//This is Concedo's shitty adapter for adding python bindings for llama //Considerations: //Don't want to use pybind11 due to dependencies on MSVCC //ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! //Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. //No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields //Python will ALWAYS provide the memory, we just write to it. #include #include #include #include #include #include #include #include #include #include "expose.h" #include "model_adapter.cpp" extern "C" { //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) static FileFormat file_format = FileFormat::BADFORMAT; bool load_model(const load_model_inputs inputs) { std::string model = inputs.model_filename; file_format = check_file_format(model.c_str()); //first digit is platform, second is devices int platform = inputs.clblast_info/10; int devices = inputs.clblast_info%10; std::string platformenv = "KCPP_CLBLAST_PLATFORM="+std::to_string(platform); std::string deviceenv = "KCPP_CLBLAST_DEVICES="+std::to_string(devices); putenv(platformenv.c_str()); putenv(deviceenv.c_str()); if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2 || file_format==FileFormat::GPTJ_3) { printf("\n---\nIdentified as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); ModelLoadResult lr = gpttype_load_model(inputs, file_format); if (lr == ModelLoadResult::RETRY_LOAD) { file_format = FileFormat::GPTJ_2; printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); lr = gpttype_load_model(inputs, file_format); } if (lr == ModelLoadResult::RETRY_LOAD) { file_format = FileFormat::GPTJ_3; printf("\n---\nRetrying as GPT-J model: (ver %d)\nAttempting to Load...\n---\n", file_format); lr = gpttype_load_model(inputs, file_format); } if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) { return false; } else { return true; } } else if(file_format==FileFormat::GPT2_1||file_format==FileFormat::GPT2_2) { printf("\n---\nIdentified as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format); ModelLoadResult lr = gpttype_load_model(inputs, file_format); if (lr == ModelLoadResult::RETRY_LOAD) { file_format = FileFormat::GPT2_2; printf("\n---\nRetrying as GPT-2 model: (ver %d)\nAttempting to Load...\n---\n", file_format); lr = gpttype_load_model(inputs, file_format); } if (lr == ModelLoadResult::FAIL || lr == ModelLoadResult::RETRY_LOAD) { return false; } else { return true; } } else { printf("\n---\nIdentified as LLAMA model: (ver %d)\nAttempting to Load...\n---\n", file_format); return llama_load_model(inputs, file_format); } } generation_outputs generate(const generation_inputs inputs, generation_outputs &output) { if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2 || file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPT2_1 || file_format==FileFormat::GPT2_2 ) { return gpttype_generate(inputs, output); } else { return llama_generate(inputs, output); } } }