penalty_freq = 0.00f; // 0.0 = disabled
|
|
float penalty_present = 0.00f; // 0.0 = disabled
|
|
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
|
float mirostat_tau = 5.00f; // target entropy
|
|
float mirostat_eta = 0.10f; // learning rate
|
|
bool dynatemp_range = 0.00f; // dynamic temperature range
|
|
bool penalize_nl = true; // consider newlines as a repeatable token
|
|
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
|
|
|
|
std::string grammar; // optional BNF-like grammar to constrain sampling
|
|
|
|
// Classifier-Free Guidance
|
|
// https://arxiv.org/abs/2306.17806
|
|
std::string cfg_negative_prompt; // string to help guidance
|
|
float cfg_scale = 1.f; // how strong is guidance
|
|
|
|
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
|
|
|
std::vector<llama_token> penalty_prompt_tokens;
|
|
bool use_penalty_prompt_tokens = false;
|
|
} llama_sampling_params;
|
|
|
|
// general sampler context
|
|
// TODO: move to llama.h
|
|
struct llama_sampling_context {
|
|
// parameters that will be used for sampling
|
|
llama_sampling_params params;
|
|
|
|
// mirostat sampler state
|
|
float mirostat_mu;
|
|
|
|
llama_grammar * grammar;
|
|
|
|
// internal
|
|
grammar_parser::parse_state parsed_grammar;
|
|
|
|
// TODO: replace with ring-buffer
|
|
std::vector<llama_token> prev;
|
|
std::vector<llama_token_data> cur;
|
|
};
|
|
|
|
#include "common.h"
|
|
|
|
// Create a new sampling context instance.
|
|
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
|
|
|
|
void llama_sampling_free(struct llama_sampling_context * ctx);
|
|
|
|
// Reset the sampler context
|
|
// - clear prev tokens
|
|
// - reset grammar
|
|
void llama_sampling_reset(llama_sampling_context * ctx);
|
|
|
|
// Copy the sampler context
|
|
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
|
|
|
// Get the last sampled token
|
|
llama_token llama_sampling_last(llama_sampling_context * ctx);
|
|
|
|
// Get a string representation of the last sampled tokens
|
|
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
|
|
|
|
// Print sampling parameters into a string
|
|
std::string llama_sampling_print(const llama_sampling_params & params);
|
|
|
|
// Print sampling order into a string
|
|
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
|
|
|
// this is a common sampling function used across the examples for convenience
|
|
// it can serve as a starting point for implementing your own sampling function
|
|
// Note: When using multiple sequences, it is the caller's responsibility to call
|
|
// llama_sampling_reset when a sequence ends
|
|
//
|
|
// required:
|
|
// - ctx_main: context to use for sampling
|
|
// - ctx_sampling: sampling-specific context
|
|
//
|
|
// optional:
|
|
// - ctx_cfg: context to use for classifier-free guidance
|
|
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
|
//
|
|
// returns:
|
|
// - token: sampled token
|
|
// - candidates: vector of candidate tokens
|
|
//
|
|
llama_token llama_sampling_sample(
|
|
struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_main,
|
|
struct llama_context * ctx_cfg,
|
|
int idx = 0);
|
|
|
|
void llama_sampling_accept(
|
|
struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_main,
|
|
llama_token id,
|
|
bool apply_grammar);
|