#!/usr/bin/env python3 #-*- coding: utf-8 -*- # KoboldCpp is an easy-to-use AI text-generation software for GGML models. # It's a single self contained distributable from Concedo, that builds off llama.cpp, # and adds a versatile Kobold API endpoint, additional format support, # backward compatibility, as well as a fancy UI with persistent stories, # editing tools, save formats, memory, world info, author's note, characters, # scenarios and everything Kobold and Kobold Lite have to offer. import ctypes import os import argparse import json, sys, http.server, time, asyncio, socket, threading from concurrent.futures import ThreadPoolExecutor sampler_order_max = 7 stop_token_max = 16 ban_token_max = 16 tensor_split_max = 16 logit_bias_max = 16 bias_min_value = -100.0 bias_max_value = 100.0 class load_model_inputs(ctypes.Structure): _fields_ = [("threads", ctypes.c_int), ("blasthreads", ctypes.c_int), ("max_context_length", ctypes.c_int), ("low_vram", ctypes.c_bool), ("use_mmq", ctypes.c_bool), ("use_rowsplit", ctypes.c_bool), ("executable_path", ctypes.c_char_p), ("model_filename", ctypes.c_char_p), ("lora_filename", ctypes.c_char_p), ("lora_base", ctypes.c_char_p), ("use_mmap", ctypes.c_bool), ("use_mlock", ctypes.c_bool), ("use_smartcontext", ctypes.c_bool), ("use_contextshift", ctypes.c_bool), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("blasbatchsize", ctypes.c_int), ("debugmode", ctypes.c_int), ("forceversion", ctypes.c_int), ("gpulayers", ctypes.c_int), ("rope_freq_scale", ctypes.c_float), ("rope_freq_base", ctypes.c_float), ("banned_tokens", ctypes.c_char_p * ban_token_max), ("tensor_split", ctypes.c_float * tensor_split_max)] class logit_bias(ctypes.Structure): _fields_ = [("token_id", ctypes.c_int32), ("bias", ctypes.c_float)] class generation_inputs(ctypes.Structure): _fields_ = [("seed", ctypes.c_int), ("prompt", ctypes.c_char_p), ("memory", ctypes.c_char_p), ("max_context_length", ctypes.c_int), ("max_length", ctypes.c_int), ("temperature", ctypes.c_float), ("top_k", ctypes.c_int), ("top_a", ctypes.c_float), ("top_p", ctypes.c_float), ("min_p", ctypes.c_float), ("typical_p", ctypes.c_float), ("tfs", ctypes.c_float), ("rep_pen", ctypes.c_float), ("rep_pen_range", ctypes.c_int), ("presence_penalty", ctypes.c_float), ("mirostat", ctypes.c_int), ("mirostat_tau", ctypes.c_float), ("mirostat_eta", ctypes.c_float), ("sampler_order", ctypes.c_int * sampler_order_max), ("sampler_len", ctypes.c_int), ("unban_tokens_rt", ctypes.c_bool), ("stop_sequence", ctypes.c_char_p * stop_token_max), ("stream_sse", ctypes.c_bool), ("grammar", ctypes.c_char_p), ("grammar_retain_state", ctypes.c_bool), ("quiet", ctypes.c_bool), ("dynatemp_range", ctypes.c_float), ("dynatemp_exponent", ctypes.c_float), ("smoothing_factor", ctypes.c_float), ("logit_biases", logit_bias * logit_bias_max)] class generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("text", ctypes.c_char * 32768)] class token_count_outputs(ctypes.Structure): _fields_ = [("count", ctypes.c_int), ("ids", ctypes.POINTER(ctypes.c_int))] handle = None def getdirpath(): return os.path.dirname(os.path.realpath(__file__)) def getabspath(): return os.path.dirname(os.path.abspath(__file__)) def file_exists(filename): return os.path.exists(os.path.join(getdirpath(), filename)) def pick_existant_file(ntoption,nonntoption): precompiled_prefix = "precompiled_" ntexist = file_exists(ntoption) nonntexist = file_exists(nonntoption) precompiled_ntexist = file_exists(precompiled_prefix+ntoption) precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption) if os.name == 'nt': if not ntexist and precompiled_ntexist: return (precompiled_prefix+ntoption) if nonntexist and not ntexist: return nonntoption return ntoption else: if not nonntexist and precompiled_nonntexist: return (precompiled_prefix+nonntoption) if ntexist and not nonntexist: return ntoption return nonntoption lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so") lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so") lib_openblas = pick_existant_file("koboldcpp_openblas.dll","koboldcpp_openblas.so") lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so") lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so") lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so") lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so") lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so") lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so") libname = "" def init_library(): global handle, args, libname global lib_default,lib_failsafe,lib_openblas,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan libname = "" use_openblas = False # if true, uses OpenBLAS for acceleration. libopenblas.dll must exist in the same dir. use_clblast = False #uses CLBlast instead use_cublas = False #uses cublas instead use_hipblas = False #uses hipblas instead use_noavx2 = False #uses no avx2 instructions use_failsafe = False #uses no intrinsics, failsafe mode use_vulkan = False #uses vulkan (needs avx2) if args.noavx2: use_noavx2 = True if args.useclblast: if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")): print("Warning: NoAVX2 CLBlast library file not found. Non-BLAS library will be used.") else: print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.") use_clblast = True else: if not file_exists(lib_noavx2): print("Warning: NoAVX2 library file not found. Failsafe library will be used.") elif (args.noblas and args.nommap): use_failsafe = True print("!!! Attempting to use FAILSAFE MODE !!!") else: print("Attempting to use non-avx2 compatibility library.") elif args.useclblast: if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")): print("Warning: CLBlast library file not found. Non-BLAS library will be used.") else: print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.") use_clblast = True elif (args.usecublas is not None): if not file_exists(lib_cublas) and not file_exists(lib_hipblas): print("Warning: CuBLAS library file not found. Non-BLAS library will be used.") else: if file_exists(lib_cublas): print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.") use_cublas = True elif file_exists(lib_hipblas): print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.") use_hipblas = True elif (args.usevulkan is not None): if not file_exists(lib_vulkan): print("Warning: Vulkan library file not found. Non-BLAS library will be used.") else: print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.") use_vulkan = True else: if not file_exists(lib_openblas) or (os.name=='nt' and not file_exists("libopenblas.dll")): print("Warning: OpenBLAS library file not found. Non-BLAS library will be used.") elif args.noblas: print("Attempting to library without OpenBLAS.") else: use_openblas = True print("Attempting to use OpenBLAS library for faster prompt ingestion. A compatible libopenblas will be required.") if sys.platform=="darwin": print("Mac OSX note: Some people have found Accelerate actually faster than OpenBLAS. To compare, run Koboldcpp with --noblas instead.") if use_noavx2: if use_failsafe: libname = lib_failsafe elif use_clblast: libname = lib_clblast_noavx2 else: libname = lib_noavx2 else: if use_clblast: libname = lib_clblast elif use_cublas: libname = lib_cublas elif use_hipblas: libname = lib_hipblas elif use_openblas: libname = lib_openblas elif use_vulkan: libname = lib_vulkan else: libname = lib_default print("Initializing dynamic library: " + libname) dir_path = getdirpath() abs_path = getabspath() #add all potential paths if os.name=='nt': os.add_dll_directory(dir_path) os.add_dll_directory(abs_path) os.add_dll_directory(os.getcwd()) if libname == lib_hipblas and "HIP_PATH" in os.environ: os.add_dll_directory(os.path.join(os.environ["HIP_PATH"], "bin")) if args.debugmode == 1: print(f"HIP/ROCm SDK at {os.environ['HIP_PATH']} included in .DLL load path") handle = ctypes.CDLL(os.path.join(dir_path, libname)) handle.load_model.argtypes = [load_model_inputs] handle.load_model.restype = ctypes.c_bool handle.generate.argtypes = [generation_inputs, ctypes.c_wchar_p] #apparently needed for osx to work. i duno why they need to interpret it that way but whatever handle.generate.restype = generation_outputs handle.new_token.restype = ctypes.c_char_p handle.new_token.argtypes = [ctypes.c_int] handle.get_stream_count.restype = ctypes.c_int handle.has_finished.restype = ctypes.c_bool handle.get_last_eval_time.restype = ctypes.c_float handle.get_last_process_time.restype = ctypes.c_float handle.get_last_token_count.restype = ctypes.c_int handle.get_last_seed.restype = ctypes.c_int handle.get_total_gens.restype = ctypes.c_int handle.get_last_stop_reason.restype = ctypes.c_int handle.abort_generate.restype = ctypes.c_bool handle.token_count.restype = token_count_outputs handle.get_pending_output.restype = ctypes.c_char_p def load_model(model_filename): global args inputs = load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten inputs.threads = args.threads inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False) inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False) inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False) inputs.vulkan_info = "0".encode("UTF-8") inputs.blasthreads = args.blasthreads inputs.use_mmap = (not args.nommap) inputs.use_mlock = args.usemlock inputs.lora_filename = "".encode("UTF-8") inputs.lora_base = "".encode("UTF-8") if args.lora: inputs.lora_filename = args.lora[0].encode("UTF-8") inputs.use_mmap = False if len(args.lora) > 1: inputs.lora_base = args.lora[1].encode("UTF-8") inputs.use_smartcontext = args.smartcontext inputs.use_contextshift = (0 if args.noshift else 1) inputs.blasbatchsize = args.blasbatchsize inputs.forceversion = args.forceversion inputs.gpulayers = args.gpulayers inputs.rope_freq_scale = args.ropeconfig[0] if len(args.ropeconfig)>1: inputs.rope_freq_base = args.ropeconfig[1] else: inputs.rope_freq_base = 10000 clblastids = 0 if args.useclblast: clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1]) inputs.clblast_info = clblastids for n in range(tensor_split_max): if args.tensor_split and n < len(args.tensor_split): inputs.tensor_split[n] = float(args.tensor_split[n]) else: inputs.tensor_split[n] = 0 # we must force an explicit tensor split # otherwise the default will divide equally and multigpu crap will slow it down badly inputs.cublas_info = 0 if not args.tensor_split: if (args.usecublas and "0" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["HIP_VISIBLE_DEVICES"] = "0" elif (args.usecublas and "1" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "1" os.environ["HIP_VISIBLE_DEVICES"] = "1" elif (args.usecublas and "2" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "2" os.environ["HIP_VISIBLE_DEVICES"] = "2" elif (args.usecublas and "3" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "3" os.environ["HIP_VISIBLE_DEVICES"] = "3" else: if (args.usecublas and "0" in args.usecublas): inputs.cublas_info = 0 elif (args.usecublas and "1" in args.usecublas): inputs.cublas_info = 1 elif (args.usecublas and "2" in args.usecublas): inputs.cublas_info = 2 elif (args.usecublas and "3" in args.usecublas): inputs.cublas_info = 3 if args.usevulkan: s = "" for l in range(0,len(args.usevulkan)): s += str(args.usevulkan[l]) if s=="": s = "0" inputs.vulkan_info = s.encode("UTF-8") else: inputs.vulkan_info = "0".encode("UTF-8") inputs.executable_path = (getdirpath()+"/").encode("UTF-8") inputs.debugmode = args.debugmode banned_tokens = args.bantokens for n in range(ban_token_max): if not banned_tokens or n >= len(banned_tokens): inputs.banned_tokens[n] = "".encode("UTF-8") else: inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8") ret = handle.load_model(inputs) return ret def generate(prompt, memory="", max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}): global maxctx, args, currentusergenkey, totalgens, pendingabortkey inputs = generation_inputs() outputs = ctypes.create_unicode_buffer(ctypes.sizeof(generation_outputs)) inputs.prompt = prompt.encode("UTF-8") inputs.memory = memory.encode("UTF-8") if max_length >= (max_context_length-1): max_length = max_context_length-1 print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.") global showmaxctxwarning if max_context_length > maxctx: if showmaxctxwarning: print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)") showmaxctxwarning = False max_context_length = maxctx inputs.max_context_length = max_context_length # this will resize the context buffer if changed inputs.max_length = max_length inputs.temperature = temperature inputs.top_k = top_k inputs.top_a = top_a inputs.top_p = top_p inputs.min_p = min_p inputs.typical_p = typical_p inputs.tfs = tfs inputs.rep_pen = rep_pen inputs.rep_pen_range = rep_pen_range inputs.presence_penalty = presence_penalty inputs.stream_sse = stream_sse inputs.quiet = quiet inputs.dynatemp_range = dynatemp_range inputs.dynatemp_exponent = dynatemp_exponent inputs.smoothing_factor = smoothing_factor inputs.grammar = grammar.encode("UTF-8") inputs.grammar_retain_state = grammar_retain_state inputs.unban_tokens_rt = not use_default_badwordsids if mirostat in (1, 2): inputs.mirostat = mirostat inputs.mirostat_tau = mirostat_tau inputs.mirostat_eta = mirostat_eta else: inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0 if sampler_order and 0 < len(sampler_order) <= sampler_order_max: try: for i, sampler in enumerate(sampler_order): inputs.sampler_order[i] = sampler inputs.sampler_len = len(sampler_order) global showsamplerwarning if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5): print("\n(Note: Sub-optimal sampler_order detected. You may have reduced quality. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)") showsamplerwarning = False except TypeError as e: print("ERROR: sampler_order must be a list of integers: " + str(e)) inputs.seed = seed for n in range(stop_token_max): if not stop_sequence or n >= len(stop_sequence): inputs.stop_sequence[n] = "".encode("UTF-8") elif stop_sequence[n]==None: inputs.stop_sequence[n] = "".encode("UTF-8") else: inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8") bias_list = [] try: if logit_biases and len(logit_biases) > 0: bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()] except Exception as ex: print(f"Logit bias dictionary is invalid: {ex}") for n in range(logit_bias_max): if n >= len(bias_list): inputs.logit_biases[n] = logit_bias(-1, 0.0) else: try: t_id = int(bias_list[n]['key']) bias = float(bias_list[n]['value']) t_id = -1 if t_id < 0 else t_id bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias)) inputs.logit_biases[n] = logit_bias(t_id, bias) except Exception as ex: inputs.logit_biases[n] = logit_bias(-1, 0.0) print(f"Skipped unparsable logit bias:{ex}") currentusergenkey = genkey totalgens += 1 #early exit if aborted if pendingabortkey!="" and pendingabortkey==genkey: print(f"\nDeferred Abort for GenKey: {pendingabortkey}") pendingabortkey = "" return "" else: ret = handle.generate(inputs,outputs) outstr = "" if ret.status==1: outstr = ret.text.decode("UTF-8","ignore") if trimstop: for trim_str in stop_sequence: sindex = outstr.find(trim_str) if sindex != -1 and trim_str!="": outstr = outstr[:sindex] return outstr def utfprint(str): try: print(str) except UnicodeEncodeError: # Replace or omit the problematic character utf_string = str.encode('ascii', 'ignore').decode('ascii') utf_string = utf_string.replace('\a', '') #remove bell characters print(utf_string) def bring_terminal_to_foreground(): if os.name=='nt': ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9) ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow()) ################################################################# ### A hacky simple HTTP server simulating a kobold api by Concedo ### we are intentionally NOT using flask, because we want MINIMAL dependencies ################################################################# friendlymodelname = "concedo/koboldcpp" # local kobold api apparently needs a hardcoded known HF model name maxctx = 2048 maxhordectx = 2048 maxhordelen = 256 modelbusy = threading.Lock() requestsinqueue = 0 defaultport = 5001 KcppVersion = "1.57.1" showdebug = True showsamplerwarning = True showmaxctxwarning = True session_kudos_earned = 0 session_jobs = 0 session_starttime = None exitcounter = -1 punishcounter = 0 #causes a timeout if too many errors rewardcounter = 0 #reduces error counts for successful jobs totalgens = 0 currentusergenkey = "" #store a special key so polled streaming works even in multiuser pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later args = None #global args gui_layers_untouched = True runmode_untouched = True preloaded_story = None sslvalid = False start_time = time.time() class ServerRequestHandler(http.server.SimpleHTTPRequestHandler): sys_version = "" server_version = "ConcedoLlamaForKoboldServer" def __init__(self, addr, port, embedded_kailite, embedded_kcpp_docs): self.addr = addr self.port = port self.embedded_kailite = embedded_kailite self.embedded_kcpp_docs = embedded_kcpp_docs def __call__(self, *args, **kwargs): super().__init__(*args, **kwargs) def log_message(self, format, *args): global showdebug if showdebug: super().log_message(format, *args) pass async def generate_text(self, genparams, api_format, stream_flag): global friendlymodelname is_quiet = args.quiet def run_blocking(): #api format 1=basic,2=kai,3=oai,4=oai-chat #alias all nonstandard alternative names for rep pen. rp1 = genparams.get('repeat_penalty', 1.0) rp2 = genparams.get('repetition_penalty', 1.0) rp3 = genparams.get('rep_pen', 1.0) rp_max = max(rp1,rp2,rp3) genparams["rep_pen"] = rp_max if api_format==1: genparams["prompt"] = genparams.get('text', "") genparams["top_k"] = int(genparams.get('top_k', 120)) genparams["max_length"] = genparams.get('max', 100) elif api_format==3 or api_format==4: genparams["max_length"] = genparams.get('max_tokens', 100) presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0)) genparams["presence_penalty"] = presence_penalty if presence_penalty > 0: genparams["rep_pen"] = 1.0 #disable rep pen if presence pen is specified for OAI # openai allows either a string or a list as a stop sequence if isinstance(genparams.get('stop',[]), list): genparams["stop_sequence"] = genparams.get('stop', []) else: genparams["stop_sequence"] = [genparams.get('stop')] genparams["sampler_seed"] = genparams.get('seed', -1) genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False) genparams["mirostat"] = genparams.get('mirostat_mode', 0) if api_format==4: # translate openai chat completion messages format into one big string. messages_array = genparams.get('messages', []) adapter_obj = genparams.get('adapter', {}) messages_string = "" system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n") system_message_end = adapter_obj.get("system_end", "") user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n") user_message_end = adapter_obj.get("user_end", "") assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n") assistant_message_end = adapter_obj.get("assistant_end", "") for message in messages_array: if message['role'] == "system": messages_string += system_message_start elif message['role'] == "user": messages_string += user_message_start elif message['role'] == "assistant": messages_string += assistant_message_start messages_string += message['content'] if message['role'] == "system": messages_string += system_message_end elif message['role'] == "user": messages_string += user_message_end elif message['role'] == "assistant": messages_string += assistant_message_end messages_string += assistant_message_start genparams["prompt"] = messages_string return generate( prompt=genparams.get('prompt', ""), memory=genparams.get('memory', ""), max_context_length=genparams.get('max_context_length', maxctx), max_length=genparams.get('max_length', 100), temperature=genparams.get('temperature', 0.7), top_k=genparams.get('top_k', 100), top_a=genparams.get('top_a', 0.0), top_p=genparams.get('top_p', 0.92), min_p=genparams.get('min_p', 0.0), typical_p=genparams.get('typical', 1.0), tfs=genparams.get('tfs', 1.0), rep_pen=genparams.get('rep_pen', 1.0), rep_pen_range=genparams.get('rep_pen_range', 256), presence_penalty=genparams.get('presence_penalty', 0.0), mirostat=genparams.get('mirostat', 0), mirostat_tau=genparams.get('mirostat_tau', 5.0), mirostat_eta=genparams.get('mirostat_eta', 0.1), sampler_order=genparams.get('sampler_order', [6,0,1,3,4,2,5]), seed=genparams.get('sampler_seed', -1), stop_sequence=genparams.get('stop_sequence', []), use_default_badwordsids=genparams.get('use_default_badwordsids', False), stream_sse=stream_flag, grammar=genparams.get('grammar', ''), grammar_retain_state = genparams.get('grammar_retain_state', False), genkey=genparams.get('genkey', ''), trimstop=genparams.get('trim_stop', False), quiet=is_quiet, dynatemp_range=genparams.get('dynatemp_range', 0.0), dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0), smoothing_factor=genparams.get('smoothing_factor', 0.0), logit_biases=genparams.get('logit_bias', {}) ) recvtxt = "" if stream_flag: loop = asyncio.get_event_loop() executor = ThreadPoolExecutor() recvtxt = await loop.run_in_executor(executor, run_blocking) else: recvtxt = run_blocking() if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1: utfprint("\nOutput: " + recvtxt) if api_format==1: res = {"data": {"seqs":[recvtxt]}} elif api_format==3: res = {"id": "cmpl-1", "object": "text_completion", "created": 1, "model": friendlymodelname, "usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200}, "choices": [{"text": recvtxt, "index": 0, "finish_reason": "length"}]} elif api_format==4: res = {"id": "chatcmpl-1", "object": "chat.completion", "created": 1, "model": friendlymodelname, "usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200}, "choices": [{"index": 0, "message":{"role": "assistant", "content": recvtxt,}, "finish_reason": "length"}]} else: res = {"results": [{"text": recvtxt}]} try: return res except Exception as e: print(f"Generate: Error while generating: {e}") async def send_oai_sse_event(self, data): if data=="[DONE]": self.wfile.write(f'data: {data}'.encode()) else: self.wfile.write(f'data: {data}\r\n\r\n'.encode()) self.wfile.flush() async def send_kai_sse_event(self, data): self.wfile.write(f'event: message\n'.encode()) self.wfile.write(f'data: {data}\n\n'.encode()) self.wfile.flush() async def handle_sse_stream(self, api_format): global friendlymodelname self.send_response(200) self.send_header("cache-control", "no-cache") self.send_header("connection", "keep-alive") self.end_headers(content_type='text/event-stream') current_token = 0 incomplete_token_buffer = bytearray() await asyncio.sleep(0.25) #anti race condition, prevent check from overtaking generate try: while True: streamDone = handle.has_finished() #exit next loop on done tokenStr = "" streamcount = handle.get_stream_count() while current_token < streamcount: token = handle.new_token(current_token) if token is None: # Token isnt ready yet, received nullpointer break current_token += 1 newbyte = ctypes.string_at(token) incomplete_token_buffer += bytearray(newbyte) tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore") if tokenSeg!