#!/usr/bin/env python3 #-*- coding: utf-8 -*- # KoboldCpp is an easy-to-use AI text-generation software for GGML models. # It's a single self contained distributable from Concedo, that builds off llama.cpp, # and adds a versatile Kobold API endpoint, additional format support, # backward compatibility, as well as a fancy UI with persistent stories, # editing tools, save formats, memory, world info, author's note, characters, # scenarios and everything Kobold and Kobold Lite have to offer. import ctypes import os, math, re import argparse import platform import base64 import json, sys, http.server, time, asyncio, socket, threading from concurrent.futures import ThreadPoolExecutor sampler_order_max = 7 stop_token_max = 16 ban_token_max = 16 tensor_split_max = 16 logit_bias_max = 16 images_max = 4 bias_min_value = -100.0 bias_max_value = 100.0 class logit_bias(ctypes.Structure): _fields_ = [("token_id", ctypes.c_int32), ("bias", ctypes.c_float)] class token_count_outputs(ctypes.Structure): _fields_ = [("count", ctypes.c_int), ("ids", ctypes.POINTER(ctypes.c_int))] class load_model_inputs(ctypes.Structure): _fields_ = [("threads", ctypes.c_int), ("blasthreads", ctypes.c_int), ("max_context_length", ctypes.c_int), ("low_vram", ctypes.c_bool), ("use_mmq", ctypes.c_bool), ("use_rowsplit", ctypes.c_bool), ("executable_path", ctypes.c_char_p), ("model_filename", ctypes.c_char_p), ("lora_filename", ctypes.c_char_p), ("lora_base", ctypes.c_char_p), ("mmproj_filename", ctypes.c_char_p), ("use_mmap", ctypes.c_bool), ("use_mlock", ctypes.c_bool), ("use_smartcontext", ctypes.c_bool), ("use_contextshift", ctypes.c_bool), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("blasbatchsize", ctypes.c_int), ("debugmode", ctypes.c_int), ("forceversion", ctypes.c_int), ("gpulayers", ctypes.c_int), ("rope_freq_scale", ctypes.c_float), ("rope_freq_base", ctypes.c_float), ("flash_attention", ctypes.c_bool), ("tensor_split", ctypes.c_float * tensor_split_max), ("quant_k", ctypes.c_int), ("quant_v", ctypes.c_int)] class generation_inputs(ctypes.Structure): _fields_ = [("seed", ctypes.c_int), ("prompt", ctypes.c_char_p), ("memory", ctypes.c_char_p), ("images", ctypes.c_char_p * images_max), ("max_context_length", ctypes.c_int), ("max_length", ctypes.c_int), ("temperature", ctypes.c_float), ("top_k", ctypes.c_int), ("top_a", ctypes.c_float), ("top_p", ctypes.c_float), ("min_p", ctypes.c_float), ("typical_p", ctypes.c_float), ("tfs", ctypes.c_float), ("rep_pen", ctypes.c_float), ("rep_pen_range", ctypes.c_int), ("rep_pen_slope", ctypes.c_float), ("presence_penalty", ctypes.c_float), ("mirostat", ctypes.c_int), ("mirostat_tau", ctypes.c_float), ("mirostat_eta", ctypes.c_float), ("sampler_order", ctypes.c_int * sampler_order_max), ("sampler_len", ctypes.c_int), ("allow_eos_token", ctypes.c_bool), ("bypass_eos_token", ctypes.c_bool), ("render_special", ctypes.c_bool), ("stop_sequence", ctypes.c_char_p * stop_token_max), ("stream_sse", ctypes.c_bool), ("grammar", ctypes.c_char_p), ("grammar_retain_state", ctypes.c_bool), ("quiet", ctypes.c_bool), ("dynatemp_range", ctypes.c_float), ("dynatemp_exponent", ctypes.c_float), ("smoothing_factor", ctypes.c_float), ("logit_biases", logit_bias * logit_bias_max), ("banned_tokens", ctypes.c_char_p * ban_token_max)] class generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("stopreason", ctypes.c_int), ("text", ctypes.c_char_p)] class sd_load_model_inputs(ctypes.Structure): _fields_ = [("model_filename", ctypes.c_char_p), ("executable_path", ctypes.c_char_p), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("threads", ctypes.c_int), ("quant", ctypes.c_int), ("taesd", ctypes.c_bool), ("vae_filename", ctypes.c_char_p), ("lora_filename", ctypes.c_char_p), ("lora_multiplier", ctypes.c_float), ("debugmode", ctypes.c_int)] class sd_generation_inputs(ctypes.Structure): _fields_ = [("prompt", ctypes.c_char_p), ("negative_prompt", ctypes.c_char_p), ("init_images", ctypes.c_char_p), ("denoising_strength", ctypes.c_float), ("cfg_scale", ctypes.c_float), ("sample_steps", ctypes.c_int), ("width", ctypes.c_int), ("height", ctypes.c_int), ("seed", ctypes.c_int), ("sample_method", ctypes.c_char_p), ("clip_skip", ctypes.c_int), ("quiet", ctypes.c_bool)] class sd_generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("data", ctypes.c_char_p)] class whisper_load_model_inputs(ctypes.Structure): _fields_ = [("model_filename", ctypes.c_char_p), ("executable_path", ctypes.c_char_p), ("clblast_info", ctypes.c_int), ("cublas_info", ctypes.c_int), ("vulkan_info", ctypes.c_char_p), ("debugmode", ctypes.c_int)] class whisper_generation_inputs(ctypes.Structure): _fields_ = [("prompt", ctypes.c_char_p), ("audio_data", ctypes.c_char_p), ("quiet", ctypes.c_bool)] class whisper_generation_outputs(ctypes.Structure): _fields_ = [("status", ctypes.c_int), ("data", ctypes.c_char_p)] handle = None def getdirpath(): return os.path.dirname(os.path.realpath(__file__)) def getabspath(): return os.path.dirname(os.path.abspath(__file__)) def file_exists(filename): return os.path.exists(os.path.join(getdirpath(), filename)) def pick_existant_file(ntoption,nonntoption): precompiled_prefix = "precompiled_" ntexist = file_exists(ntoption) nonntexist = file_exists(nonntoption) precompiled_ntexist = file_exists(precompiled_prefix+ntoption) precompiled_nonntexist = file_exists(precompiled_prefix+nonntoption) if os.name == 'nt': if not ntexist and precompiled_ntexist: return (precompiled_prefix+ntoption) if nonntexist and not ntexist: return nonntoption return ntoption else: if not nonntexist and precompiled_nonntexist: return (precompiled_prefix+nonntoption) if ntexist and not nonntexist: return ntoption return nonntoption lib_default = pick_existant_file("koboldcpp_default.dll","koboldcpp_default.so") lib_failsafe = pick_existant_file("koboldcpp_failsafe.dll","koboldcpp_failsafe.so") lib_openblas = pick_existant_file("koboldcpp_openblas.dll","koboldcpp_openblas.so") lib_noavx2 = pick_existant_file("koboldcpp_noavx2.dll","koboldcpp_noavx2.so") lib_clblast = pick_existant_file("koboldcpp_clblast.dll","koboldcpp_clblast.so") lib_clblast_noavx2 = pick_existant_file("koboldcpp_clblast_noavx2.dll","koboldcpp_clblast_noavx2.so") lib_cublas = pick_existant_file("koboldcpp_cublas.dll","koboldcpp_cublas.so") lib_hipblas = pick_existant_file("koboldcpp_hipblas.dll","koboldcpp_hipblas.so") lib_vulkan = pick_existant_file("koboldcpp_vulkan.dll","koboldcpp_vulkan.so") lib_vulkan_noavx2 = pick_existant_file("koboldcpp_vulkan_noavx2.dll","koboldcpp_vulkan_noavx2.so") libname = "" def init_library(): global handle, args, libname global lib_default,lib_failsafe,lib_openblas,lib_noavx2,lib_clblast,lib_clblast_noavx2,lib_cublas,lib_hipblas,lib_vulkan,lib_vulkan_noavx2 libname = "" use_openblas = False # if true, uses OpenBLAS for acceleration. libopenblas.dll must exist in the same dir. use_clblast = False #uses CLBlast instead use_cublas = False #uses cublas instead use_hipblas = False #uses hipblas instead use_noavx2 = False #uses no avx2 instructions use_failsafe = False #uses no intrinsics, failsafe mode use_vulkan = False #uses vulkan (needs avx2) if args.noavx2: use_noavx2 = True if args.useclblast: if not file_exists(lib_clblast_noavx2) or (os.name=='nt' and not file_exists("clblast.dll")): print("Warning: NoAVX2 CLBlast library file not found. Non-BLAS library will be used.") else: print("Attempting to use NoAVX2 CLBlast library for faster prompt ingestion. A compatible clblast will be required.") use_clblast = True elif (args.usevulkan is not None): if not file_exists(lib_vulkan_noavx2): print("Warning: NoAVX2 Vulkan library file not found. Non-BLAS library will be used.") else: print("Attempting to use NoAVX2 Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.") use_vulkan = True else: if not file_exists(lib_noavx2): print("Warning: NoAVX2 library file not found. Failsafe library will be used.") elif (args.noblas and args.nommap): use_failsafe = True print("!!! Attempting to use FAILSAFE MODE !!!") else: print("Attempting to use non-avx2 compatibility library.") elif args.useclblast: if not file_exists(lib_clblast) or (os.name=='nt' and not file_exists("clblast.dll")): print("Warning: CLBlast library file not found. Non-BLAS library will be used.") else: print("Attempting to use CLBlast library for faster prompt ingestion. A compatible clblast will be required.") use_clblast = True elif (args.usecublas is not None): if not file_exists(lib_cublas) and not file_exists(lib_hipblas): print("Warning: CuBLAS library file not found. Non-BLAS library will be used.") else: if file_exists(lib_cublas): print("Attempting to use CuBLAS library for faster prompt ingestion. A compatible CuBLAS will be required.") use_cublas = True elif file_exists(lib_hipblas): print("Attempting to use hipBLAS library for faster prompt ingestion. A compatible AMD GPU will be required.") use_hipblas = True elif (args.usevulkan is not None): if not file_exists(lib_vulkan): print("Warning: Vulkan library file not found. Non-BLAS library will be used.") else: print("Attempting to use Vulkan library for faster prompt ingestion. A compatible Vulkan will be required.") use_vulkan = True else: if not file_exists(lib_openblas) or (os.name=='nt' and not file_exists("libopenblas.dll")): print("Warning: OpenBLAS library file not found. Non-BLAS library will be used.") elif args.noblas: print("Attempting to library without OpenBLAS.") else: use_openblas = True print("Attempting to use OpenBLAS library for faster prompt ingestion. A compatible libopenblas will be required.") if sys.platform=="darwin": print("Mac OSX note: Some people have found Accelerate actually faster than OpenBLAS. To compare, run Koboldcpp with --noblas instead.") if use_noavx2: if use_failsafe: libname = lib_failsafe elif use_clblast: libname = lib_clblast_noavx2 elif use_vulkan: libname = lib_vulkan_noavx2 else: libname = lib_noavx2 else: if use_clblast: libname = lib_clblast elif use_cublas: libname = lib_cublas elif use_hipblas: libname = lib_hipblas elif use_openblas: libname = lib_openblas elif use_vulkan: libname = lib_vulkan else: libname = lib_default print("Initializing dynamic library: " + libname) dir_path = getdirpath() abs_path = getabspath() #add all potential paths if os.name=='nt': os.add_dll_directory(dir_path) os.add_dll_directory(abs_path) os.add_dll_directory(os.getcwd()) if libname == lib_cublas and "CUDA_PATH" in os.environ: newpath = os.path.join(os.environ["CUDA_PATH"], "bin") if os.path.exists(newpath): os.add_dll_directory(newpath) if libname == lib_hipblas and "HIP_PATH" in os.environ: newpath = os.path.join(os.environ["HIP_PATH"], "bin") if os.path.exists(newpath): os.add_dll_directory(newpath) handle = ctypes.CDLL(os.path.join(dir_path, libname)) handle.load_model.argtypes = [load_model_inputs] handle.load_model.restype = ctypes.c_bool handle.generate.argtypes = [generation_inputs] handle.generate.restype = generation_outputs handle.new_token.restype = ctypes.c_char_p handle.new_token.argtypes = [ctypes.c_int] handle.get_stream_count.restype = ctypes.c_int handle.has_finished.restype = ctypes.c_bool handle.get_last_eval_time.restype = ctypes.c_float handle.get_last_process_time.restype = ctypes.c_float handle.get_last_token_count.restype = ctypes.c_int handle.get_last_seed.restype = ctypes.c_int handle.get_total_gens.restype = ctypes.c_int handle.get_last_stop_reason.restype = ctypes.c_int handle.abort_generate.restype = ctypes.c_bool handle.token_count.restype = token_count_outputs handle.get_pending_output.restype = ctypes.c_char_p handle.sd_load_model.argtypes = [sd_load_model_inputs] handle.sd_load_model.restype = ctypes.c_bool handle.sd_generate.argtypes = [sd_generation_inputs] handle.sd_generate.restype = sd_generation_outputs handle.whisper_load_model.argtypes = [whisper_load_model_inputs] handle.whisper_load_model.restype = ctypes.c_bool handle.whisper_generate.argtypes = [whisper_generation_inputs] handle.whisper_generate.restype = whisper_generation_outputs def set_backend_props(inputs): clblastids = 0 if args.useclblast: clblastids = 100 + int(args.useclblast[0])*10 + int(args.useclblast[1]) inputs.clblast_info = clblastids # we must force an explicit tensor split # otherwise the default will divide equally and multigpu crap will slow it down badly