#!/usr/bin/env python3 import argparse import os import importlib from pathlib import Path from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig import torch import numpy as np unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') parser = argparse.ArgumentParser(description='Process model with specified path') parser.add_argument('--model-path', '-m', help='Path to the model') args = parser.parse_args() model_path = os.environ.get('MODEL_PATH', args.model_path) if model_path is None: parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable") config = AutoConfig.from_pretrained(model_path) print("Model type: ", config.model_type) print("Vocab size: ", config.vocab_size) print("Hidden size: ", config.hidden_size) print("Number of layers: ", config.num_hidden_layers) print("BOS token id: ", config.bos_token_id) print("EOS token id: ", config.eos_token_id) print("Loading model and tokenizer using AutoTokenizer:", model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) config = AutoConfig.from_pretrained(model_path) if unreleased_model_name: model_name_lower = unreleased_model_name.lower() unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" class_name = f"{unreleased_model_name}ForCausalLM" print(f"Importing unreleased model module: {unreleased_module_path}") try: model_class = getattr(importlib.import_module(unreleased_module_path), class_name) model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained except (ImportError, AttributeError) as e: print(f"Failed to import or load model: {e}") exit(1) else: model = AutoModelForCausalLM.from_pretrained(model_path) model_name = os.path.basename(model_path) # Printing the Model class to allow for easier debugging. This can be useful # when working with models that have not been publicly released yet and this # migth require that the concrete class is imported and used directly instead # of using AutoModelForCausalLM. print(f"Model class: {model.__class__.__name__}") prompt = "Hello, my name is" input_ids = tokenizer(prompt, return_tensors="pt").input_ids print(f"Input tokens: {input_ids}") print(f"Input text: {repr(prompt)}") print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") with torch.no_grad(): outputs = model(input_ids) logits = outputs.logits # Extract logits for the last token (next token prediction) last_logits = logits[0, -1, :].cpu().numpy() print(f"Logits shape: {logits.shape}") print(f"Last token logits shape: {last_logits.shape}") print(f"Vocab size: {len(last_logits)}") data_dir = Path("data") data_dir.mkdir(exist_ok=True) bin_filename = data_dir / f"pytorch-{model_name}.bin" txt_filename = data_dir / f"pytorch-{model_name}.txt" # Save to file for comparison last_logits.astype(np.float32).tofile(bin_filename) # Also save as text file for easy inspection with open(txt_filename, "w") as f: for i, logit in enumerate(last_logits): f.write(f"{i}: {logit:.6f}\n") # Print some sample logits for quick verification print(f"First 10 logits: {last_logits[:10]}") print(f"Last 10 logits: {last_logits[-10:]}") # Show top 5 predicted tokens top_indices = np.argsort(last_logits)[-5:][::-1] print("Top 5 predictions:") for idx in top_indices: token = tokenizer.decode([idx]) print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}") print(f"Saved bin logits to: {bin_filename}") print(f"Saved txt logist to: {txt_filename}")