#include "model_adapter.h" #include "otherarch/utils.h" #include "common.h" #include "sampling.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include "src/llama-context.h" #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static llama_context * embeddings_ctx = nullptr; //text to codes ctx static std::string ttsplatformenv, ttsdeviceenv, ttsvulkandeviceenv; bool embeddings_debug = false; static int max_batchsize = 512; static std::string last_output = ""; static void batch_add_seq(llama_batch & batch, const std::vector & tokens, llama_seq_id seq_id) { size_t n_tokens = tokens.size(); for (size_t i = 0; i < n_tokens; i++) { common_batch_add(batch, tokens[i], i, { seq_id }, true); } } static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); const struct llama_model * model = llama_get_model(ctx); // clear previous kv_cache values (irrelevant for embeddings) llama_kv_self_clear(ctx); // run model if(embeddings_debug) { printf("\n%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); } if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) { // encoder-only model if (llama_encode(ctx, batch) < 0) { printf("\n%s : failed to encode\n", __func__); } } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) { // decoder-only model if (llama_decode(ctx, batch) < 0) { printf("\n%s : failed to decode\n", __func__); } } for (int i = 0; i < batch.n_tokens; i++) { if (!batch.logits[i]) { continue; } const float * embd = nullptr; int embd_pos = 0; if (pooling_type == LLAMA_POOLING_TYPE_NONE) { // try to get token embeddings embd = llama_get_embeddings_ith(ctx, i); embd_pos = i; if(embd == NULL) { printf("\nfailed to get token embeddings\n"); } } else { // try to get sequence embeddings - supported only when pooling_type is not NONE embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); embd_pos = batch.seq_id[i][0]; if(embd == NULL) { printf("\nfailed to get sequence embeddings\n"); } } float * out = output + embd_pos * n_embd; common_embd_normalize(embd, out, n_embd, embd_norm); } } bool embeddingstype_load_model(const embeddings_load_model_inputs inputs) { //duplicated from expose.cpp int cl_parseinfo = inputs.clblast_info; //first digit is whether configured, second is platform, third is devices std::string usingclblast = "GGML_OPENCL_CONFIGURED="+std::to_string(cl_parseinfo>0?1:0); putenv((char*)usingclblast.c_str()); cl_parseinfo = cl_parseinfo%100; //keep last 2 digits int platform = cl_parseinfo/10; int devices = cl_parseinfo%10; ttsplatformenv = "GGML_OPENCL_PLATFORM="+std::to_string(platform); ttsdeviceenv = "GGML_OPENCL_DEVICE="+std::to_string(devices); putenv((char*)ttsplatformenv.c_str()); putenv((char*)ttsdeviceenv.c_str()); std::string vulkan_info_raw = inputs.vulkan_info; std::string vulkan_info_str = ""; for (size_t i = 0; i < vulkan_info_raw.length(); ++i) { vulkan_info_str += vulkan_info_raw[i]; if (i < vulkan_info_raw.length() - 1) { vulkan_info_str += ","; } } if(vulkan_info_str!="") { ttsvulkandeviceenv = "GGML_VK_VISIBLE_DEVICES="+vulkan_info_str; putenv((char*)ttsvulkandeviceenv.c_str()); } llama_backend_init(); std::string modelfile = inputs.model_filename; printf("\nLoading Embeddings Model: %s \n",modelfile.c_str()); embeddings_debug = (inputs.debugmode>0); // tts init llama_model_params model_params = llama_model_default_params(); llama_context_params ctx_params = llama_context_default_params(); const int nthreads = inputs.threads; model_params.use_mmap = false; model_params.use_mlock = false; model_params.n_gpu_layers = inputs.gpulayers; //offload if possible model_params.split_mode = llama_split_mode::LLAMA_SPLIT_MODE_LAYER; llama_model * embeddingsmodel = llama_model_load_from_file(modelfile.c_str(), model_params); const int n_ctx_train = llama_model_n_ctx_train(embeddingsmodel); max_batchsize = n_ctx_train; ctx_params.embeddings = true; ctx_params.n_ubatch = ctx_params.n_ubatch = max_batchsize; //max size, must fit ctx_params.n_ctx = max_batchsize; ctx_params.logits_all = false; ctx_params.offload_kqv = true; ctx_params.n_threads = nthreads; ctx_params.n_threads_batch = nthreads; ctx_params.flash_attn = inputs.flash_attention; embeddings_ctx = llama_init_from_model(embeddingsmodel, ctx_params); if (embeddings_ctx == nullptr) { printf("\nEmbeddings Model Load Error: Failed to initialize context!