#!/usr/bin/env python3 import argparse import os import numpy as np import importlib from pathlib import Path from transformers import AutoTokenizer, AutoConfig, AutoModel import torch unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') parser = argparse.ArgumentParser(description='Process model with specified path') parser.add_argument('--model-path', '-m', help='Path to the model') args = parser.parse_args() model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path) if model_path is None: parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable") tokenizer = AutoTokenizer.from_pretrained(model_path) if unreleased_model_name: model_name_lower = unreleased_model_name.lower() unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" class_name = f"{unreleased_model_name}Model" print(f"Importing unreleased model module: {unreleased_module_path}") try: model_class = getattr(importlib.import_module(unreleased_module_path), class_name) model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained except (ImportError, AttributeError) as e: print(f"Failed to import or load model: {e}") exit(1) else: model = AutoModel.from_pretrained(model_path) print(f"Model class: {type(model)}") #print(f"Model file: {type(model).__module__}") config = AutoConfig.from_pretrained(model_path) model_name = os.path.basename(model_path) texts = [ "Hello world today" ] encoded = tokenizer( texts, padding=True, truncation=True, return_tensors="pt" ) tokens = encoded['input_ids'][0] token_strings = tokenizer.convert_ids_to_tokens(tokens) for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)): print(f"{token_id:6d} -> '{token_str}'") with torch.no_grad(): outputs = model(**encoded) hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size] # Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior) all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size] print(f"Hidden states shape: {hidden_states.shape}") print(f"All embeddings shape: {all_embeddings.shape}") print(f"Embedding dimension: {all_embeddings.shape[1]}") # Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE n_embd = all_embeddings.shape[1] n_embd_count = all_embeddings.shape[0] print() # Empty line to match C++ output for j in range(n_embd_count): embedding = all_embeddings[j] print(f"embedding {j}: ", end="") # Print first 3 values for i in range(min(3, n_embd)): print(f"{embedding[i]:9.6f} ", end="") print(" ... ", end="") # Print last 3 values for i in range(n_embd - 3, n_embd): print(f"{embedding[i]:9.6f} ", end="") print() # New line print() # Final empty line to match C++ output data_dir = Path("data") data_dir.mkdir(exist_ok=True) bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin" txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt" # Save all embeddings flattened (matching what embedding.cpp would save if it did) flattened_embeddings = all_embeddings.flatten() flattened_embeddings.astype(np.float32).tofile(bin_filename) with open(txt_filename, "w") as f: f.write(f"# Model class: {model_name}\n") f.write(f"# Tokens: {token_strings}\n") f.write(f"# Shape: {all_embeddings.shape}\n") f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n") for j in range(n_embd_count): f.write(f"# Token {j} ({token_strings[j]}):\n") for i, value in enumerate(all_embeddings[j]): f.write(f"{j}_{i}: {value:.6f}\n") f.write("\n") print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)") print("") print(f"Saved bin embeddings to: {bin_filename}") print(f"Saved txt embeddings to: {txt_filename}")