="": incomplete_token_buffer.clear() tokenStr += tokenSeg if tokenStr!="": if api_format == 4: # if oai chat, set format to expected openai streaming response event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":"length","delta":{'role':'assistant','content':tokenStr}}]}) await self.send_oai_sse_event(event_str) elif api_format == 3: # non chat completions event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":"length","text":tokenStr}]}) await self.send_oai_sse_event(event_str) else: event_str = json.dumps({"token": tokenStr}) await self.send_kai_sse_event(event_str) tokenStr = "" else: await asyncio.sleep(0.02) #this should keep things responsive if streamDone: if api_format == 4: # if oai chat, send last [DONE] message consistent with openai format await self.send_oai_sse_event('[DONE]') break except Exception as ex: print("Token streaming was interrupted or aborted!") print(ex) handle.abort_generate() time.sleep(0.2) #short delay # flush buffers, sleep a bit to make sure all data sent, and then force close the connection self.wfile.flush() await asyncio.sleep(0.1) self.close_connection = True await asyncio.sleep(0.05) async def handle_request(self, genparams, api_format, stream_flag): tasks = [] try: if stream_flag: tasks.append(self.handle_sse_stream(api_format)) generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag)) tasks.append(generate_task) await asyncio.gather(*tasks) generate_result = generate_task.result() return generate_result except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost print("An ongoing connection was aborted or interrupted!") print(cae) handle.abort_generate() time.sleep(0.2) #short delay except Exception as e: print(e) def noscript_webui(self): global modelbusy import html import urllib.parse as urlparse parsed_url = urlparse.urlparse(self.path) parsed_dict = urlparse.parse_qs(parsed_url.query) reply = "" status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate" prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else "" max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100 temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.7 top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100 top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9 rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0 use_default_badwordsids = int(parsed_dict['use_default_badwordsids'][0]) if 'use_default_badwordsids' in parsed_dict else 0 gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate" if modelbusy.locked(): status = "Model is currently busy, try again later." elif gencommand: if prompt=="" or max_length<=0: status = "Need a valid prompt and length to generate." else: if max_length>512: max_length = 512 epurl = f"http://localhost:{args.port}" if args.host!="": epurl = f"http://{args.host}:{args.port}" gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"prompt": prompt,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"use_default_badwordsids":use_default_badwordsids} respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload) reply = html.escape(respjson["results"][0]["text"]) status = "Generation Completed" if "generate" in parsed_dict: del parsed_dict["generate"] parsed_dict["prompt"] = prompt + reply parsed_dict["status"] = status updated_query_string = urlparse.urlencode(parsed_dict, doseq=True) updated_path = parsed_url._replace(query=updated_query_string).geturl() self.path = updated_path self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return finalhtml = f''' KoboldCpp NoScript Mode

KoboldCpp NoScript Mode

KoboldCpp can be used without Javascript enabled, however this is not recommended.
If you have Javascript, please use Kobold Lite WebUI instead.


Enter Prompt:

{status}







(Please be patient)
''' finalhtml = finalhtml.encode('utf-8') self.send_response(200) self.send_header('content-length', str(len(finalhtml))) self.end_headers(content_type='text/html') self.wfile.write(finalhtml) def do_GET(self): global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey self.path = self.path.rstrip('/') response_body = None content_type = 'application/json' if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without / content_type = 'text/html' if self.embedded_kailite is None: response_body = (f"Embedded Kobold Lite is not found.
You will have to connect via the main KoboldAI client, or use this URL to connect.").encode() else: response_body = self.embedded_kailite elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without / self.noscript_webui() return elif self.path.endswith(('/api/v1/model', '/api/latest/model')): response_body = (json.dumps({'result': friendlymodelname }).encode()) elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')): response_body = (json.dumps({"value": maxhordelen}).encode()) elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')): response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')): response_body = (json.dumps({"value":""}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')): response_body = (json.dumps({"values": []}).encode()) elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')): response_body = (json.dumps({"result":"1.2.5"}).encode()) elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde response_body = (json.dumps({"value": maxctx}).encode()) elif self.path.endswith(('/api/extra/version')): response_body = (json.dumps({"result":"KoboldCpp","version":KcppVersion}).encode()) elif self.path.endswith(('/api/extra/perf')): lastp = handle.get_last_process_time() laste = handle.get_last_eval_time() lastc = handle.get_last_token_count() totalgens = handle.get_total_gens() stopreason = handle.get_last_stop_reason() lastseed = handle.get_last_seed() uptime = time.time() - start_time response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "total_gens":totalgens, "stop_reason":stopreason, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime}).encode()) elif self.path.endswith('/api/extra/generate/check'): pendtxtStr = "" if requestsinqueue==0 and totalgens>0 and currentusergenkey=="": pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) elif self.path.endswith('/v1/models'): response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode()) elif self.path=="/api": content_type = 'text/html' if self.embedded_kcpp_docs is None: response_body = (f"KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode() else: response_body = self.embedded_kcpp_docs elif self.path=="/v1": content_type = 'text/html' response_body = (f"KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode() elif self.path=="/api/extra/preloadstory": if preloaded_story is None: response_body = (json.dumps({}).encode()) else: response_body = preloaded_story elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')): self.path = "/api" self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return None if response_body is None: self.send_response(404) self.end_headers(content_type='text/html') rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.' self.wfile.write(rp.encode()) else: self.send_response(200) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type=content_type) self.wfile.write(response_body) return def do_POST(self): global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey content_length = int(self.headers['content-length']) body = self.rfile.read(content_length) self.path = self.path.rstrip('/') response_body = None response_code = 200 if self.path.endswith(('/api/extra/tokencount')): try: genparams = json.loads(body) countprompt = genparams.get('prompt', "") rawcountdata = handle.token_count(countprompt.encode("UTF-8")) countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0 # the above protects the server in case the count limit got corrupted countdata = [rawcountdata.ids[i] for i in range(countlimit)] response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode()) except Exception as e: utfprint("Count Tokens - Body Error: " + str(e)) response_code = 400 response_body = (json.dumps({"value": -1}).encode()) elif self.path.endswith('/api/extra/abort'): multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception as e: multiuserkey = "" pass if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): ag = handle.abort_generate() time.sleep(0.1) #short delay before replying response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode()) print("\nGeneration Aborted") elif (multiuserkey!="" and requestsinqueue>0): pendingabortkey = multiuserkey response_body = (json.dumps({"success": "true", "done":"false"}).encode()) else: response_body = (json.dumps({"success": "false", "done":"false"}).encode()) elif self.path.endswith('/api/extra/generate/check'): pendtxtStr = "" multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception as e: multiuserkey = "" if totalgens>0: if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) if response_body is not None: self.send_response(response_code) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type='application/json') self.wfile.write(response_body) return reqblocking = False muint = int(args.multiuser) multiuserlimit = ((muint-1) if muint > 1 else 6) #backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1 if muint > 0 and requestsinqueue < multiuserlimit: reqblocking = True requestsinqueue += 1 if not modelbusy.acquire(blocking=reqblocking): self.send_response(503) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Server is busy; please try again later.", "type": "service_unavailable", }}).encode()) return if reqblocking: requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0 try: sse_stream_flag = False api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat if self.path.endswith('/request'): api_format = 1 if self.path.endswith(('/api/v1/generate', '/api/latest/generate')): api_format = 2 if self.path.endswith('/api/extra/generate/stream'): api_format = 2 sse_stream_flag = True if self.path.endswith('/v1/completions'): api_format = 3 if self.path.endswith('/v1/chat/completions'): api_format = 4 if api_format > 0: genparams = None try: genparams = json.loads(body) except Exception as e: utfprint("Body Err: " + str(body)) return self.send_response(503) is_quiet = args.quiet if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1: utfprint("\nInput: " + json.dumps(genparams)) if args.foreground: bring_terminal_to_foreground() # Check if streaming chat completions, if so, set stream mode to true if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]: sse_stream_flag = True gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag)) try: # Headers are already sent when streaming if not sse_stream_flag: self.send_response(200) genresp = (json.dumps(gen).encode()) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: print("Generate: The response could not be sent, maybe connection was terminated?") handle.abort_generate() time.sleep(0.2) #short delay return finally: modelbusy.release() self.send_response(404) self.end_headers(content_type='text/html') def do_OPTIONS(self): self.send_response(200) self.end_headers(content_type='text/html') def do_HEAD(self): self.send_response(200) self.end_headers(content_type='text/html') def end_headers(self, content_type=None): self.send_header('access-control-allow-origin', '*') self.send_header('access-control-allow-methods', '*') self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey') self.send_header("cache-control", "no-store") if content_type is not None: self.send_header('content-type', content_type) return super(ServerRequestHandler, self).end_headers() def RunServerMultiThreaded(addr, port, embedded_kailite = None, embedded_kcpp_docs = None): global exitcounter sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((addr, port)) sock.listen(5) class Thread(threading.Thread): def __init__(self, i): threading.Thread.