\n"); return false; } std::vector tmp = {1, 2, 3, 4}; llama_kv_cache_clear(embeddings_ctx); auto er = llama_decode(embeddings_ctx, llama_batch_get_one(tmp.data(), tmp.size())); if(er!=0) { printf("\nEmbeddings Model Eval returned nonzero: %d\n",er); return false; } const llama_vocab * vocab = llama_model_get_vocab(embeddingsmodel); const int n_ctx = llama_n_ctx(embeddings_ctx); if (llama_model_has_encoder(embeddingsmodel) && llama_model_has_decoder(embeddingsmodel)) { printf("\n%s: computing embeddings in encoder-decoder models is not supported\n", __func__); return false; } if (n_ctx > n_ctx_train) { printf("\n%s: warning: Embeddings model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } printf("\nEmbeddings Model Load Complete.\n"); return true; } embeddings_generation_outputs embeddingstype_generate(const embeddings_generation_inputs inputs) { embeddings_generation_outputs output; if(embeddings_ctx==nullptr) { printf("\nWarning: KCPP Embeddings Model not initialized!\n"); output.data = ""; output.status = 0; output.count = 0; return output; } double timetaken = 0; timer_start(); llama_kv_cache_clear(embeddings_ctx); std::string prompt = inputs.prompt; // max batch size const uint64_t n_batch = max_batchsize; // tokenize the prompts and trim std::vector> prompt_inputs; auto inp = common_tokenize(embeddings_ctx, prompt, true, true); if (inp.size() > n_batch) { printf("\n%s: number of tokens in an input (%lld) exceeds embedding size limit for this model (%lld), lower token amount!\n", __func__, (long long int) inp.size(), (long long int) n_batch); output.data = ""; output.status = 0; output.count = 0; return output; } prompt_inputs.push_back(inp); if(embeddings_debug) { print_tok_vec(inp); } printf("\nGenerating Embeddings for %d tokens...",inp.size()); // initialize batch const int n_prompts = 1; const enum llama_pooling_type pooling_type = llama_pooling_type(embeddings_ctx); struct llama_batch batch = llama_batch_init(n_batch, 0, 1); // count number of embeddings int n_embd_count = 0; if (pooling_type == LLAMA_POOLING_TYPE_NONE) { for (int k = 0; k < n_prompts; k++) { n_embd_count += prompt_inputs[k].size(); } } else { n_embd_count = n_prompts; } // allocate output const llama_model * embeddingsmodel = llama_get_model(embeddings_ctx); const int n_embd = llama_model_n_embd(embeddingsmodel); std::vector embeddings(n_embd_count * n_embd, 0); float * emb = embeddings.data(); int embd_normalize = 2; //euclidean // break into batches int e = 0; // number of embeddings already stored int s = 0; // number of prompts in current batch for (int k = 0; k < n_prompts; k++) { // clamp to n_batch tokens auto & inp = prompt_inputs[k]; const uint64_t n_toks = inp.size(); // encode if at capacity if (batch.n_tokens + n_toks > n_batch) { float * out = emb + e * n_embd; batch_decode(embeddings_ctx, batch, out, s, n_embd, embd_normalize); e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; s = 0; common_batch_clear(batch); } // add to batch batch_add_seq(batch, inp, s); s += 1; } // final batch float * out = emb + e * n_embd; batch_decode(embeddings_ctx, batch, out, s, n_embd, embd_normalize); std::string outputarray = "["; for (int i = 0; i < n_embd; i++) { if (i > 0) { outputarray += ","; } outputarray += std::to_string(emb[i]); } outputarray += "]"; last_output = outputarray; // clean up llama_batch_free(batch); timetaken = timer_check(); printf("\nText Embeddings Generated %d values in %.2fs.\n",(int) n_embd,timetaken); output.data = last_output.c_str(); output.status = 1; output.count = inp.size(); return output; }