# A hacky little script from Concedo that exposes llama.cpp function bindings # allowing it to be used via a simulated kobold api endpoint # it's not very usable as there is a fundamental flaw with llama.cpp # which causes generation delay to scale linearly with original prompt length. import ctypes import os import argparse import json, http.server, threading, socket, sys, time class load_model_inputs(ctypes.Structure): _fields_ = [("threads", ctypes.c_int), ("max_context_length", ctypes.c_int), ("batch_size", ctypes.c_int), ("f16_kv", ctypes.c_bool), ("model_filename", ctypes.c_char_p), ("n_parts_overwrite", ctypes.c_int)] class generation_inputs(ctypes.Structure): _fields_ = [("seed", ctypes.c_int), ("prompt", ctypes.c_char_p), ("max_context_length", ctypes.c_int), ("max_length", ctypes.c_int), ("temperature", ctypes.c_float), ("top_k", ctypes.c_int), ("top_p", ctypes.c_float), ("rep_pen", ctypes.c_float), ("rep_pen_range", ctypes.c_int)] class generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("text", ctypes.c_char * 16384)] dir_path = os.path.dirname(os.path.realpath(__file__)) handle = ctypes.CDLL(os.path.join(dir_path, "llamacpp.dll")) handle.load_model.argtypes = [load_model_inputs] handle.load_model.restype = ctypes.c_bool handle.generate.argtypes = [generation_inputs, ctypes.c_wchar_p] #apparently needed for osx to work. i duno why they need to interpret it that way but whatever handle.generate.restype = generation_outputs def load_model(model_filename,batch_size=8,max_context_length=512,n_parts_overwrite=-1): inputs = load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") inputs.batch_size = batch_size inputs.max_context_length = max_context_length #initial value to use for ctx, can be overwritten inputs.threads = os.cpu_count() inputs.n_parts_overwrite = n_parts_overwrite inputs.f16_kv = True ret = handle.load_model(inputs) return ret def generate(prompt,max_length=20, max_context_length=512,temperature=0.8,top_k=100,top_p=0.85,rep_pen=1.1,rep_pen_range=128,seed=-1): inputs = generation_inputs() outputs = ctypes.create_unicode_buffer(ctypes.sizeof(generation_outputs)) inputs.prompt = prompt.encode("UTF-8") inputs.max_context_length = max_context_length # this will resize the context buffer if changed inputs.max_length = max_length inputs.temperature = temperature inputs.top_k = top_k inputs.top_p = top_p inputs.rep_pen = rep_pen inputs.rep_pen_range = rep_pen_range inputs.seed = seed ret = handle.generate(inputs,outputs) if(ret.status==1): return ret.text.decode("UTF-8") return "" friendlymodelname = "concedo/llamacpp" # local kobold api apparently needs a hardcoded known HF model name maxctx = 2048 maxlen = 128 modelbusy = False class ServerRequestHandler(http.server.SimpleHTTPRequestHandler): sys_version = "" server_version = "ConcedoLlamaForKoboldServer" def __init__(self, addr, port, embedded_kailite): self.addr = addr self.port = port self.embedded_kailite = embedded_kailite def __call__(self, *args, **kwargs): super().__init__(*args, **kwargs) def do_GET(self): global maxctx, maxlen, friendlymodelname if self.path in ["/", "/?"] or self.path.startswith('/?'): if self.embedded_kailite is None: response_body = ( b"Embedded Kobold Lite is not found.