__init__(self) self.i = i self.daemon = True self.start() def run(self): global exitcounter, sslvalid handler = ServerRequestHandler(addr, port, embedded_kailite, embedded_kcpp_docs) with http.server.HTTPServer((addr, port), handler, False) as self.httpd: try: self.httpd.socket = sock self.httpd.server_bind = self.server_close = lambda self: None if args.ssl and sslvalid: import ssl certpath = os.path.abspath(args.ssl[0]) keypath = os.path.abspath(args.ssl[1]) self.httpd.socket = ssl.wrap_socket(self.httpd.socket, keyfile=keypath, certfile=certpath, server_side=True) self.httpd.serve_forever() except (KeyboardInterrupt,SystemExit): exitcounter = 999 self.httpd.server_close() sys.exit(0) finally: exitcounter = 999 self.httpd.server_close() sys.exit(0) def stop(self): global exitcounter exitcounter = 999 self.httpd.server_close() numThreads = 12 threadArr = [] for i in range(numThreads): threadArr.append(Thread(i)) while 1: try: time.sleep(10) except KeyboardInterrupt: global exitcounter exitcounter = 999 for i in range(numThreads): threadArr[i].stop() sys.exit(0) # note: customtkinter-5.2.0 def show_new_gui(): from tkinter.filedialog import askopenfilename from tkinter.filedialog import asksaveasfile # if args received, launch if len(sys.argv) != 1: import tkinter as tk root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar root.attributes("-alpha", 0) args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config") root.destroy() if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'): loadconfigfile(args.model_param) if not args.model_param: global exitcounter exitcounter = 999 print("\nNo ggml model or kcpps file was selected. Exiting.") time.sleep(3) sys.exit(2) return import customtkinter as ctk nextstate = 0 #0=exit, 1=launch windowwidth = 540 windowheight = 500 ctk.set_appearance_mode("dark") root = ctk.CTk() root.geometry(str(windowwidth) + "x" + str(windowheight)) root.title("KoboldCpp v"+KcppVersion) root.resizable(False,False) gtooltip_box = None gtooltip_label = None tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50) tabs.grid(row=0, stick="nsew") tabnames= ["Quick Launch", "Hardware", "Tokens", "Model", "Network"] navbuttons = {} navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height"))) navbuttonframe.grid(row=0, column=0, padx=2,pady=2) navbuttonframe.grid_propagate(False) tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height"))) tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2) tabcontentframe.grid_propagate(False) CLDevices = ["1","2","3","4"] CUDevices = ["1","2","3","4","All"] CLDevicesNames = ["","","",""] CUDevicesNames = ["","","","",""] VKDevicesNames = ["","","",""] MaxMemory = [0] tabcontent = {} lib_option_pairs = [ (lib_openblas, "Use OpenBLAS"), (lib_clblast, "Use CLBlast"), (lib_cublas, "Use CuBLAS"), (lib_hipblas, "Use hipBLAS (ROCm)"), (lib_vulkan, "Use Vulkan"), (lib_default, "Use No BLAS"), (lib_clblast_noavx2, "CLBlast NoAVX2 (Old CPU)"), (lib_noavx2, "NoAVX2 Mode (Old CPU)"), (lib_failsafe, "Failsafe Mode (Old CPU)")] openblas_option, clblast_option, cublas_option, hipblas_option, vulkan_option, default_option, clblast_noavx2_option, noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs) # slider data blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"] blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"] contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536"] runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)] antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if not (opt in runopts)] if not any(runopts): exitcounter = 999 show_gui_msgbox("No Backends Available!","KoboldCPP couldn't locate any backends to use (i.e Default, OpenBLAS, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.") time.sleep(3) sys.exit(2) # Vars - should be in scope to be used by multiple widgets gpulayers_var = ctk.StringVar(value="0") threads_var = ctk.StringVar(value=str(default_threads)) runopts_var = ctk.StringVar() gpu_choice_var = ctk.StringVar(value="1") launchbrowser = ctk.IntVar(value=1) highpriority = ctk.IntVar() disablemmap = ctk.IntVar() usemlock = ctk.IntVar() debugmode = ctk.IntVar() keepforeground = ctk.IntVar() quietmode = ctk.IntVar(value=0) lowvram_var = ctk.IntVar() mmq_var = ctk.IntVar(value=1) blas_threads_var = ctk.StringVar() blas_size_var = ctk.IntVar() version_var = ctk.StringVar(value="0") tensor_split_str_vars = ctk.StringVar(value="") rowsplit_var = ctk.IntVar() contextshift = ctk.IntVar(value=1) remotetunnel = ctk.IntVar(value=0) smartcontext = ctk.IntVar() context_var = ctk.IntVar() customrope_var = ctk.IntVar() customrope_scale = ctk.StringVar(value="1.0") customrope_base = ctk.StringVar(value="10000") model_var = ctk.StringVar() lora_var = ctk.StringVar() lora_base_var = ctk.StringVar() preloadstory_var = ctk.StringVar() port_var = ctk.StringVar(value=defaultport) host_var = ctk.StringVar(value="") multiuser_var = ctk.IntVar(value=1) horde_name_var = ctk.StringVar(value="koboldcpp") horde_gen_var = ctk.StringVar(value=maxhordelen) horde_context_var = ctk.StringVar(value=maxhordectx) horde_apikey_var = ctk.StringVar(value="") horde_workername_var = ctk.StringVar(value="") usehorde_var = ctk.IntVar() ssl_cert_var = ctk.StringVar() ssl_key_var = ctk.StringVar() def tabbuttonaction(name): for t in tabcontent: if name == t: tabcontent[t].grid(row=0, column=0) navbuttons[t].configure(fg_color="#6f727b") else: tabcontent[t].grid_forget() navbuttons[t].configure(fg_color="transparent") # Dynamically create tabs + buttons based on values of [tabnames] for idx, name in enumerate(tabnames): tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent") tabcontent[name].grid_propagate(False) if idx == 0: tabcontent[name].grid(row=idx, sticky="nsew") ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw') navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" ) navbuttons[name].grid(row=idx) tabbuttonaction(tabnames[0]) # Quick Launch Tab quick_tab = tabcontent["Quick Launch"] # helper functions def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""): temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue) if command is not None and variable is not None: variable.trace("w", command) temp.grid(row=row,column=column, padx=8, pady=1, stick="nw") if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makelabel(parent, text, row, column=0, tooltiptxt=""): temp = ctk.CTkLabel(parent, text=text) temp.grid(row=row, column=column, padx=8, pady=1, stick="nw") if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""): sliderLabel = makelabel(parent, options[set], row + 1, 1) makelabel(parent, label, row,0,tooltip) def sliderUpdate(a,b,c): sliderLabel.configure(text = options[int(var.get())]) var.trace("w", sliderUpdate) slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1) slider.grid(row=row+1, column=0, padx = 8, stick="w") slider.set(set) return slider def makelabelentry(parent, text, var, row=0, width= 50,tooltip=""): label = makelabel(parent, text, row,0,tooltip) entry = ctk.CTkEntry(parent, width=width, textvariable=var) #you cannot set placeholder text for SHARED variables entry.grid(row=row, column=1, padx= 8, stick="nw") return entry, label def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, tooltiptxt=""): makelabel(parent, text, row,0,tooltiptxt) def getfilename(var, text): fnam = askopenfilename(title=text,filetypes=filetypes) if fnam: var.set(fnam) if onchoosefile: onchoosefile(var.get()) entry = ctk.CTkEntry(parent, width, textvariable=var) button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b)) if singlerow: entry.grid(row=row, column=1, padx=8, stick="w") button.grid(row=row, column=1, padx=144, stick="nw") else: entry.grid(row=row+1, column=0, padx=8, stick="nw") button.grid(row=row+1, column=1, stick="nw") return # decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers # todo: autopick the right number of layers when a model is selected. # run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI def auto_gpu_heuristics(): from subprocess import run, CalledProcessError FetchedCUdevices = [] FetchedCUdeviceMem = [] AMDgpu = None try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found. basepath = os.path.abspath(os.path.dirname(__file__)) output = "" data = None try: output = run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout data = json.loads(output) except Exception as e1: output = run([((os.path.join(basepath, "winclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout data = json.loads(output) plat = 0 dev = 0 lowestclmem = 0 for platform in data["devices"]: dev = 0 for device in platform["online"]: dname = device["CL_DEVICE_NAME"] dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"]) idx = plat+dev*2 if idxidx): CUDevicesNames[idx] = FetchedCUdevices[idx] if AMDgpu: MaxMemory[0] = max(int(FetchedCUdeviceMem[idx]),MaxMemory[0]) else: MaxMemory[0] = max(int(FetchedCUdeviceMem[idx])*1024*1024,MaxMemory[0]) #autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick global exitcounter, runmode_untouched #we do not want to autoselect hip/cublas if the user has already changed their desired backend! if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched: if "Use CuBLAS" in runopts: runopts_var.set("Use CuBLAS") elif "Use hipBLAS (ROCm)" in runopts: runopts_var.set("Use hipBLAS (ROCm)") changed_gpu_choice_var() return def on_picked_model_file(filepath): if filepath.lower().endswith('.kcpps'): #load it as a config file instead with open(filepath, 'r') as f: dict = json.load(f) import_vars(dict) else: autoset_gpu_layers(filepath) def autoset_gpu_layers(filepath): #shitty algo to determine how many layers to use try: global gui_layers_untouched fsize = os.path.getsize(filepath) if fsize>10000000: #dont bother with models < 10mb cs = int(contextsize_text[context_var.get()]) mem = MaxMemory[0] layerlimit = 0 if cs and cs > 4096: fsize *= 1.2 elif cs and cs > 2048: fsize *= 1.1 if mem < fsize*1.6: sizeperlayer = fsize*0.052 layerlimit = int(min(200,mem/sizeperlayer)) else: layerlimit = 200 #assume full offload old_gui_layers_untouched = gui_layers_untouched gui_layers_zeroed = gpulayers_var.get()=="" or gpulayers_var.get()=="0" if (gui_layers_untouched or gui_layers_zeroed) and layerlimit>0: gpulayers_var.set(str(layerlimit)) gui_layers_untouched = old_gui_layers_untouched if gui_layers_zeroed: gui_layers_untouched = True except Exception as ex: pass def show_tooltip(event, tooltip_text=None): nonlocal gtooltip_box, gtooltip_label if not gtooltip_box: gtooltip_box = ctk.CTkToplevel(root) gtooltip_box.configure(fg_color="#ffffe0") gtooltip_box.withdraw() gtooltip_box.overrideredirect(True) gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0") gtooltip_label.pack(expand=True, padx=2, pady=1) else: gtooltip_label.configure(text=tooltip_text) x, y = root.winfo_pointerxy() gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}") gtooltip_box.deiconify() def hide_tooltip(event): nonlocal gtooltip_box if gtooltip_box: gtooltip_box.withdraw() def setup_backend_tooltip(parent): # backend count label with the tooltip function nl = '\n' tooltxt = f"Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) != 6 else "") num_backends_built = makelabel(parent, str(len(runopts)) + f"/8", 5, 2,tooltxt) num_backends_built.grid(row=1, column=1, padx=195, pady=0) num_backends_built.configure(text_color="#00ff00") def changed_gpulayers(*args): global gui_layers_untouched gui_layers_untouched = False pass def changed_gpu_choice_var(*args): global exitcounter if exitcounter > 100: return if gpu_choice_var.get()!