inputs.cublas_info = 0 if not args.tensor_split: if (args.usecublas and "0" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["HIP_VISIBLE_DEVICES"] = "0" elif (args.usecublas and "1" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "1" os.environ["HIP_VISIBLE_DEVICES"] = "1" elif (args.usecublas and "2" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "2" os.environ["HIP_VISIBLE_DEVICES"] = "2" elif (args.usecublas and "3" in args.usecublas): os.environ["CUDA_VISIBLE_DEVICES"] = "3" os.environ["HIP_VISIBLE_DEVICES"] = "3" else: if (args.usecublas and "0" in args.usecublas): inputs.cublas_info = 0 elif (args.usecublas and "1" in args.usecublas): inputs.cublas_info = 1 elif (args.usecublas and "2" in args.usecublas): inputs.cublas_info = 2 elif (args.usecublas and "3" in args.usecublas): inputs.cublas_info = 3 if args.usevulkan: s = "" for l in range(0,len(args.usevulkan)): s += str(args.usevulkan[l]) if s=="": s = "0" inputs.vulkan_info = s.encode("UTF-8") else: inputs.vulkan_info = "0".encode("UTF-8") return inputs def end_trim_to_sentence(input_text): enders = ['.', '!', '?', '*', '"', ')', '}', '`', ']', ';', '…'] last = -1 for ender in enders: last = max(last, input_text.rfind(ender)) nl = input_text.rfind("\n") last = max(last, nl) if last > 0: return input_text[:last + 1].strip() return input_text.strip() def tryparseint(value): try: return int(value) except ValueError: return value def load_model(model_filename): global args inputs = load_model_inputs() inputs.model_filename = model_filename.encode("UTF-8") inputs.max_context_length = maxctx #initial value to use for ctx, can be overwritten inputs.threads = args.threads inputs.low_vram = (True if (args.usecublas and "lowvram" in args.usecublas) else False) inputs.use_mmq = (True if (args.usecublas and "mmq" in args.usecublas) else False) inputs.use_rowsplit = (True if (args.usecublas and "rowsplit" in args.usecublas) else False) inputs.vulkan_info = "0".encode("UTF-8") inputs.blasthreads = args.blasthreads inputs.use_mmap = (not args.nommap) inputs.use_mlock = args.usemlock inputs.lora_filename = "".encode("UTF-8") inputs.lora_base = "".encode("UTF-8") if args.lora: inputs.lora_filename = args.lora[0].encode("UTF-8") inputs.use_mmap = False if len(args.lora) > 1: inputs.lora_base = args.lora[1].encode("UTF-8") inputs.mmproj_filename = args.mmproj.encode("UTF-8") if args.mmproj else "".encode("UTF-8") inputs.use_smartcontext = args.smartcontext inputs.use_contextshift = (0 if args.noshift else 1) inputs.flash_attention = args.flashattention if args.quantkv>0: inputs.quant_k = inputs.quant_v = args.quantkv inputs.flash_attention = True inputs.use_contextshift = 0 else: inputs.quant_k = inputs.quant_v = 0 inputs.blasbatchsize = args.blasbatchsize inputs.forceversion = args.forceversion inputs.gpulayers = args.gpulayers inputs.rope_freq_scale = args.ropeconfig[0] if len(args.ropeconfig)>1: inputs.rope_freq_base = args.ropeconfig[1] else: inputs.rope_freq_base = 10000 for n in range(tensor_split_max): if args.tensor_split and n < len(args.tensor_split): inputs.tensor_split[n] = float(args.tensor_split[n]) else: inputs.tensor_split[n] = 0 inputs = set_backend_props(inputs) inputs.executable_path = (getdirpath()+"/").encode("UTF-8") inputs.debugmode = args.debugmode ret = handle.load_model(inputs) return ret def generate(prompt, memory="", images=[], max_length=32, max_context_length=512, temperature=0.7, top_k=100, top_a=0.0, top_p=0.92, min_p=0.0, typical_p=1.0, tfs=1.0, rep_pen=1.0, rep_pen_range=128, rep_pen_slope=1.0, presence_penalty=0.0, mirostat=0, mirostat_tau=5.0, mirostat_eta=0.1, sampler_order=[6,0,1,3,4,2,5], seed=-1, stop_sequence=[], use_default_badwordsids=False, stream_sse=False, grammar='', grammar_retain_state=False, genkey='', trimstop=False, quiet=False, dynatemp_range=0.0, dynatemp_exponent=1.0, smoothing_factor=0.0, logit_biases={}, render_special=False, banned_tokens=[], bypass_eos_token=False): global maxctx, args, currentusergenkey, totalgens, pendingabortkey inputs = generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.memory = memory.encode("UTF-8") for n in range(images_max): if not images or n >= len(images): inputs.images[n] = "".encode("UTF-8") else: inputs.images[n] = images[n].encode("UTF-8") if max_length >= (max_context_length-1): max_length = max_context_length-1 print("\nWarning: You are trying to generate with max_length near or exceeding max_context_length. Most of the context will be removed, and your outputs will not be very coherent.") global showmaxctxwarning if max_context_length > maxctx: if showmaxctxwarning: print(f"\n(Warning! Request max_context_length={max_context_length} exceeds allocated context size of {maxctx}. It will be reduced to fit. Consider launching with increased --contextsize to avoid errors. This message will only show once per session.)") showmaxctxwarning = False max_context_length = maxctx inputs.max_context_length = max_context_length # this will resize the context buffer if changed inputs.max_length = max_length inputs.temperature = temperature inputs.top_k = top_k inputs.top_a = top_a inputs.top_p = top_p inputs.min_p = min_p inputs.typical_p = typical_p inputs.tfs = tfs inputs.rep_pen = rep_pen inputs.rep_pen_range = rep_pen_range inputs.rep_pen_slope = rep_pen_slope inputs.presence_penalty = presence_penalty inputs.stream_sse = stream_sse inputs.quiet = quiet inputs.dynatemp_range = dynatemp_range inputs.dynatemp_exponent = dynatemp_exponent inputs.smoothing_factor = smoothing_factor inputs.grammar = grammar.encode("UTF-8") inputs.grammar_retain_state = grammar_retain_state inputs.allow_eos_token = not use_default_badwordsids inputs.bypass_eos_token = bypass_eos_token inputs.render_special = render_special if mirostat in (1, 2): inputs.mirostat = mirostat inputs.mirostat_tau = mirostat_tau inputs.mirostat_eta = mirostat_eta else: inputs.mirostat = inputs.mirostat_tau = inputs.mirostat_eta = 0 if sampler_order and 0 < len(sampler_order) <= sampler_order_max: try: for i, sampler in enumerate(sampler_order): inputs.sampler_order[i] = sampler inputs.sampler_len = len(sampler_order) global showsamplerwarning if showsamplerwarning and inputs.mirostat==0 and inputs.sampler_len>0 and (inputs.sampler_order[0]!