//This is Concedo's shitty adapter for adding python bindings for llama //Considerations: //Don't want to use pybind11 due to dependencies on MSVCC //ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! //Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. //No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields //Python will ALWAYS provide the memory, we just write to it. #include #include "model_adapter.h" #include "otherarch/otherarch.h" //for easier compilation #include "llamaextra.cpp" //concat source files into one file for compilation purposes #include "otherarch/utils.cpp" #include "otherarch/gptj_v1.cpp" #include "otherarch/gptj_v2.cpp" #include "otherarch/gpt2_v1.cpp" #include "otherarch/gpt2_v2.cpp" #include "otherarch/rwkv.cpp" #include "otherarch/neox.cpp" //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) static FileFormat file_format = FileFormat::BADFORMAT; static gpt_vocab vocab; static gptj_model_v1 gptj_ctx_v1; static gptj_model gptj_ctx_v2; static gpt2_v1_model gpt2_ctx_v1; static gpt2_model gpt2_ctx_v2; static stablelm_model neox_ctx; static rwkv_context * rwkv_ctx_v1; static llama_context_params llama_ctx_params; static llama_context * llama_ctx_v1; static gpt_params params; static int n_past = 0; static int n_threads = 4; static int n_batch = 8; static bool useSmartContext = false; static int blasbatchsize = 512; static std::string modelname; static std::vector last_n_tokens; static std::vector current_context_tokens; static size_t mem_per_token = 0; static std::vector logits; static std::vector smartcontext; static std::vector stop_sequence; inline bool IsNanCheck(float f) { const unsigned int u = *(unsigned int*)&f; return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan. } ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format) { ggml_time_init(); file_format = in_file_format; n_threads = params.n_threads = inputs.threads; n_batch = params.n_batch = inputs.batch_size; modelname = params.model = inputs.model_filename; useSmartContext = inputs.use_smartcontext; blasbatchsize = inputs.blasbatchsize; params.memory_f16 = inputs.f16_kv; params.n_ctx = inputs.max_context_length; neox_ctx.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx = params.n_ctx; printf("System Info: %s\n", llama_print_system_info()); if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { llama_ctx_params = llama_context_default_params(); llama_ctx_params.n_ctx = inputs.max_context_length; llama_ctx_params.n_parts = -1; llama_ctx_params.seed = -1; llama_ctx_params.f16_kv = inputs.f16_kv; llama_ctx_params.logits_all = false; llama_ctx_params.use_mmap = inputs.use_mmap; llama_ctx_params.use_mlock = false; llama_ctx_v1 = llama_init_from_file(modelname.c_str(), llama_ctx_params); if (llama_ctx_v1 == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); return ModelLoadResult::FAIL; } if (file_format < FileFormat::GGJT) { printf("\n---\nWarning: Your model has an INVALID or OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format); } if (lora_filename != "") { printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str()); int err = llama_apply_lora_from_file(llama_ctx_v1, lora_filename.c_str(), NULL, n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); return ModelLoadResult::FAIL; } } //determine mem per token const std::vector tmp = {0, 1, 2, 3}; llama_eval(llama_ctx_v1, tmp.data(), tmp.size(), 0, params.n_threads); return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::RWKV_1) { rwkv_ctx_v1 = rwkv_init_from_file(modelname.c_str(), n_threads); //setup buffers for rwkv state auto padding = 512u; auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding; auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding; printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz); rwkv_ctx_v1->state_out = (float *)malloc(statebufsiz); rwkv_ctx_v1->logits_out = (float *)malloc(logitbufsiz); rwkv_ctx_v1->state_in = nullptr; n_batch = 1; std::string word; read_rwkv_vocab(); int vocabsiz = rwkv_vocab.size(); for (int i = 0; i < vocabsiz; i++) { uint32_t len; word = rwkv_vocab[i]; vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } printf("\nRWKV Vocab: %u\n",vocabsiz); bool testeval = rwkv_eval(rwkv_ctx_v1, 0, rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out); if(!testeval) { printf("\nError: RWKV Init Eval Failed!