="All": try: s = int(gpu_choice_var.get())-1 v = runopts_var.get() if v == "Use Vulkan": quick_gpuname_label.configure(text=VKDevicesNames[s]) gpuname_label.configure(text=VKDevicesNames[s]) elif v == "Use CLBlast" or v == "CLBlast NoAVX2 (Old CPU)": quick_gpuname_label.configure(text=CLDevicesNames[s]) gpuname_label.configure(text=CLDevicesNames[s]) else: quick_gpuname_label.configure(text=CUDevicesNames[s]) gpuname_label.configure(text=CUDevicesNames[s]) except Exception as ex: pass else: quick_gpuname_label.configure(text="") gpuname_label.configure(text="") gpu_choice_var.trace("w", changed_gpu_choice_var) gpulayers_var.trace("w", changed_gpulayers) def changerunmode(a,b,c): global runmode_untouched runmode_untouched = False index = runopts_var.get() if index == "Use Vulkan" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") if index == "Use Vulkan" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)": gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") if gpu_choice_var.get()=="All": gpu_choice_var.set("1") elif index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") else: quick_gpuname_label.grid_forget() gpuname_label.grid_forget() gpu_selector_label.grid_forget() gpu_selector_box.grid_forget() CUDA_gpu_selector_box.grid_forget() quick_gpu_selector_label.grid_forget() quick_gpu_selector_box.grid_forget() CUDA_quick_gpu_selector_box.grid_forget() if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw") quick_lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw") mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw") tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw") tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw") else: lowvram_box.grid_forget() quick_lowvram_box.grid_forget() mmq_box.grid_forget() quick_mmq_box.grid_forget() tensor_split_label.grid_forget() tensor_split_entry.grid_forget() splitmode_box.grid_forget() if index == "Use Vulkan" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") else: gpu_layers_label.grid_forget() gpu_layers_entry.grid_forget() quick_gpu_layers_label.grid_forget() quick_gpu_layers_entry.grid_forget() changed_gpu_choice_var() # presets selector makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(quick_tab) # gpu options quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") quick_gpuname_label = ctk.CTkLabel(quick_tab, text="") quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") quick_gpuname_label.configure(text_color="#ffff00") quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.") quick_lowvram_box = makecheckbox(quick_tab, "Low VRAM", lowvram_var, 4,0,tooltiptxt="Low VRAM mode avoids offloading the KV cache to the GPU.") quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.") # quick boxes quick_boxes = {"Launch Browser": launchbrowser , "Disable MMAP":disablemmap,"Use ContextShift":contextshift,"Remote Tunnel":remotetunnel} quick_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete", "Disable MMAP":"Avoids using mmap to load models if enabled", "Use ContextShift":"Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", "Remote Tunnel":"Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL."} for idx, name, in enumerate(quick_boxes): makecheckbox(quick_tab, name, quick_boxes[name], int(idx/2) +20, idx%2,tooltiptxt=quick_boxes_desc[name]) # context size makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") # load model makefileentry(quick_tab, "Model:", "Select GGML Model File", model_var, 40, 170, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") # Hardware Tab hardware_tab = tabcontent["Hardware"] # presets selector makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(hardware_tab) # gpu options gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") gpuname_label = ctk.CTkLabel(hardware_tab, text="") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.configure(text_color="#ffff00") gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.") tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80) lowvram_box = makecheckbox(hardware_tab, "Low VRAM", lowvram_var, 4,0) mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1) splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0) # threads makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,"How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.") # hardware checkboxes hardware_boxes = {"Launch Browser": launchbrowser, "High Priority" : highpriority, "Disable MMAP":disablemmap, "Use mlock":usemlock, "Debug Mode":debugmode, "Keep Foreground":keepforeground} hardware_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete", "High Priority": "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended.", "Disable MMAP": "Avoids using mmap to load models if enabled", "Use mlock": "Enables mlock, preventing the RAM used to load the model from being paged out.", "Debug Mode": "Enables debug mode, with extra info printed to the terminal.", "Keep Foreground": "Bring KoboldCpp to the foreground every time there is a new generation."} for idx, name, in enumerate(hardware_boxes): makecheckbox(hardware_tab, name, hardware_boxes[name], int(idx/2) +30, idx%2, tooltiptxt=hardware_boxes_desc[name]) # blas thread specifier makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,"How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.") # blas batch size makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.") # force version makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,"If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.") runopts_var.trace('w', changerunmode) changerunmode(1,1,1) global runmode_untouched runmode_untouched = True # Tokens Tab tokens_tab = tabcontent["Tokens"] # tokens checkboxes token_boxes = {"Use SmartContext":smartcontext, "Use ContextShift":contextshift} token_boxes_tip = {"Use SmartContext":"Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.", "Use ContextShift":"Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info."} for idx, name, in enumerate(token_boxes): makecheckbox(tokens_tab, name, token_boxes[name], idx + 1,tooltiptxt=token_boxes_tip[name]) # context size makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale,tooltip="For Linear RoPE scaling. RoPE frequency scale.") customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base,tooltip="For NTK Aware Scaling. RoPE frequency base.") def togglerope(a,b,c): items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry] for idx, item in enumerate(items): if customrope_var.get() == 1: item.grid(row=23 + int(idx/2), column=idx%2, padx=8, stick="nw") else: item.grid_forget() makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.") togglerope(1,1,1) # Model Tab model_tab = tabcontent["Model"] makefileentry(model_tab, "Model:", "Select GGML Model File", model_var, 1, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") makefileentry(model_tab, "Lora:", "Select Lora File",lora_var, 3,tooltiptxt="Select an optional GGML LoRA adapter to use.\nLeave blank to skip.") makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,tooltiptxt="Select an optional F16 GGML LoRA base file to use.\nLeave blank to skip.") makefileentry(model_tab, "Preloaded Story:", "Select Preloaded Story File", preloadstory_var, 7,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.") # Network Tab network_tab = tabcontent["Network"] # interfaces makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip="Select the port to host the KoboldCPP webserver.\n(Defaults to 5001)") makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)") makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.") makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.") makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.") makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 5, width=130 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.") makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 7, width=130, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.") # horde makelabel(network_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10) horde_name_entry, horde_name_label = makelabelentry(network_tab, "Horde Model Name:", horde_name_var, 20, 180,"The model name to be displayed on the AI Horde.") horde_gen_entry, horde_gen_label = makelabelentry(network_tab, "Gen. Length:", horde_gen_var, 21, 50,"The maximum amount to generate per request \nthat this worker will accept jobs for.") horde_context_entry, horde_context_label = makelabelentry(network_tab, "Max Context:",horde_context_var, 22, 50,"The maximum context length \nthat this worker will accept jobs for.") horde_apikey_entry, horde_apikey_label = makelabelentry(network_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,"Your AI Horde API Key that you have registered.") horde_workername_entry, horde_workername_label = makelabelentry(network_tab, "Horde Worker Name:",horde_workername_var, 24, 180,"Your worker's name to be displayed.") def togglehorde(a,b,c): labels = [horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label] for idx, item in enumerate([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry]): if usehorde_var.get() == 1: item.grid(row=20 + idx, column = 1, padx=8, pady=1, stick="nw") labels[idx].grid(row=20 + idx, padx=8, pady=1, stick="nw") else: item.grid_forget() labels[idx].grid_forget() if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="": basefile = os.path.basename(model_var.get()) horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0])) makecheckbox(network_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.") togglehorde(1,1,1) # launch def guilaunch(): if model_var.get() == "": tmp = askopenfilename(title="Select ggml model .bin or .gguf file") model_var.set(tmp) nonlocal nextstate nextstate = 1 root.destroy() pass def export_vars(): args.threads = int(threads_var.get()) args.usemlock = usemlock.get() == 1 args.debugmode = debugmode.get() args.launch = launchbrowser.get()==1 args.highpriority = highpriority.get()==1 args.nommap = disablemmap.get()==1 args.smartcontext = smartcontext.get()==1 args.noshift = contextshift.get()==0 args.remotetunnel = remotetunnel.get()==1 args.foreground = keepforeground.get()==1 args.quiet = quietmode.get()==1 gpuchoiceidx = 0 if gpu_choice_var.get()!