//this is a drop-in for all CLBlast related code, to keep the main ggml.c unmodified // we will imitate the function definition from OpenBLAS instead, replaced as necessary. //windows binaries for clblast obtained from https://github.com/CNugteren/CLBlast (apache license) //windows binaries for opencl obtained from https://github.com/KhronosGroup/OpenCL-SDK (apache license) #if GGML_USE_OPENBLAS #include #include #include #if GGML_USE_CLBLAST #define CL_TARGET_OPENCL_VERSION 110 #include #include #define CL_CHECK(err, name) \ do { \ cl_int err_ = (err); \ if (err_ != CL_SUCCESS) { \ fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \ exit(1); \ } \ } while (0) cl_platform_id platform; cl_device_id device; cl_context context; cl_command_queue queue; cl_program program; cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q4_3; bool cl_initialized = false; size_t cl_size_a = 0, cl_size_b = 0, cl_size_qb = 0, cl_size_c = 0; cl_mem cl_buffer_a, cl_buffer_b, cl_buffer_qb, cl_buffer_c; // Function taken from https://github.com/rsnemmen/OpenCL-examples/blob/master/add_numbers/add_numbers.c cl_program build_program(cl_context ctx, cl_device_id dev, const char* filename) { cl_program program; FILE *program_handle; char *program_buffer, *program_log; size_t program_size, log_size; int err; program_handle = fopen(filename, "r"); if(program_handle == NULL) { perror("OpenCL kernel file not found"); exit(1); } fseek(program_handle, 0, SEEK_END); program_size = ftell(program_handle); rewind(program_handle); program_buffer = (char*)malloc(program_size + 1); program_buffer[program_size] = '\0'; fread(program_buffer, sizeof(char), program_size, program_handle); fclose(program_handle); program = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); if(err < 0) { perror("OpenCL error creating program"); exit(1); } free(program_buffer); err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); if(err < 0) { clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); program_log = (char*) malloc(log_size + 1); program_log[log_size] = '\0'; clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); printf("%s\n", program_log); free(program_log); exit(1); } return program; } cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { cl_program program; char *program_log; size_t program_size, log_size; int err; program_size = strlen(program_buffer); program = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); if(err < 0) { perror("OpenCL error creating program"); exit(1); } err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); if(err < 0) { clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); program_log = (char*) malloc(log_size + 1); program_log[log_size] = '\0'; clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); printf("%s\n", program_log); free(program_log); exit(1); } return program; } static void ggml_cl_sgemm_wrapper(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE trans_a, const enum CBLAS_TRANSPOSE trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype) { cl_int err = 0; cl_event events[4]; events[0] = NULL; events[1] = NULL; events[2] = NULL; events[3] = NULL; if (!cl_initialized) { char * KCPP_CLBLAST_PLATFORM = getenv("KCPP_CLBLAST_PLATFORM"); char * KCPP_CLBLAST_DEVICES = getenv("KCPP_CLBLAST_DEVICES"); int plat_num = (KCPP_CLBLAST_PLATFORM == NULL ? 0 : atoi(KCPP_CLBLAST_PLATFORM)); int dev_num = (KCPP_CLBLAST_DEVICES == NULL ? 0 : atoi(KCPP_CLBLAST_DEVICES)); printf("\nInitializing CLBlast (First Run)..."); printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num); cl_uint num_platforms; clGetPlatformIDs(0, NULL, &num_platforms); cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id)); clGetPlatformIDs(num_platforms, platforms, NULL); platform = platforms[plat_num]; char platform_buffer[1024]; clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL); cl_uint num_devices; clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices); cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id)); clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL); device = devices[dev_num]; char device_buffer[1024]; clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL); printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer); context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); CL_CHECK(err, "clCreateContext"); queue = clCreateCommandQueue(context, device, 0, &err); CL_CHECK(err, "clCreateCommandQueue"); free(platforms); free(devices); program = build_program_from_source(context, device, clblast_dequant); // Prepare dequantize kernels kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err); CL_CHECK(err, "clCreateKernel 1"); kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err); CL_CHECK(err, "clCreateKernel 2"); kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err); CL_CHECK(err, "clCreateKernel 3"); kernel_q4_3 = clCreateKernel(program, "dequantize_row_q4_3", &err); CL_CHECK(err, "clCreateKernel 4"); size_t defaultBufSize = 32*1024*1024; cl_size_a = defaultBufSize; cl_size_b = defaultBufSize; cl_size_qb = defaultBufSize; cl_size_c = defaultBufSize; // Prepare buffers cl_buffer_a = clCreateBuffer(context, CL_MEM_READ_ONLY, cl_size_a, NULL, &err); CL_CHECK(err, "clCreateBuffer A"); cl_buffer_b = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_b, NULL, &err); CL_CHECK(err, "clCreateBuffer B"); cl_buffer_qb = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_qb, NULL, &err); CL_CHECK(err, "clCreateBuffer qB"); cl_buffer_c = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_c, NULL, &err); CL_CHECK(err, "clCreateBuffer C"); cl_initialized = true; } bool dequant = (btype >= 2 && btype < 6); cl_kernel kernel; size_t global = n * k, local = 16, qb_size; if (dequant) { switch (btype) { case 2: kernel = kernel_q4_0; local = 16; qb_size = global * (sizeof(float) + local) / 32; break; case 3: kernel = kernel_q4_1; local = 16; qb_size = global * (sizeof(float) * 2 + local) / 32; break; case 4: kernel = kernel_q4_2; local = 8; qb_size = global * (sizeof(short) + local) / 16; break; case 5: kernel = kernel_q4_3; local = 8; qb_size = global * (sizeof(short) * 2 + local) / 16; break; } } // Prepare buffers if(m*k*sizeof(float) > cl_size_a) { cl_size_a = m*k*sizeof(float); clReleaseMemObject(cl_buffer_a); cl_buffer_a = clCreateBuffer(context, CL_MEM_READ_ONLY, cl_size_a, NULL, &err); CL_CHECK(err, "clReallocBuffer A"); } if (dequant) { if(qb_size > cl_size_qb) { cl_size_qb = qb_size; clReleaseMemObject(cl_buffer_qb); cl_buffer_qb = clCreateBuffer(context, CL_MEM_READ_ONLY, qb_size, NULL, &err); CL_CHECK(err, "clReallocBuffer qB"); } } if(n*k*sizeof(float) > cl_size_b) { cl_size_b = n*k*sizeof(float); clReleaseMemObject(cl_buffer_b); cl_buffer_b = clCreateBuffer(context, CL_MEM_READ_WRITE, cl_size_b, NULL, &err); CL_CHECK(err, "clReallocBuffer B"); } if(m*n*sizeof(float) > cl_size_c) { cl_size_c = m*n*sizeof(float); clReleaseMemObject(cl_buffer_c); cl_buffer_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, cl_size_c, NULL, &err); CL_CHECK(err, "clReallocBuffer C"); } if (dequant) { err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb); err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b); CL_CHECK(err, "clSetKernelArg"); clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, qb_size, host_b, 0, NULL, events + 1); } else { clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, n*k*sizeof(float), host_b, 0, NULL, events + 1); } clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, m*k*sizeof(float), host_a, 0, NULL, events); //clEnqueueWriteBuffer(queue, cl_buffer_c, CL_FALSE, 0, m*n*sizeof(float), host_c, 0, NULL, events + 2); if (dequant) { err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, events + 1, events + 2); CL_CHECK(err, "clEnqueueNDRangeKernel"); } clWaitForEvents(dequant ? 3 : 2, events); clReleaseEvent(events[0]); clReleaseEvent(events[1]); //clReleaseEvent(events[2]); if (dequant) { clReleaseEvent(events[2]); } // Call the SGEMM routine. CLBlastStatusCode status = CLBlastSgemm(order, trans_a, trans_b, m, n, k, alpha, cl_buffer_a, 0, lda, cl_buffer_b, 0, ldb, beta, cl_buffer_c, 0, ldc, &queue, events); clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, m*n*sizeof(float), host_c, 1, events, events + 1); // Wait for completion if (status == CLBlastSuccess) { clWaitForEvents(2, events); clReleaseEvent(events[0]); clReleaseEvent(events[1]); } } #endif #endif #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) #if GGML_USE_CLBLAST #define do_blas_sgemm(Order, TransA, TransB,M, N, K,alpha, A, lda, B, ldb, beta, C, ldc, btype) ({\ ggml_cl_sgemm_wrapper(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc, btype);\ }) #else #define do_blas_sgemm(Order, TransA, TransB,M, N, K,alpha, A, lda, B, ldb, beta, C, ldc, btype) ({\ cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc);\ }) #endif #endif