=6 or inputs.sampler_order[inputs.sampler_len-1]!=5): print("\n(Note: Sub-optimal sampler_order detected. You may have reduced quality. Recommended sampler values are [6,0,1,3,4,2,5]. This message will only show once per session.)") showsamplerwarning = False except TypeError as e: print("ERROR: sampler_order must be a list of integers: " + str(e)) inputs.seed = seed for n in range(stop_token_max): if not stop_sequence or n >= len(stop_sequence): inputs.stop_sequence[n] = "".encode("UTF-8") elif stop_sequence[n]==None: inputs.stop_sequence[n] = "".encode("UTF-8") else: inputs.stop_sequence[n] = stop_sequence[n].encode("UTF-8") bias_list = [] try: if logit_biases and len(logit_biases) > 0: bias_list = [{"key": key, "value": value} for key, value in logit_biases.items()] except Exception as ex: print(f"Logit bias dictionary is invalid: {ex}") for n in range(logit_bias_max): if n >= len(bias_list): inputs.logit_biases[n] = logit_bias(-1, 0.0) else: try: t_id = int(bias_list[n]['key']) bias = float(bias_list[n]['value']) t_id = -1 if t_id < 0 else t_id bias = (bias_max_value if bias > bias_max_value else (bias_min_value if bias < bias_min_value else bias)) inputs.logit_biases[n] = logit_bias(t_id, bias) except Exception as ex: inputs.logit_biases[n] = logit_bias(-1, 0.0) print(f"Skipped unparsable logit bias:{ex}") for n in range(ban_token_max): if not banned_tokens or n >= len(banned_tokens): inputs.banned_tokens[n] = "".encode("UTF-8") else: inputs.banned_tokens[n] = banned_tokens[n].encode("UTF-8") currentusergenkey = genkey totalgens += 1 #early exit if aborted if pendingabortkey!="" and pendingabortkey==genkey: print(f"\nDeferred Abort for GenKey: {pendingabortkey}") pendingabortkey = "" return {"text":"","status":-1,"stopreason":-1} else: ret = handle.generate(inputs) outstr = "" if ret.status==1: outstr = ret.text.decode("UTF-8","ignore") if trimstop: for trim_str in stop_sequence: sindex = outstr.find(trim_str) if sindex != -1 and trim_str!="": outstr = outstr[:sindex] return {"text":outstr,"status":ret.status,"stopreason":ret.stopreason} def sd_load_model(model_filename,vae_filename,lora_filename): global args inputs = sd_load_model_inputs() inputs.debugmode = args.debugmode inputs.executable_path = (getdirpath()+"/").encode("UTF-8") inputs.model_filename = model_filename.encode("UTF-8") thds = args.threads quant = 0 if args.sdthreads and args.sdthreads > 0: sdt = int(args.sdthreads) if sdt > 0: thds = sdt if args.sdquant: quant = 1 inputs.threads = thds inputs.quant = quant inputs.taesd = True if args.sdvaeauto else False inputs.vae_filename = vae_filename.encode("UTF-8") inputs.lora_filename = lora_filename.encode("UTF-8") inputs.lora_multiplier = args.sdloramult inputs = set_backend_props(inputs) ret = handle.sd_load_model(inputs) return ret def sd_generate(genparams): global maxctx, args, currentusergenkey, totalgens, pendingabortkey prompt = genparams.get("prompt", "high quality") negative_prompt = genparams.get("negative_prompt", "") init_images_arr = genparams.get("init_images", []) init_images = ("" if (not init_images_arr or len(init_images_arr)==0 or not init_images_arr[0]) else init_images_arr[0]) denoising_strength = genparams.get("denoising_strength", 0.6) cfg_scale = genparams.get("cfg_scale", 5) sample_steps = tryparseint(genparams.get("steps", 20)) width = tryparseint(genparams.get("width", 512)) height = tryparseint(genparams.get("height", 512)) seed = tryparseint(genparams.get("seed", -1)) sample_method = genparams.get("sampler_name", "k_euler_a") is_quiet = True if args.quiet else False clip_skip = tryparseint(genparams.get("clip_skip", -1)) #clean vars width = width - (width%64) height = height - (height%64) cfg_scale = (1 if cfg_scale < 1 else (25 if cfg_scale > 25 else cfg_scale)) sample_steps = (1 if sample_steps < 1 else (80 if sample_steps > 80 else sample_steps)) reslimit = 1024 width = (64 if width < 64 else width) height = (64 if height < 64 else height) if args.sdclamped: sample_steps = (40 if sample_steps > 40 else sample_steps) reslimit = 512 print("\nImgGen: Clamped Mode (For Shared Use). Step counts and resolution are clamped.") biggest = max(width,height) if biggest > reslimit: scaler = biggest / reslimit width = int(width / scaler) height = int(height / scaler) width = width - (width%64) height = height - (height%64) inputs = sd_generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.negative_prompt = negative_prompt.encode("UTF-8") inputs.init_images = init_images.encode("UTF-8") inputs.cfg_scale = cfg_scale inputs.denoising_strength = denoising_strength inputs.sample_steps = sample_steps inputs.width = width inputs.height = height inputs.seed = seed inputs.sample_method = sample_method.lower().encode("UTF-8") inputs.quiet = is_quiet inputs.clip_skip = clip_skip ret = handle.sd_generate(inputs) outstr = "" if ret.status==1: outstr = ret.data.decode("UTF-8","ignore") return outstr def whisper_load_model(model_filename): global args inputs = whisper_load_model_inputs() inputs.debugmode = args.debugmode inputs.executable_path = (getdirpath()+"/").encode("UTF-8") inputs.model_filename = model_filename.encode("UTF-8") inputs = set_backend_props(inputs) ret = handle.whisper_load_model(inputs) return ret def whisper_generate(genparams): global args is_quiet = True if args.quiet else False prompt = genparams.get("prompt", "") audio_data = genparams.get("audio_data", "") if audio_data.startswith("data:audio"): audio_data = audio_data.split(",", 1)[1] inputs = whisper_generation_inputs() inputs.prompt = prompt.encode("UTF-8") inputs.audio_data = audio_data.encode("UTF-8") inputs.quiet = is_quiet ret = handle.whisper_generate(inputs) outstr = "" if ret.status==1: outstr = ret.data.decode("UTF-8","ignore") return outstr def utfprint(str): maxlen = 20000 strlength = len(str) if strlength > maxlen: #limit max output len str = str[:maxlen] + f"... (+{strlength-maxlen} chars)" try: print(str) except UnicodeEncodeError: # Replace or omit the problematic character utf_string = str.encode('ascii', 'ignore').decode('ascii') utf_string = utf_string.replace('\a', '') #remove bell characters print(utf_string) def bring_terminal_to_foreground(): if os.name=='nt': ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9) ctypes.windll.user32.SetForegroundWindow(ctypes.windll.kernel32.GetConsoleWindow()) def string_contains_sequence_substring(inputstr,sequences): if inputstr.strip()=="": return False for s in sequences: if s.strip()=="": continue if s.strip() in inputstr.strip() or inputstr.strip() in s.strip(): return True return False ################################################################# ### A hacky simple HTTP server simulating a kobold api by Concedo ### we are intentionally NOT using flask, because we want MINIMAL dependencies ################################################################# friendlymodelname = "inactive" friendlysdmodelname = "inactive" fullsdmodelpath = "" #if empty, it's not initialized mmprojpath = "" #if empty, it's not initialized password = "" #if empty, no auth key required fullwhispermodelpath = "" #if empty, it's not initialized maxctx = 2048 maxhordectx = 2048 maxhordelen = 256 modelbusy = threading.Lock() requestsinqueue = 0 defaultport = 5001 KcppVersion = "1.67" showdebug = True showsamplerwarning = True showmaxctxwarning = True session_kudos_earned = 0 session_jobs = 0 session_starttime = None exitcounter = -1 punishcounter = 0 #causes a timeout if too many errors rewardcounter = 0 #reduces error counts for successful jobs totalgens = 0 currentusergenkey = "" #store a special key so polled streaming works even in multiuser pendingabortkey = "" #if an abort is received for the non-active request, remember it (at least 1) to cancel later args = None #global args gui_layers_untouched = True runmode_untouched = True preloaded_story = None chatcompl_adapter = None embedded_kailite = None embedded_kcpp_docs = None embedded_kcpp_sdui = None sslvalid = False nocertify = False start_time = time.time() last_req_time = time.time() last_non_horde_req_time = time.time() currfinishreason = "null" using_gui_launcher = False using_outdated_flags = False def transform_genparams(genparams, api_format): #api format 1=basic,2=kai,3=oai,4=oai-chat,5=interrogate #alias all nonstandard alternative names for rep pen. rp1 = genparams.get('repeat_penalty', 1.0) rp2 = genparams.get('repetition_penalty', 1.0) rp3 = genparams.get('rep_pen', 1.0) rp_max = max(rp1,rp2,rp3) genparams["rep_pen"] = rp_max if api_format==1: genparams["prompt"] = genparams.get('text', "") genparams["top_k"] = int(genparams.get('top_k', 120)) genparams["max_length"] = genparams.get('max', 150) elif api_format==2: if "ignore_eos" in genparams and not ("use_default_badwordsids" in genparams): genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False) elif api_format==3 or api_format==4: genparams["max_length"] = genparams.get('max_tokens', (256 if api_format==4 else 150)) presence_penalty = genparams.get('presence_penalty', genparams.get('frequency_penalty', 0.0)) genparams["presence_penalty"] = presence_penalty # openai allows either a string or a list as a stop sequence if isinstance(genparams.get('stop',[]), list): genparams["stop_sequence"] = genparams.get('stop', []) else: genparams["stop_sequence"] = [genparams.get('stop')] genparams["sampler_seed"] = tryparseint(genparams.get('seed', -1)) genparams["use_default_badwordsids"] = genparams.get('ignore_eos', False) genparams["mirostat"] = genparams.get('mirostat_mode', 0) if api_format==4: # translate openai chat completion messages format into one big string. messages_array = genparams.get('messages', []) default_adapter = {} if chatcompl_adapter is None else chatcompl_adapter adapter_obj = genparams.get('adapter', default_adapter) messages_string = "" system_message_start = adapter_obj.get("system_start", "\n### Instruction:\n") system_message_end = adapter_obj.get("system_end", "") user_message_start = adapter_obj.get("user_start", "\n### Instruction:\n") user_message_end = adapter_obj.get("user_end", "") assistant_message_start = adapter_obj.get("assistant_start", "\n### Response:\n") assistant_message_end = adapter_obj.get("assistant_end", "") images_added = [] for message in messages_array: if message['role'] == "system": messages_string += system_message_start elif message['role'] == "user": messages_string += user_message_start elif message['role'] == "assistant": messages_string += assistant_message_start # content can be a string or an array of objects curr_content = message['content'] if isinstance(curr_content, str): messages_string += curr_content elif isinstance(curr_content, list): #is an array for item in curr_content: if item['type']=="text": messages_string += item['text'] elif item['type']=="image_url": if item['image_url'] and item['image_url']['url'] and item['image_url']['url'].startswith("data:image"): images_added.append(item['image_url']['url'].split(",", 1)[1]) if message['role'] == "system": messages_string += system_message_end elif message['role'] == "user": messages_string += user_message_end elif message['role'] == "assistant": messages_string += assistant_message_end messages_string += assistant_message_start genparams["prompt"] = messages_string if len(images_added)>0: genparams["images"] = images_added if len(genparams.get('stop_sequence', []))==0: #only set stop seq if it wont overwrite existing genparams["stop_sequence"] = [user_message_start.strip(),assistant_message_start.strip()] else: genparams["stop_sequence"].append(user_message_start.strip()) genparams["stop_sequence"].append(assistant_message_start.strip()) genparams["trim_stop"] = True elif api_format==5: firstimg = genparams.get('image', "") genparams["images"] = [firstimg] genparams["max_length"] = 42 genparams["prompt"] = "### Instruction: In one sentence, write a descriptive caption for this image.\n### Response:" return genparams class ServerRequestHandler(http.server.SimpleHTTPRequestHandler): sys_version = "" server_version = "ConcedoLlamaForKoboldServer" def __init__(self, addr, port): self.addr = addr self.port = port def __call__(self, *args, **kwargs): super().