="All": gpuchoiceidx = int(gpu_choice_var.get())-1 if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "CLBlast NoAVX2 (Old CPU)": args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx] if runopts_var.get() == "CLBlast NoAVX2 (Old CPU)": args.noavx2 = True if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)": if gpu_choice_var.get()=="All": args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"] else: args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)] if mmq_var.get()==1: args.usecublas.append("mmq") if rowsplit_var.get()==1: args.usecublas.append("rowsplit") if runopts_var.get() == "Use Vulkan": args.usevulkan = [int(gpuchoiceidx)] if gpulayers_var.get(): args.gpulayers = int(gpulayers_var.get()) if runopts_var.get()=="Use No BLAS": args.noblas = True if runopts_var.get()=="NoAVX2 Mode (Old CPU)": args.noavx2 = True if runopts_var.get()=="Failsafe Mode (Old CPU)": args.noavx2 = True args.noblas = True args.nommap = True if tensor_split_str_vars.get()!="": tssv = tensor_split_str_vars.get() if "," in tssv: args.tensor_split = [float(x) for x in tssv.split(",")] else: args.tensor_split = [float(x) for x in tssv.split(" ")] args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get()) args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())]) args.forceversion = 0 if version_var.get()=="" else int(version_var.get()) args.contextsize = int(contextsize_text[context_var.get()]) if customrope_var.get()==1: args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())] args.model_param = None if model_var.get() == "" else model_var.get() args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()]) args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get() args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()]) args.port_param = defaultport if port_var.get()=="" else int(port_var.get()) args.host = host_var.get() args.multiuser = multiuser_var.get() if horde_apikey_var.get()=="" or horde_workername_var.get()=="": args.hordeconfig = None if usehorde_var.get() == 0 else [horde_name_var.get(), horde_gen_var.get(), horde_context_var.get()] else: args.hordeconfig = None if usehorde_var.get() == 0 else [horde_name_var.get(), horde_gen_var.get(), horde_context_var.get(), horde_apikey_var.get(), horde_workername_var.get()] def import_vars(dict): if "threads" in dict: threads_var.set(dict["threads"]) usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0) if "debugmode" in dict: debugmode.set(dict["debugmode"]) launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0) highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0) disablemmap.set(1 if "nommap" in dict and dict["nommap"] else 0) smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0) contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1) remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0) keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0) quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0) if "useclblast" in dict and dict["useclblast"]: if "noavx2" in dict and dict["noavx2"]: if clblast_noavx2_option is not None: runopts_var.set(clblast_noavx2_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) else: if clblast_option is not None: runopts_var.set(clblast_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) elif "usecublas" in dict and dict["usecublas"]: if cublas_option is not None or hipblas_option is not None: if cublas_option: runopts_var.set(cublas_option) elif hipblas_option: runopts_var.set(hipblas_option) lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0) mmq_var.set(1 if "mmq" in dict["usecublas"] else 0) rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0) gpu_choice_var.set("All") for g in range(4): if str(g) in dict["usecublas"]: gpu_choice_var.set(str(g+1)) break elif "usevulkan" in dict: if vulkan_option is not None: runopts_var.set(vulkan_option) gpu_choice_var.set("1") for opt in range(0,4): if opt in dict["usevulkan"]: gpu_choice_var.set(str(opt+1)) break elif "noavx2" in dict and "noblas" in dict and dict["noblas"] and dict["noavx2"]: if failsafe_option is not None: runopts_var.set(failsafe_option) elif "noavx2" in dict and dict["noavx2"]: if noavx2_option is not None: runopts_var.set(noavx2_option) elif "noblas" in dict and dict["noblas"]: if default_option is not None: runopts_var.set(default_option) elif openblas_option is not None: runopts_var.set(openblas_option) if "gpulayers" in dict and dict["gpulayers"]: gpulayers_var.set(dict["gpulayers"]) if "tensor_split" in dict and dict["tensor_split"]: tssep = ','.join(map(str, dict["tensor_split"])) tensor_split_str_vars.set(tssep) if "blasthreads" in dict and dict["blasthreads"]: blas_threads_var.set(str(dict["blasthreads"])) else: blas_threads_var.set("") if "contextsize" in dict and dict["contextsize"]: context_var.set(contextsize_text.index(str(dict["contextsize"]))) if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1: if dict["ropeconfig"][0]>0: customrope_var.set(1) customrope_scale.set(str(dict["ropeconfig"][0])) customrope_base.set(str(dict["ropeconfig"][1])) else: customrope_var.set(0) if "blasbatchsize" in dict and dict["blasbatchsize"]: blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"]))) if "forceversion" in dict and dict["forceversion"]: version_var.set(str(dict["forceversion"])) if "model_param" in dict and dict["model_param"]: model_var.set(dict["model_param"]) if "lora" in dict and dict["lora"]: if len(dict["lora"]) > 1: lora_var.set(dict["lora"][0]) lora_base_var.set(dict["lora"][1]) else: lora_var.set(dict["lora"][0]) if "ssl" in dict and dict["ssl"]: if len(dict["ssl"]) == 2: ssl_cert_var.set(dict["ssl"][0]) ssl_key_var.set(dict["ssl"][1]) if "preloadstory" in dict and dict["preloadstory"]: preloadstory_var.set(dict["preloadstory"]) if "port_param" in dict and dict["port_param"]: port_var.set(dict["port_param"]) if "host" in dict and dict["host"]: host_var.set(dict["host"]) if "multiuser" in dict: multiuser_var.set(dict["multiuser"]) if "hordeconfig" in dict and dict["hordeconfig"] and len(dict["hordeconfig"]) > 1: horde_name_var.set(dict["hordeconfig"][0]) horde_gen_var.set(dict["hordeconfig"][1]) horde_context_var.set(dict["hordeconfig"][2]) if len(dict["hordeconfig"]) > 4: horde_apikey_var.set(dict["hordeconfig"][3]) horde_workername_var.set(dict["hordeconfig"][4]) usehorde_var.set("1") def save_config(): file_type = [("KoboldCpp Settings", "*.kcpps")] filename = asksaveasfile(filetypes=file_type, defaultextension=file_type) if filename == None: return export_vars() file = open(str(filename.name), 'a') file.write(json.dumps(args.__dict__)) file.close() pass def load_config(): file_type = [("KoboldCpp Settings", "*.kcpps")] global runmode_untouched runmode_untouched = False filename = askopenfilename(filetypes=file_type, defaultextension=file_type) if not filename or filename=="": return with open(filename, 'r') as f: dict = json.load(f) import_vars(dict) pass def display_help(): try: import webbrowser as wb wb.open("https://github.com/LostRuins/koboldcpp/wiki") except: print("Cannot launch help in browser.") def display_updates(): try: import webbrowser as wb wb.open("https://github.com/LostRuins/koboldcpp/releases/latest") except: print("Cannot launch updates in browser.") ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5) ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5) ctk.CTkButton(tabs , text = "Help", fg_color="#992222", hover_color="#bb3333", command = display_help, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5) # start a thread that tries to get actual gpu names and layer counts gpuinfo_thread = threading.Thread(target=auto_gpu_heuristics) gpuinfo_thread.start() #submit job in new thread so nothing is waiting # runs main loop until closed or launch clicked root.mainloop() if nextstate==0: exitcounter = 999 print("Exiting by user request.") time.sleep(3) sys.exit(0) else: # processing vars export_vars() if not args.model_param: exitcounter = 999 print("\nNo ggml model file was selected. Exiting.") time.sleep(3) sys.exit(2) def show_gui_msgbox(title,message): print(title + ": " + message) try: from tkinter import messagebox import tkinter as tk root = tk.Tk() root.attributes("-alpha", 0) messagebox.showerror(title=title, message=message) root.destroy() except Exception as ex2: pass def print_with_time(txt): from datetime import datetime print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt) def make_url_request(url, data, method='POST', headers={}): import urllib.request try: request = None if method=='POST': json_payload = json.dumps(data).encode('utf-8') request = urllib.request.Request(url, data=json_payload, headers=headers, method=method) request.add_header('content-type', 'application/json') else: request = urllib.request.Request(url, headers=headers, method=method) response_data = "" with urllib.request.urlopen(request) as response: response_data = response.read().decode('utf-8') json_response = json.loads(response_data) return json_response except urllib.error.HTTPError as e: try: errmsg = e.read().decode('utf-8') print_with_time(f"Error: {e} - {errmsg}") except Exception as e: print_with_time(f"Error: {e}") return None except Exception as e: print_with_time(f"Error: {e} - {response_data}") return None #A very simple and stripped down embedded horde worker with no dependencies def run_horde_worker(args, api_key, worker_name): from datetime import datetime import random global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime epurl = f"http://localhost:{args.port}" if args.host!