\n"); } logits.resize(vocabsiz); memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*vocabsiz); if (rwkv_ctx_v1 == NULL) { return ModelLoadResult::FAIL; } return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::GPT2_1) { ModelLoadResult res = legacy_gpt2_model_load(params.model, gpt2_ctx_v1, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); return res; } // determine the required inference memory per token: legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::GPT2_2) { ModelLoadResult res = gpt2_model_load(params.model, gpt2_ctx_v2, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); return res; } // determine the required inference memory per token: gpt2_eval(gpt2_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); return ModelLoadResult::SUCCESS; } else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) { ModelLoadResult res = legacy_gptj_model_load(params.model, gptj_ctx_v1, vocab, file_format); if(res==ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return res; } else if(res==ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); return res; } // determine the required inference memory per token: legacy_gptj_eval(gptj_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); //if the logits are NAN, it means the model is incompatible if(logits.size()>0 && IsNanCheck(logits[0])) { printf("\nBad Logits detected! Retrying GPT-J model loading..."); ggml_v1_free(gptj_ctx_v1.ctx); return ModelLoadResult::RETRY_LOAD; } return ModelLoadResult::SUCCESS; } else if(file_format==FileFormat::NEOX_1) { bool res = stablelm_model_load(params.model, neox_ctx, vocab); if(!res) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return ModelLoadResult::FAIL; } // determine the required inference memory per token: stablelm_eval(neox_ctx, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); return ModelLoadResult::SUCCESS; } else { ModelLoadResult loadresult = gptj_model_load(params.model, gptj_ctx_v2, vocab); if (loadresult == ModelLoadResult::FAIL) { fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return loadresult; } else if (loadresult == ModelLoadResult::RETRY_LOAD) { printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); return loadresult; } // determine the required inference memory per token: gptj_eval(gptj_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); //if the logits are NAN, it means the model is incompatible if(logits.size()>0 && IsNanCheck(logits[0])) { printf("\nBad Logits detected! Retrying GPT-J model loading..."); ggml_free(gptj_ctx_v2.ctx); return ModelLoadResult::RETRY_LOAD; } return ModelLoadResult::SUCCESS; } } generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output) { stop_sequence.clear(); for(int x=0;x embd_inp; if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { params.prompt.insert(0, 1, ' '); if (file_format == FileFormat::GGML) { embd_inp = ::legacy_llama_tokenize(llama_ctx_v1, params.prompt, true); } else { embd_inp = ::llama_tokenize(llama_ctx_v1, params.prompt, true); } } else { // tokenize the prompt embd_inp = ::gpt_tokenize(vocab, params.prompt); } //truncate to front of the prompt if its too long int32_t nctx = params.n_ctx; if (embd_inp.size() + params.n_predict > nctx) { int offset = embd_inp.size() - nctx + params.n_predict; embd_inp = std::vector(embd_inp.begin() + offset, embd_inp.end()); } //determine how much npast we have to rewind from the current state std::vector embd; int last_n_size = params.repeat_last_n; last_n_tokens.resize(last_n_size); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); n_past = 0; if (file_format == FileFormat::RWKV_1) { ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true); } else { ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext, false); } //if using BLAS and prompt is big enough, switch to single thread and use a huge batch bool approved_format = (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GPT2_2 || file_format == FileFormat::GPTJ_3 || file_format == FileFormat::NEOX_1); bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas()); // bool blasmode = false; int original_batch = params.n_batch; int original_threads = params.n_threads; if (blasmode) { //for non llama, limit to 256 int bbs = blasbatchsize; if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT) { bbs = (blasbatchsize > 256 ? 256 : blasbatchsize); } params.n_batch = bbs; //received reports of 1024 and above crashing on some models //params.n_threads = 1; //do not limit here anymore. } current_context_tokens.resize(n_past); int remaining_tokens = params.n_predict; int stopper_unused_tokens = 0; int input_consumed = 0; std::mt19937 rng(params.seed); std::string concat_output = ""; bool startedsampling = false; timer_start(); double time1 = 0, time2 = 0; int32_t n_vocab = 0; if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { //do nothing } else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) { n_vocab = gptj_ctx_v1.hparams.n_vocab; } else if(file_format == FileFormat::GPTJ_3) { n_vocab = gptj_ctx_v2.hparams.n_vocab; } else if(file_format == FileFormat::GPT2_1) { n_vocab = gpt2_ctx_v1.hparams.n_vocab; } else if(file_format == FileFormat::GPT2_2) { n_vocab = gpt2_ctx_v2.hparams.n_vocab; } else if(file_format == FileFormat::NEOX_1) { n_vocab = neox_ctx.hparams.n_vocab; } else if(file_format == FileFormat::RWKV_1) { n_vocab = vocab.id_to_token.size(); //handled seperately if(n_past==0) { rwkv_ctx_v1->state_in = nullptr; } else { rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out; //if it's empty, push in the final previous token if(embd_inp.size()==0 && current_context_tokens.size()>0) { embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]); } } } else { printf("Bad format!"); } printf("\n"); while (remaining_tokens > 0) { gpt_vocab::id id = 0; // predict unsigned int embdsize = embd.size(); if (embdsize > 0) { //print progress if (!startedsampling) { printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size()); } else { printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict); } bool evalres = false; if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { evalres = (llama_eval(llama_ctx_v1, embd.data(), embdsize, n_past, params.n_threads)==0); } else if(file_format==FileFormat::RWKV_1) { evalres = rwkv_eval(rwkv_ctx_v1, embd[0], rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out); memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*rwkv_vocab.size()); rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out; } else if(file_format==FileFormat::GPT2_1) { evalres = legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else if(file_format==FileFormat::GPT2_2) { evalres = gpt2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else if(file_format==FileFormat::NEOX_1) { evalres = stablelm_eval(neox_ctx, params.n_threads, n_past, embd, logits, mem_per_token); } else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2) { evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); } else { evalres = gptj_eval(gptj_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token); } if (!evalres) { fprintf(stderr, "Failed to predict\n"); snprintf(output.text, sizeof(output.text), "%s", ""); output.status = 0; return output; } } n_past += embd.size(); embd.clear(); if ((int)embd_inp.size() <= input_consumed) { // out of user input, sample next token const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; const float repeat_penalty = params.repeat_penalty; if (!startedsampling) { startedsampling = true; params.n_batch = original_batch; params.n_threads = original_threads; time1 = timer_check(); timer_start(); printf("\n"); } if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { auto logits = llama_get_logits(llama_ctx_v1); // set the logit of the eos token (2) to zero to avoid sampling it logits[llama_token_eos()] = 0; //set logits of opening square bracket to zero. logits[518] = 0; logits[29961] = 0; id = llama_sample_top_p_top_k(llama_ctx_v1, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); } else { // set the logit of the eos token (2) to zero to avoid sampling it if((file_format == FileFormat::GPT2_1 || file_format == FileFormat::GPT2_2 || file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2 || file_format == FileFormat::GPTJ_3) && logits.size()>50256) { logits[50256] = (logits[50256] < 0 ? logits[50256] : 0); } //gpt2 uses negative logits, so we cant zero it id = gptj_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng); } last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(id); current_context_tokens.push_back(id); // add it to the context embd.push_back(id); // decrement remaining sampling budget --remaining_tokens; if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT) { concat_output += llama_token_to_str(llama_ctx_v1, id); } else { for (auto id : embd) { concat_output += vocab.id_to_token[id].c_str(); } } for (const auto &matched : stop_sequence) { if (concat_output.find(matched) != std::string::npos) { stopper_unused_tokens = remaining_tokens; remaining_tokens = 0; printf("\n(Stop sequence triggered: <%s>)", matched.c_str()); break; } } } else { // some user input remains from prompt or interaction, forward it to processing while ((int)embd_inp.size() > input_consumed) { embd.push_back(embd_inp[input_consumed]); last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.push_back(embd_inp[input_consumed]); current_context_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int)embd.size() >= params.n_batch) { break; } } } } time2 = timer_check(); float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size())); int realnpredict = params.n_predict-stopper_unused_tokens; float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict)); printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs", time1, pt1, time2, pt2, (time1 + time2)); fflush(stdout); output.status = 1; snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str()); return output; }