__init__(*args, **kwargs) def log_message(self, format, *args): global showdebug if showdebug: super().log_message(format, *args) pass def extract_b64string_from_file_upload(self, body): try: if 'content-type' in self.headers and self.headers['content-type']: boundary = self.headers['content-type'].split("=")[1].encode() if boundary: fparts = body.split(boundary) for fpart in fparts: detected_upload_filename = re.findall(r'Content-Disposition.*name="file"; filename="(.*)"', fpart.decode('utf-8',errors='ignore')) if detected_upload_filename and len(detected_upload_filename)>0: utfprint(f"Detected uploaded file: {detected_upload_filename[0]}") file_data = fpart.split(b'\r\n\r\n')[1].rsplit(b'\r\n', 1)[0] file_data_base64 = base64.b64encode(file_data).decode('utf-8') base64_string = f"data:audio/wav;base64,{file_data_base64}" return base64_string print("Uploaded file not found.") return None except Exception as e: print(f"File Upload Process Error: {e}") return None async def generate_text(self, genparams, api_format, stream_flag): from datetime import datetime global friendlymodelname, chatcompl_adapter, currfinishreason is_quiet = args.quiet currfinishreason = "null" def run_blocking(): #api format 1=basic,2=kai,3=oai,4=oai-chat #flag instance as non-idle for a while washordereq = genparams.get('genkey', '').startswith('HORDEREQ_') if not washordereq: global last_non_horde_req_time last_non_horde_req_time = time.time() return generate( prompt=genparams.get('prompt', ""), memory=genparams.get('memory', ""), images=genparams.get('images', []), max_context_length=genparams.get('max_context_length', maxctx), max_length=genparams.get('max_length', 150), temperature=genparams.get('temperature', 0.7), top_k=genparams.get('top_k', 100), top_a=genparams.get('top_a', 0.0), top_p=genparams.get('top_p', 0.92), min_p=genparams.get('min_p', 0.0), typical_p=genparams.get('typical', 1.0), tfs=genparams.get('tfs', 1.0), rep_pen=genparams.get('rep_pen', 1.0), rep_pen_range=genparams.get('rep_pen_range', 256), rep_pen_slope=genparams.get('rep_pen_slope', 1.0), presence_penalty=genparams.get('presence_penalty', 0.0), mirostat=genparams.get('mirostat', 0), mirostat_tau=genparams.get('mirostat_tau', 5.0), mirostat_eta=genparams.get('mirostat_eta', 0.1), sampler_order=genparams.get('sampler_order', [6,0,1,3,4,2,5]), seed=tryparseint(genparams.get('sampler_seed', -1)), stop_sequence=genparams.get('stop_sequence', []), use_default_badwordsids=genparams.get('use_default_badwordsids', False), stream_sse=stream_flag, grammar=genparams.get('grammar', ''), grammar_retain_state = genparams.get('grammar_retain_state', False), genkey=genparams.get('genkey', ''), trimstop=genparams.get('trim_stop', False), quiet=is_quiet, dynatemp_range=genparams.get('dynatemp_range', 0.0), dynatemp_exponent=genparams.get('dynatemp_exponent', 1.0), smoothing_factor=genparams.get('smoothing_factor', 0.0), logit_biases=genparams.get('logit_bias', {}), render_special=genparams.get('render_special', False), banned_tokens=genparams.get('banned_tokens', []), bypass_eos_token=genparams.get('bypass_eos', False), ) genout = {"text":"","status":-1,"stopreason":-1} if stream_flag: loop = asyncio.get_event_loop() executor = ThreadPoolExecutor() genout = await loop.run_in_executor(executor, run_blocking) else: genout = run_blocking() recvtxt = genout['text'] currfinishreason = ("length" if (genout['stopreason']!=1) else "stop") #flag instance as non-idle for a while washordereq = genparams.get('genkey', '').startswith('HORDEREQ_') if not washordereq: global last_non_horde_req_time last_non_horde_req_time = time.time() if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1: utfprint("\nOutput: " + recvtxt) if api_format==1: res = {"data": {"seqs":[recvtxt]}} elif api_format==3: res = {"id": "cmpl-1", "object": "text_completion", "created": 1, "model": friendlymodelname, "usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200}, "choices": [{"text": recvtxt, "index": 0, "finish_reason": currfinishreason}]} elif api_format==4: res = {"id": "chatcmpl-1", "object": "chat.completion", "created": 1, "model": friendlymodelname, "usage": {"prompt_tokens": 100,"completion_tokens": 100,"total_tokens": 200}, "choices": [{"index": 0, "message":{"role": "assistant", "content": recvtxt,}, "finish_reason": currfinishreason}]} elif api_format==5: res = {"caption": end_trim_to_sentence(recvtxt)} else: res = {"results": [{"text": recvtxt, "finish_reason":currfinishreason}]} try: return res except Exception as e: print(f"Generate: Error while generating: {e}") async def send_oai_sse_event(self, data): if data=="[DONE]": self.wfile.write(f'data: {data}'.encode()) else: self.wfile.write(f'data: {data}\n\n'.encode()) self.wfile.flush() async def send_kai_sse_event(self, data): self.wfile.write(f'event: message\n'.encode()) self.wfile.write(f'data: {data}\n\n'.encode()) self.wfile.flush() async def handle_sse_stream(self, genparams, api_format): global friendlymodelname, currfinishreason self.send_response(200) self.send_header("cache-control", "no-cache") self.send_header("connection", "keep-alive") self.end_headers(content_type='text/event-stream') current_token = 0 incomplete_token_buffer = bytearray() async_sleep_short = 0.02 await asyncio.sleep(0.25) #anti race condition, prevent check from overtaking generate try: tokenReserve = "" #keeps fully formed tokens that we cannot send out yet while True: streamDone = handle.has_finished() #exit next loop on done if streamDone: sr = handle.get_last_stop_reason() currfinishreason = ("length" if (sr!=1) else "stop") tokenStr = "" streamcount = handle.get_stream_count() while current_token < streamcount: token = handle.new_token(current_token) if token is None: # Token isnt ready yet, received nullpointer break current_token += 1 newbyte = ctypes.string_at(token) incomplete_token_buffer += bytearray(newbyte) tokenSeg = incomplete_token_buffer.decode("UTF-8","ignore") if tokenSeg!="": incomplete_token_buffer.clear() tokenStr += tokenSeg if tokenStr!="" or streamDone: sseq = genparams.get('stop_sequence', []) trimstop = genparams.get('trim_stop', False) if trimstop and not streamDone and string_contains_sequence_substring(tokenStr,sseq): tokenReserve += tokenStr await asyncio.sleep(async_sleep_short) #if a stop sequence could trigger soon, do not send output else: if tokenStr!