You will have to connect via the main KoboldAI client, or " b"use this URL to connect.").format(self.port).encode() else: response_body = self.embedded_kailite self.send_response(200) self.send_header('Content-Length', str(len(response_body))) self.end_headers() self.wfile.write(response_body) return self.path = self.path.rstrip('/') if self.path.endswith(('/api/v1/model', '/api/latest/model')): self.send_response(200) self.end_headers() result = {'result': friendlymodelname } self.wfile.write(json.dumps(result).encode()) return if self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')): self.send_response(200) self.end_headers() self.wfile.write(json.dumps({"value": maxlen}).encode()) return if self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')): self.send_response(200) self.end_headers() self.wfile.write(json.dumps({"value": maxctx}).encode()) return if self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')): self.send_response(200) self.end_headers() self.wfile.write(json.dumps({"value":""}).encode()) return self.send_response(404) self.end_headers() rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.' self.wfile.write(rp.encode()) return def do_POST(self): global modelbusy content_length = int(self.headers['Content-Length']) body = self.rfile.read(content_length) basic_api_flag = False kai_api_flag = False self.path = self.path.rstrip('/') if modelbusy: self.send_response(503) self.end_headers() self.wfile.write(json.dumps({"detail": { "msg": "Server is busy; please try again later.", "type": "service_unavailable", }}).encode()) return if self.path.endswith('/request'): basic_api_flag = True if self.path.endswith(('/api/v1/generate', '/api/latest/generate')): kai_api_flag = True if basic_api_flag or kai_api_flag: genparams = None try: genparams = json.loads(body) except ValueError as e: self.send_response(503) self.end_headers() return print("\nInput: " + json.dumps(genparams)) modelbusy = True if kai_api_flag: fullprompt = genparams.get('prompt', "") else: fullprompt = genparams.get('text', "") newprompt = fullprompt recvtxt = "" if kai_api_flag: recvtxt = generate( prompt=newprompt, max_context_length=genparams.get('max_context_length', maxctx), max_length=genparams.get('max_length', 50), temperature=genparams.get('temperature', 0.8), top_k=genparams.get('top_k', 200), top_p=genparams.get('top_p', 0.85), rep_pen=genparams.get('rep_pen', 1.1), rep_pen_range=genparams.get('rep_pen_range', 128), seed=-1 ) print("\nOutput: " + recvtxt) res = {"results": [{"text": recvtxt}]} self.send_response(200) self.end_headers() self.wfile.write(json.dumps(res).encode()) else: recvtxt = generate( prompt=newprompt, max_length=genparams.get('max', 50), temperature=genparams.get('temperature', 0.8), top_k=genparams.get('top_k', 200), top_p=genparams.get('top_p', 0.85), rep_pen=genparams.get('rep_pen', 1.1), rep_pen_range=genparams.get('rep_pen_range', 128), seed=-1 ) print("\nOutput: " + recvtxt) res = {"data": {"seqs":[recvtxt]}} self.send_response(200) self.end_headers() self.wfile.write(json.dumps(res).encode()) modelbusy = False return self.send_response(404) self.end_headers() def do_OPTIONS(self): self.send_response(200) self.end_headers() def do_HEAD(self): self.send_response(200) self.end_headers() def end_headers(self): self.send_header('Access-Control-Allow-Origin', '*') self.send_header('Access-Control-Allow-Methods', '*') self.send_header('Access-Control-Allow-Headers', '*') if "/api" in self.path: self.send_header('Content-type', 'application/json') else: self.send_header('Content-type', 'text/html') return super(ServerRequestHandler, self).end_headers() def RunServerMultiThreaded(addr, port, embedded_kailite = None): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((addr, port)) sock.listen(5) class Thread(threading.Thread): def __init__(self, i): threading.Thread.__init__(self) self.i = i self.daemon = True self.start() def run(self): handler = ServerRequestHandler(addr, port, embedded_kailite) with http.server.HTTPServer((addr, port), handler, False) as self.httpd: try: self.httpd.socket = sock self.httpd.server_bind = self.server_close = lambda self: None self.httpd.serve_forever() except (KeyboardInterrupt,SystemExit): self.httpd.server_close() sys.exit(0) finally: self.httpd.server_close() sys.exit(0) def stop(self): self.httpd.server_close() numThreads = 5 threadArr = [] for i in range(numThreads): threadArr.append(Thread(i)) while 1: try: time.sleep(10) except KeyboardInterrupt: for i in range(numThreads): threadArr[i].stop() sys.exit(0) def main(args): ggml_selected_file = args.model_file if not os.path.exists(ggml_selected_file): print(f"Cannot find model file: {ggml_selected_file}") time.sleep(1) sys.exit(2) mdl_nparts = sum(1 for n in range(1, 9) if os.path.exists(f"{ggml_selected_file}.{n}")) + 1 modelname = os.path.abspath(ggml_selected_file) print("Loading model: " + modelname) loadok = load_model(modelname,8,maxctx,mdl_nparts) print("Load Model OK: " + str(loadok)) if not loadok: print("Could not load model: " + modelname) sys.exit(3) try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "klite.embd"), mode='rb') as f: embedded_kailite = f.read().decode().replace('var localmodehost = "127.0.0.1";' , f'var localmodehost = "{args.host}";').encode() print("Embedded Kobold Lite loaded.") except: print("Could not find Kobold Lite. Embedded Kobold Lite will not be available.") print(f"Starting Kobold HTTP Server on port {args.port}") print(f"Please connect to custom endpoint at http://{args.host}:{args.port}") RunServerMultiThreaded(args.host, args.port, embedded_kailite) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Kobold llama.cpp server') parser.add_argument("model_file", help="Model file to load") parser.add_argument("--port", help="Port to listen on", default=5001) parser.add_argument("--host", help="Host IP to listen on", default="127.0.0.1") args = parser.parse_args() main(args)