//This is Concedo's shitty adapter for adding python bindings for llama //Considerations: //Don't want to use pybind11 due to dependencies on MSVCC //ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! //Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. //No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields //Python will ALWAYS provide the memory, we just write to it. #include #include "model_adapter.h" #include "otherarch/otherarch.h" //concat source files into one file for compilation purposes #include "otherarch/utils.cpp" #include "otherarch/gptj_v1.cpp" #include "otherarch/gptj_v2.cpp" #include "otherarch/gpt2_v1.cpp" #include "otherarch/gpt2_v2.cpp" //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) static FileFormat file_format = FileFormat::BADFORMAT; static gpt_vocab vocab; static gptj_model_v1 model_v1; static gptj_model model_v2; static gpt2_v1_model model_gpt2_v1; static gpt2_model model_gpt2_v2; static gpt_params params; static int n_past = 0; static int n_threads = 4; static int n_batch = 8; static std::string modelname; static std::vector last_n_tokens; static std::vector current_context_tokens; static size_t mem_per_token = 0; static std::vector logits; inline bool IsNanCheck(float f) { const unsigned int u = *(unsigned int*)&f; return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan. } ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format) { ggml_time_init(); file_format = in_file_format; n_threads = params.n_threads = inputs.threads; n_batch = params.n_batch = inputs.batch_size; modelname = params.model = inputs.model_filename; params.memory_f16 = inputs.f16_kv; params.n_ctx = inputs.max_context_length; model_v1.hparams.n_ctx = model_v2.hparams.n_ctx = model_gpt2_v1.hparams.n_ctx = model_gpt2_v2.hparams.n_ctx = params.n_ctx; if (file_format == FileFormat::GPT2_1) { ModelLoadResult res = legacy_gpt2_model_load(params.model, model_gpt2_v1, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); return res; } // determine the required inference memory per token: legacy_gpt2_eval(model_gpt2_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::GPT2_2) { ModelLoadResult res = gpt2_model_load(params.model, model_gpt2_v2, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); return res; } // determine the required inference memory per token: gpt2_eval(model_gpt2_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) { ModelLoadResult res = legacy_gptj_model_load(params.model, model_v1, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); return res; } // determine the required inference memory per token: legacy_gptj_eval(model_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); //if the logits are NAN, it means the model is incompatible if(logits.size()>0 && IsNanCheck(logits[0])) { printf("\nBad Logits detected! Retrying GPT-J model loading..."); ggml_v1_free(model_v1.ctx); return ModelLoadResult::RETRY_LOAD; } return ModelLoadResult::SUCCESS; } else { ModelLoadResult loadresult = gptj_model_load(params.model, model_v2, vocab); if (loadresult == ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return loadresult; } else if (loadresult == ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); return loadresult; } // determine the required inference memory per token: gptj_eval(model_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); //if the logits are NAN, it means the model is incompatible if(logits.size()>0 && IsNanCheck(logits[0])) { printf("\nBad Logits detected! Retrying GPT-J model loading..."); ggml_free(model_v2.ctx); return ModelLoadResult::RETRY_LOAD; } return ModelLoadResult::SUCCESS; } } generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output) { params.prompt = inputs.prompt; params.seed = inputs.seed; params.n_predict = inputs.max_length; params.top_k = inputs.top_k; params.top_p = inputs.top_p; params.temp = inputs.temperature; params.repeat_last_n = inputs.rep_pen_range; params.repeat_penalty = inputs.rep_pen; params.n_ctx = inputs.max_context_length; params.n_batch = n_batch; params.n_threads = n_threads; if (params.repeat_last_n < 1) { params.repeat_last_n = 1; } if (params.top_k < 1) { params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number } if (params.seed <= 0) { params.seed = time(NULL); } // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); //truncate to front of the prompt if its too long int32_t nctx = params.n_ctx; if (embd_inp.size() + params.n_predict > nctx) { int offset = embd_inp.size() - nctx + params.n_predict; embd_inp = std::vector(embd_inp.begin() + offset, embd_inp.end()); } //determine how much npast we have to rewind from the current state std::vector embd; int last_n_size = params.repeat_last_n; last_n_tokens.resize(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); n_past = 0; //fast forward the past based on identical tokens, stop once a divergence is noted int embd_inp_len = embd_inp.size(); for (int i = 0; i < current_context_tokens.size(); ++i) { if (current_context_tokens[i] == embd_inp[i]) { n_past += 1; last_n_tokens.push_back(current_context_tokens[i]); } else { break; } if ((i + 2) >= embd_inp_len) { break; } } last_n_tokens.erase(last_n_tokens.begin(), last_n_tokens.begin() + n_past); embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_past); //if using BLAS and prompt is big enough, switch to single thread and use a huge batch // bool approved_format = (file_format!=FileFormat::GPT2_1 && file_format!=FileFormat::GPTJ_1 && file_format!=FileFormat::GPTJ_2); // bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas()); bool blasmode = false; int original_batch = params.n_batch; int original_threads = params.n_threads; if (blasmode) { params.n_batch = 512; //received reports of 1024 and above crashing on some models params.n_threads = 1; } current_context_tokens.resize(n_past); int remaining_tokens = params.n_predict; int input_consumed = 0; std::mt19937 rng(params.seed); std::string concat_output = ""; bool startedsampling = false; timer_start(); double time1 = 0, time2 = 0; unsigned int embd_inp_size = embd_inp.size(); int32_t n_vocab = 0; if(file_format == FileFormat::GPTJ_1||file_format == FileFormat::GPTJ_2) { n_vocab = model_v1.hparams.n_vocab; } else if(file_format == FileFormat::GPTJ_3) { n_vocab = model_v2.hparams.n_vocab; } else if(file_format == FileFormat::GPT2_1) { n_vocab = model_gpt2_v1.hparams.n_vocab; } else if(file_format == FileFormat::GPT2_2) { n_vocab = model_gpt2_v2.hparams.n_vocab; } else { printf("Bad format!"); } printf("\n"); while (remaining_tokens > 0) { gpt_vocab::id id = 0; // predict unsigned int embdsize = embd.size(); if (embdsize > 0) { //print progress if (!startedsampling) { printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp_size); } else { printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict); } bool evalres = false; //print_tok_vec(logits); if(file_format==FileFormat::GPT2_1) { evalres = legacy_gpt2_eval(model_gpt2_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else if(file_format==FileFormat::GPT2_2) { evalres = gpt2_eval(model_gpt2_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2) { evalres = legacy_gptj_eval(model_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else { evalres = gptj_eval(model_v2, params.n_threads, n_past, embd, logits, mem_per_token); } if (!evalres) { fprintf(stderr, "Failed to predict\n"); snprintf(output.text, sizeof(output.text), "%s", ""); output.status = 0; return output; } } n_past += embd.size(); embd.clear(); if ((int)embd_inp.size() <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; if (!startedsampling) { startedsampling = true; params.n_batch = original_batch; params.n_threads = original_threads; time1 = timer_check(); timer_start(); printf("\n"); } { // set the logit of the eos token (2) to zero to avoid sampling it logits[50256] = (logits[50256]<0?logits[50256]:0); //gpt2 uses negative logits, so we cant zero it id = gptj_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); current_context_tokens.push_back(id); } // add it to the context embd.push_back(id); // decrement remaining sampling budget --remaining_tokens; for (auto id : embd) { concat_output += vocab.id_to_token[id].c_str(); } } else { // some user input remains from prompt or interaction, forward it to processing while ((int)embd_inp.size() > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); current_context_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int)embd.size() >= params.n_batch) { break; } } } } time2 = timer_check(); float pt1 = (time1*1000.0/(embd_inp_size==0?1:embd_inp_size)); float pt2 = (time2*1000.0/(params.n_predict==0?1:params.n_predict)); printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2)); fflush(stdout); output.status = 1; snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str()); return output; }