="": tokenStr = tokenReserve + tokenStr tokenReserve = "" #apply trimming if needed if trimstop: for trim_str in sseq: sindex = tokenStr.find(trim_str) if sindex != -1 and trim_str!="": tokenStr = tokenStr[:sindex] if tokenStr!="" or streamDone: if api_format == 4: # if oai chat, set format to expected openai streaming response event_str = json.dumps({"id":"koboldcpp","object":"chat.completion.chunk","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"delta":{'role':'assistant','content':tokenStr}}]}) await self.send_oai_sse_event(event_str) elif api_format == 3: # non chat completions event_str = json.dumps({"id":"koboldcpp","object":"text_completion","created":1,"model":friendlymodelname,"choices":[{"index":0,"finish_reason":currfinishreason,"text":tokenStr}]}) await self.send_oai_sse_event(event_str) else: event_str = json.dumps({"token": tokenStr, "finish_reason":currfinishreason}) await self.send_kai_sse_event(event_str) tokenStr = "" else: await asyncio.sleep(async_sleep_short) else: await asyncio.sleep(async_sleep_short) #this should keep things responsive if streamDone: if api_format == 4 or api_format == 3: # if oai chat, send last [DONE] message consistent with openai format await self.send_oai_sse_event('[DONE]') break except Exception as ex: print("Token streaming was interrupted or aborted!") print(ex) handle.abort_generate() time.sleep(0.2) #short delay # flush buffers, sleep a bit to make sure all data sent, and then force close the connection self.wfile.flush() await asyncio.sleep(0.1) self.close_connection = True await asyncio.sleep(0.05) async def handle_request(self, raw_genparams, api_format, stream_flag): tasks = [] genparams = transform_genparams(raw_genparams, api_format) try: if stream_flag: tasks.append(self.handle_sse_stream(genparams, api_format)) generate_task = asyncio.create_task(self.generate_text(genparams, api_format, stream_flag)) tasks.append(generate_task) await asyncio.gather(*tasks) generate_result = generate_task.result() return generate_result except (BrokenPipeError, ConnectionAbortedError) as cae: # attempt to abort if connection lost print("An ongoing connection was aborted or interrupted!") print(cae) handle.abort_generate() time.sleep(0.2) #short delay except Exception as e: print(e) def secure_endpoint(self): #returns false if auth fails. caller should exit #handle password stuff if password and password !="": auth_header = None auth_ok = False if 'Authorization' in self.headers: auth_header = self.headers['Authorization'] elif 'authorization' in self.headers: auth_header = self.headers['authorization'] if auth_header != None and auth_header.startswith('Bearer '): token = auth_header[len('Bearer '):].strip() if token==password: auth_ok = True if auth_ok==False: self.send_response(401) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "error": "Unauthorized", "msg": "Authentication key is missing or invalid.", "type": "unauthorized", }}).encode()) return False return True def noscript_webui(self): global modelbusy import html import urllib.parse as urlparse parsed_url = urlparse.urlparse(self.path) parsed_dict = urlparse.parse_qs(parsed_url.query) reply = "" status = str(parsed_dict['status'][0]) if 'status' in parsed_dict else "Ready To Generate" prompt = str(parsed_dict['prompt'][0]) if 'prompt' in parsed_dict else "" max_length = int(parsed_dict['max_length'][0]) if 'max_length' in parsed_dict else 100 temperature = float(parsed_dict['temperature'][0]) if 'temperature' in parsed_dict else 0.7 top_k = int(parsed_dict['top_k'][0]) if 'top_k' in parsed_dict else 100 top_p = float(parsed_dict['top_p'][0]) if 'top_p' in parsed_dict else 0.9 rep_pen = float(parsed_dict['rep_pen'][0]) if 'rep_pen' in parsed_dict else 1.0 use_default_badwordsids = int(parsed_dict['use_default_badwordsids'][0]) if 'use_default_badwordsids' in parsed_dict else 0 gencommand = (parsed_dict['generate'][0] if 'generate' in parsed_dict else "")=="Generate" if modelbusy.locked(): status = "Model is currently busy, try again later." elif gencommand: if prompt=="" or max_length<=0: status = "Need a valid prompt and length to generate." else: if max_length>512: max_length = 512 epurl = f"http://localhost:{args.port}" if args.host!="": epurl = f"http://{args.host}:{args.port}" gen_payload = {"prompt": prompt,"max_length": max_length,"temperature": temperature,"prompt": prompt,"top_k": top_k,"top_p": top_p,"rep_pen": rep_pen,"use_default_badwordsids":use_default_badwordsids} respjson = make_url_request(f'{epurl}/api/v1/generate', gen_payload) reply = html.escape(respjson["results"][0]["text"]) status = "Generation Completed" if "generate" in parsed_dict: del parsed_dict["generate"] parsed_dict["prompt"] = prompt + reply parsed_dict["status"] = status updated_query_string = urlparse.urlencode(parsed_dict, doseq=True) updated_path = parsed_url._replace(query=updated_query_string).geturl() self.path = updated_path self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return finalhtml = f''' KoboldCpp NoScript Mode

KoboldCpp NoScript Mode

KoboldCpp can be used without Javascript enabled, however this is not recommended.
If you have Javascript, please use Kobold Lite WebUI instead.


Enter Prompt:

{status}







(Please be patient)
''' finalhtml = finalhtml.encode('utf-8') self.send_response(200) self.send_header('content-length', str(len(finalhtml))) self.end_headers(content_type='text/html') self.wfile.write(finalhtml) def do_GET(self): global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui global maxctx, maxhordelen, friendlymodelname, KcppVersion, totalgens, preloaded_story, exitcounter, currentusergenkey, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath self.path = self.path.rstrip('/') response_body = None content_type = 'application/json' if self.path in ["", "/?"] or self.path.startswith(('/?','?')): #it's possible for the root url to have ?params without / content_type = 'text/html' if embedded_kailite is None: response_body = (f"Embedded Kobold Lite is not found.