="": epurl = f"http://{args.host}:{args.port}" def submit_completed_generation(url, jobid, sessionstart, submit_dict): global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter reply = make_url_request_horde(url, submit_dict) if not reply: punishcounter += 1 print_with_time(f"Error, Job submit failed.") else: reward = reply["reward"] session_kudos_earned += reward session_jobs += 1 curtime = datetime.now() elapsedtime=curtime-sessionstart hrs = int(elapsedtime.total_seconds()) // 3600 mins = elapsedtime.seconds // 60 % 60 secs = elapsedtime.seconds % 60 elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s" earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600) print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]') rewardcounter += 1 if rewardcounter > 50: rewardcounter = 0 if exitcounter > 1: exitcounter -= 1 def make_url_request_horde(url, data, method='POST'): headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'} ret = make_url_request(url, data, method, headers) if not ret: print("Make sure your Horde API key and worker name is valid!") return ret current_id = None current_payload = None current_generation = None session_starttime = datetime.now() sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower) exitcounter = 0 print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own KAI Bridge/Scribe worker instead, don't set your API key)") BRIDGE_AGENT = f"KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp" cluster = "https://horde.koboldai.net" while exitcounter < 10: time.sleep(3) readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET') if readygo: print_with_time(f"Embedded Horde Worker '{worker_name}' is started.") break while exitcounter < 10: currentjob_attempts = 0 current_generation = None if punishcounter >= 5: punishcounter = 0 exitcounter += 1 if exitcounter < 10: penaltytime = (2 ** exitcounter) print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.") print_with_time(f"Caution: Too many failed jobs may lead to entering maintenance mode.") time.sleep(60 * penaltytime) else: print_with_time(f"Horde Worker Exit limit reached, too many errors.") #first, make sure we are not generating if modelbusy.locked(): time.sleep(0.2) continue #pop new request gen_dict = { "name": worker_name, "models": [friendlymodelname], "max_length": maxhordelen, "max_context_length": maxhordectx, "priority_usernames": [], "softprompts": [], "bridge_agent": BRIDGE_AGENT, } pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict) if not pop: punishcounter += 1 print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...") time.sleep(10) continue if not pop["id"]: slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3)) time.sleep(slp) sleepy_counter += 1 if sleepy_counter==20: print_with_time(f"No recent jobs, entering low power mode...") continue sleepy_counter = 0 current_id = pop['id'] current_payload = pop['payload'] print(f"") #empty newline print_with_time(f"Job received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...") #do gen while exitcounter < 10: if not modelbusy.locked(): #horde gets a genkey to avoid KCPP overlap current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}" current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload) if current_generation: break else: currentjob_attempts += 1 if currentjob_attempts>5: break print_with_time(f"Server Busy - Not ready to generate...") time.sleep(5) #submit reply print(f"") #empty newline if current_generation: submit_dict = { "id": current_id, "generation": current_generation["results"][0]["text"], "state": "ok" } submiturl = cluster + '/api/v2/generate/text/submit' submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict)) submit_thread.start() #submit job in new thread so nothing is waiting else: print_with_time(f"Error, Abandoned current job due to errors. Getting new job.") current_id = None current_payload = None time.sleep(0.1) if exitcounter<100: print_with_time(f"Horde Worker Shutdown - Too many errors.") else: print_with_time(f"Horde Worker Shutdown - Server Closing.") exitcounter = 999 time.sleep(3) sys.exit(2) def setuptunnel(): # This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet # It should work out of the box on both linux and windows try: import subprocess, re def run_tunnel(): tunnelproc = None tunneloutput = "" tunnelrawlog = "" time.sleep(0.2) if os.name == 'nt': print("Starting Cloudflare Tunnel for Windows, please wait...") tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) else: print("Starting Cloudflare Tunnel for Linux, please wait...") tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) time.sleep(10) def tunnel_reader(): nonlocal tunnelproc,tunneloutput,tunnelrawlog pattern = r'https://[\w\.-]+\.trycloudflare\.com' while True: line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason tunnelrawlog += line+"\n" if not line: return found = re.findall(pattern, line) for x in found: tunneloutput = x print(f"Your remote Kobold API can be found at {tunneloutput}/api") print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1") print("======\n") print(f"Your remote tunnel is ready, please connect to {tunneloutput}") return tunnel_reader_thread = threading.Thread(target=tunnel_reader) tunnel_reader_thread.start() time.sleep(5) if tunneloutput=="": print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}") time.sleep(0.5) tunnelproc.wait() if os.name == 'nt': if os.path.exists("cloudflared.exe") and os.path.getsize("cloudflared.exe") > 1000000: print("Cloudflared file exists, reusing it...") else: print("Downloading Cloudflare Tunnel for Windows...") subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe -o cloudflared.exe", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') else: if os.path.exists("cloudflared-linux-amd64") and os.path.getsize("cloudflared-linux-amd64") > 1000000: print("Cloudflared file exists, reusing it...") else: print("Downloading Cloudflare Tunnel for Linux...") subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared-linux-amd64", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True) tunnel_thread = threading.Thread(target=run_tunnel) tunnel_thread.start() except Exception as ex: print("Remote Tunnel Failed!") print(str(ex)) return None def unload_libs(): global handle import platform OS = platform.system() dll_close = None if OS == "Windows": # pragma: Windows from ctypes import wintypes dll_close = ctypes.windll.kernel32.FreeLibrary dll_close.argtypes = [wintypes.HMODULE] dll_close.restype = ctypes.c_int elif OS == "Darwin": try: try: # macOS 11 (Big Sur). Possibly also later macOS 10s. stdlib = ctypes.CDLL("libc.dylib") except OSError: stdlib = ctypes.CDLL("libSystem") except OSError: # Older macOSs. Not only is the name inconsistent but it's # not even in PATH. stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "Linux": try: stdlib = ctypes.CDLL("") except OSError: stdlib = ctypes.CDLL("libc.so") # Alpine Linux. dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "msys": # msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`. stdlib = ctypes.CDLL("msys-2.0.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "cygwin": stdlib = ctypes.CDLL("cygwin1.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "FreeBSD": # FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number. # It is not in PATH but using its name instead of its path is somehow the # only way to open it. The name must include the .so.7 suffix. stdlib = ctypes.CDLL("libc.so.7") dll_close = stdlib.close if handle and dll_close: print("Unloading Libraries...") dll_close(handle._handle) del handle.load_model del handle.generate del handle.new_token del handle.get_stream_count del handle.has_finished del handle.get_last_eval_time del handle.get_last_process_time del handle.get_last_token_count del handle.get_last_seed del handle.get_total_gens del handle.get_last_stop_reason del handle.abort_generate del handle.token_count del handle.get_pending_output del handle handle = None def loadconfigfile(filename): print("Loading kcpps configuration file...") with open(filename, 'r') as f: config = json.load(f) for key, value in config.items(): setattr(args, key, value) def sanitize_string(input_string): # alphanumeric characters, dots, dashes, and underscores import re sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string) return sanitized_string def main(launch_args,start_server=True): global args, friendlymodelname args = launch_args embedded_kailite = None embedded_kcpp_docs = None if args.config and len(args.config)==1: if isinstance(args.config[0], str) and os.path.exists(args.config[0]): loadconfigfile(args.config[0]) else: global exitcounter exitcounter = 999 print("Specified kcpp config file invalid or not found.") time.sleep(3) sys.exit(2) #positional handling for kcpps files (drag and drop) if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'): loadconfigfile(args.model_param) if not args.model_param: args.model_param = args.model if not args.model_param: #give them a chance to pick a file print("For command line arguments, please refer to --help") print("***") try: show_new_gui() except Exception as ex: exitcounter = 999 ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\nPlease check command line: script.py --help" show_gui_msgbox("Warning, GUI failed to start",ermsg) time.sleep(3) sys.exit(2) #try to read story if provided if args.preloadstory: if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory): print(f"Preloading saved story {args.preloadstory} into server...") with open(args.preloadstory, mode='rb') as f: global preloaded_story preloaded_story = f.read() print("Saved story preloaded.") else: print(f"Warning: Saved story file {args.preloadstory} invalid or not found. No story will be preloaded into server.") # sanitize and replace the default vanity name. remember me.... if args.model_param!="": newmdldisplayname = os.path.basename(args.model_param) newmdldisplayname = os.path.splitext(newmdldisplayname)[0] friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname) if args.hordeconfig and args.hordeconfig[0]!="": global maxhordelen, maxhordectx, showdebug friendlymodelname = args.hordeconfig[0] if args.debugmode == 1: friendlymodelname = "debug-" + friendlymodelname if not friendlymodelname.startswith("koboldcpp/"): friendlymodelname = "koboldcpp/" + friendlymodelname if len(args.hordeconfig) > 1: maxhordelen = int(args.hordeconfig[1]) if len(args.hordeconfig) > 2: maxhordectx = int(args.hordeconfig[2]) if args.debugmode == 0: args.debugmode = -1 if args.debugmode != 1: showdebug = False if args.highpriority: print("Setting process to Higher Priority - Use Caution") try: import psutil os_used = sys.platform process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU oldprio = process.nice() if os_used == "win32": # Windows (either 32-bit or 64-bit) process.nice(psutil.REALTIME_PRIORITY_CLASS) print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice())) elif os_used == "linux": # linux process.nice(psutil.IOPRIO_CLASS_RT) print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice())) else: # MAC OS X or other process.nice(-18) print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice())) except Exception as ex: print("Error, Could not change process priority: " + str(ex)) if args.contextsize: global maxctx maxctx = args.contextsize init_library() # Note: if blas does not exist and is enabled, program will crash. print("==========") time.sleep(1) if not os.path.exists(args.model_param): exitcounter = 999 print(f"Cannot find model file: {args.model_param}") time.sleep(3) sys.exit(2) if args.lora and args.lora[0]!="": if not os.path.exists(args.lora[0]): exitcounter = 999 print(f"Cannot find lora file: {args.lora[0]}") time.sleep(3) sys.exit(2) else: args.lora[0] = os.path.abspath(args.lora[0]) if len(args.lora) > 1: if not os.path.exists(args.lora[1]): exitcounter = 999 print(f"Cannot find lora base: {args.lora[1]}") time.sleep(3) sys.exit(2) else: args.lora[1] = os.path.abspath(args.lora[1]) if not args.blasthreads or args.blasthreads <= 0: args.blasthreads = args.threads modelname = os.path.abspath(args.model_param) print(args) # Flush stdout for win32 issue with regards to piping in terminals, # especially before handing over to C++ context. print(f"==========\nLoading model: {modelname} \n[Threads: {args.threads}, BlasThreads: {args.blasthreads}, SmartContext: {args.smartcontext}, ContextShift: {not (args.noshift)}]", flush=True) loadok = load_model(modelname) print("Load Model OK: " + str(loadok)) if not loadok: exitcounter = 999 print("Could not load model: " + modelname) time.sleep(3) sys.exit(3) try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "klite.embd"), mode='rb') as f: embedded_kailite = f.read() # patch it with extra stuff origStr = "Sorry, Kobold Lite requires Javascript to function." patchedStr = "Sorry, Kobold Lite requires Javascript to function.
You can use KoboldCpp NoScript mode instead." embedded_kailite = embedded_kailite.decode("UTF-8","ignore") embedded_kailite = embedded_kailite.replace(origStr, patchedStr) embedded_kailite = embedded_kailite.encode() print("Embedded Kobold Lite loaded.") except Exception as e: print("Could not find Kobold Lite. Embedded Kobold Lite will not be available.") try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f: embedded_kcpp_docs = f.read() except Exception as e: print("Could not find Embedded KoboldCpp API docs.") if args.port_param!=defaultport: args.port = args.port_param global sslvalid if args.ssl: if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]): sslvalid = True print("SSL configuration is valid and will be used.") else: print("Your SSL configuration is INVALID. SSL will not be used.") epurl = "" httpsaffix = ("https" if sslvalid else "http") if args.host=="": epurl = f"{httpsaffix}://localhost:{args.port}" else: epurl = f"{httpsaffix}://{args.host}:{args.port}" if not args.remotetunnel: print(f"Starting Kobold API on port {args.port} at {epurl}/api/") print(f"Starting OpenAI Compatible API on port {args.port} at {epurl}/v1/") if args.launch: try: import webbrowser as wb wb.open(epurl) except: print("--launch was set, but could not launch web browser automatically.") if args.hordeconfig and len(args.hordeconfig)>4: horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordeconfig[3],args.hordeconfig[4])) horde_thread.daemon = True horde_thread.start() #if post-ready script specified, execute it if args.onready: def onready_subprocess(): import subprocess print("Starting Post-Load subprocess...") subprocess.run(args.onready[0], shell=True) timer_thread = threading.Timer(1, onready_subprocess) #1 second delay timer_thread.start() if args.benchmark is not None: from datetime import datetime, timezone global libname start_server = False save_to_file = (args.benchmark!="stdout" and args.benchmark!="") benchmaxctx = (2048 if maxctx>2048 else maxctx) benchlen = 100 benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0]) if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000: print(f"\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.") save_to_file = False if save_to_file: print(f"\nRunning benchmark (Save to File: {args.benchmark})...") else: print(f"\nRunning benchmark (Not Saved)...") benchprompt = "11111111" for i in range(0,10): #generate massive prompt benchprompt += benchprompt result = generate(benchprompt,memory="",max_length=benchlen,max_context_length=benchmaxctx,use_default_badwordsids=True) result = (result[:5] if len(result)>5 else "") resultok = (result=="11111") t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001 t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001 s_pp = float(benchmaxctx-benchlen)/t_pp s_gen = float(benchlen)/t_gen datetimestamp = datetime.now(timezone.utc) print(f"\nBenchmark Completed - Results:\n======") print(f"Timestamp: {datetimestamp}") print(f"Backend: {libname}") print(f"Layers: {args.gpulayers}") print(f"Model: {benchmodel}") print(f"MaxCtx: {benchmaxctx}") print(f"GenAmount: {benchlen}\n-----") print(f"ProcessingTime: {t_pp:.2f}s") print(f"ProcessingSpeed: {s_pp:.2f}T/s") print(f"GenerationTime: {t_gen:.2f}s") print(f"GenerationSpeed: {s_gen:.2f}T/s") print(f"TotalTime: {(t_pp+t_gen):.2f}s") print(f"Coherent: {resultok}") print(f"Output: {result}\n-----") if save_to_file: try: with open(args.benchmark, "a") as file: file.seek(0, 2) if file.tell() == 0: #empty file file.write(f"Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Coherent,Output") file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{resultok},{result}") except Exception as e: print(f"Error writing benchmark to file: {e}") if start_server: if args.remotetunnel: setuptunnel() # Flush stdout for previous win32 issue so the client can see output. print(f"======\nPlease connect to custom endpoint at {epurl}", flush=True) asyncio.run(RunServerMultiThreaded(args.host, args.port, embedded_kailite, embedded_kcpp_docs)) else: # Flush stdout for previous win32 issue so the client can see output. print(f"Server was not started, main function complete. Idling.", flush=True) def run_in_queue(launch_args, input_queue, output_queue): main(launch_args, start_server=False) output_queue.put({'command': 'complete'}) while True: if not input_queue.empty(): while not input_queue.empty(): data = input_queue.get() if data['command'] == 'generate': (args, kwargs) = data['data'] output_queue.put({'command': 'generated text', 'data': generate(*args, **kwargs)}) time.sleep(0.2) def start_in_seperate_process(launch_args): import multiprocessing input_queue = multiprocessing.Queue() output_queue = multiprocessing.Queue() p = multiprocessing.Process(target=run_in_queue, args=(launch_args, input_queue, output_queue)) p.start() return (output_queue, input_queue, p) if __name__ == '__main__': print("***\nWelcome to KoboldCpp - Version " + KcppVersion) # just update version manually # print("Python version: " + sys.version) parser = argparse.ArgumentParser(description='KoboldCpp Server') modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args modelgroup.add_argument("--model", help="Model file to load", nargs="?") modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?") portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args portgroup.add_argument("--port", help="Port to listen on", default=defaultport, type=int, action='store') portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store') parser.add_argument("--host", help="Host IP to listen on. If empty, all routable interfaces are accepted.", default="") parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true') parser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+') parser.add_argument("--config", help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1) physical_core_limit = 1 if os.cpu_count()!=None and os.cpu_count()>1: physical_core_limit = int(os.cpu_count()/2) default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1)) parser.add_argument("--threads", help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=default_threads) parser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0) parser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true') parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 2048)", type=int,choices=[256, 512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536], default=2048) parser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512) parser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+') parser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently.", action='store_true') parser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true') parser.add_argument("--bantokens", help="You can manually specify a list of token SUBSTRINGS that the AI cannot use. This bans ALL instances of that substring.", metavar=('[token_substrings]'), nargs='+') parser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0) parser.add_argument("--nommap", help="If set, do not use mmap to load newer models", action='store_true') parser.add_argument("--usemlock", help="For Apple Systems. Force system to keep model in RAM rather than swapping or compressing", action='store_true') parser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices. Does not work with --clblast.", action='store_true') parser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0) parser.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true') parser.add_argument("--hordeconfig", help="Sets the display model name to something else, for easy use on AI Horde. Optional additional parameters set the horde max genlength, max ctxlen, API key and worker name.",metavar=('[hordemodelname]', '[hordegenlength] [hordemaxctx] [hordeapikey] [hordeworkername]'), nargs='+') compatgroup = parser.add_mutually_exclusive_group() compatgroup.add_argument("--noblas", help="Do not use OpenBLAS for accelerated prompt ingestion", action='store_true') compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2) compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit']) compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None) parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=0) parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+') parser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1) parser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None) parser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=0) parser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true') parser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true') parser.add_argument("--preloadstory", help="Configures a prepared story json save file to be hosted on the server, which frontends (such as Kobold Lite) can access over the API.", default="") parser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running --hordeconfig.", action='store_true') parser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+') # #deprecated hidden args. they do nothing. do not use # parser.add_argument("--psutil_set_threads", action='store_true', help=argparse.SUPPRESS) # parser.add_argument("--stream", action='store_true', help=argparse.SUPPRESS) # parser.add_argument("--unbantokens", action='store_true', help=argparse.SUPPRESS) # parser.add_argument("--usemirostat", action='store_true', help=argparse.SUPPRESS) main(parser.parse_args(),start_server=True)