You will have to connect via the main KoboldAI client, or use this URL to connect.").encode() else: response_body = embedded_kailite elif self.path in ["/noscript", "/noscript?"] or self.path.startswith(('/noscript?','noscript?')): #it's possible for the root url to have ?params without / self.noscript_webui() return elif self.path.endswith(('/api/v1/model', '/api/latest/model')): response_body = (json.dumps({'result': friendlymodelname }).encode()) elif self.path.endswith(('/api/v1/config/max_length', '/api/latest/config/max_length')): response_body = (json.dumps({"value": maxhordelen}).encode()) elif self.path.endswith(('/api/v1/config/max_context_length', '/api/latest/config/max_context_length')): response_body = (json.dumps({"value": min(maxctx,maxhordectx)}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompt', '/api/latest/config/soft_prompt')): response_body = (json.dumps({"value":""}).encode()) elif self.path.endswith(('/api/v1/config/soft_prompts_list', '/api/latest/config/soft_prompts_list')): response_body = (json.dumps({"values": []}).encode()) elif self.path.endswith(('/api/v1/info/version', '/api/latest/info/version')): response_body = (json.dumps({"result":"1.2.5"}).encode()) elif self.path.endswith(('/api/extra/true_max_context_length')): #do not advertise this to horde response_body = (json.dumps({"value": maxctx}).encode()) elif self.path.endswith(('/api/extra/version')): has_txt2img = not (friendlysdmodelname=="inactive" or fullsdmodelpath=="") has_vision = (mmprojpath!="") has_password = (password!="") has_whisper = (fullwhispermodelpath!="") response_body = (json.dumps({"result":"KoboldCpp","version":KcppVersion, "protected":has_password ,"txt2img":has_txt2img,"vision":has_vision,"transcribe":has_whisper}).encode()) elif self.path.endswith(('/api/extra/perf')): global last_req_time, start_time lastp = handle.get_last_process_time() laste = handle.get_last_eval_time() lastc = handle.get_last_token_count() totalgens = handle.get_total_gens() totalimggens = handle.get_total_img_gens() stopreason = handle.get_last_stop_reason() lastseed = handle.get_last_seed() uptime = time.time() - start_time idletime = time.time() - last_req_time response_body = (json.dumps({"last_process":lastp,"last_eval":laste,"last_token_count":lastc, "last_seed":lastseed, "total_gens":totalgens, "stop_reason":stopreason, "total_img_gens":totalimggens, "queue":requestsinqueue, "idle":(0 if modelbusy.locked() else 1), "hordeexitcounter":exitcounter, "uptime":uptime, "idletime":idletime}).encode()) elif self.path.endswith('/api/extra/generate/check'): if not self.secure_endpoint(): return pendtxtStr = "" if requestsinqueue==0 and totalgens>0 and currentusergenkey=="": pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) elif self.path.endswith('/v1/models'): response_body = (json.dumps({"object":"list","data":[{"id":friendlymodelname,"object":"model","created":1,"owned_by":"koboldcpp","permission":[],"root":"koboldcpp"}]}).encode()) elif self.path.endswith('/sdapi/v1/sd-models'): if friendlysdmodelname=="inactive" or fullsdmodelpath=="": response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([{"title":friendlysdmodelname,"model_name":friendlysdmodelname,"hash":"8888888888","sha256":"8888888888888888888888888888888888888888888888888888888888888888","filename":fullsdmodelpath,"config": None}]).encode()) elif self.path.endswith('/sdapi/v1/options'): response_body = (json.dumps({"samples_format":"png","sd_model_checkpoint":friendlysdmodelname}).encode()) elif self.path.endswith('/sdapi/v1/samplers'): if friendlysdmodelname=="inactive" or fullsdmodelpath=="": response_body = (json.dumps([]).encode()) else: response_body = (json.dumps([{"name":"Euler a","aliases":["k_euler_a","k_euler_ancestral"],"options":{}},{"name":"Euler","aliases":["k_euler"],"options":{}},{"name":"Heun","aliases":["k_heun"],"options":{}},{"name":"DPM2","aliases":["k_dpm_2"],"options":{}},{"name":"DPM++ 2M","aliases":["k_dpmpp_2m"],"options":{}},{"name":"LCM","aliases":["k_lcm"],"options":{}}]).encode()) elif self.path.endswith('/sdapi/v1/latent-upscale-modes'): response_body = (json.dumps([]).encode()) elif self.path.endswith('/sdapi/v1/upscalers'): response_body = (json.dumps([]).encode()) elif self.path=="/api" or self.path=="/docs" or self.path.startswith(('/api/?json=','/api?json=','/docs/?json=','/docs?json=')): content_type = 'text/html' if embedded_kcpp_docs is None: response_body = (f"KoboldCpp API is running!\n\nAPI usage reference can be found at the wiki: https://github.com/LostRuins/koboldcpp/wiki").encode() else: response_body = embedded_kcpp_docs elif self.path.startswith(("/sdui")): content_type = 'text/html' if embedded_kcpp_sdui is None: response_body = (f"KoboldCpp API is running, but KCPP SDUI is not loaded").encode() elif not args.sdmodel: response_body = (f"No SD model was loaded. You can load one with --sdmodel").encode() else: response_body = embedded_kcpp_sdui elif self.path=="/v1": content_type = 'text/html' response_body = (f"KoboldCpp OpenAI compatible endpoint is running!\n\nFor usage reference, see https://platform.openai.com/docs/api-reference").encode() elif self.path=="/api/extra/preloadstory": if preloaded_story is None: response_body = (json.dumps({}).encode()) else: response_body = preloaded_story elif self.path.endswith(('/api')) or self.path.endswith(('/api/v1')): self.path = "/api" self.send_response(302) self.send_header("location", self.path) self.end_headers(content_type='text/html') return None if response_body is None: self.send_response(404) self.end_headers(content_type='text/html') rp = 'Error: HTTP Server is running, but this endpoint does not exist. Please check the URL.' self.wfile.write(rp.encode()) else: self.send_response(200) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type=content_type) self.wfile.write(response_body) return def do_POST(self): global modelbusy, requestsinqueue, currentusergenkey, totalgens, pendingabortkey contlenstr = self.headers['content-length'] content_length = 0 body = None if contlenstr: content_length = int(contlenstr) if content_length > (1024*1024*32): #32mb payload limit self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Payload is too big. Max payload size is 32MB.", "type": "bad_input", }}).encode()) return body = self.rfile.read(content_length) self.path = self.path.rstrip('/') response_body = None response_code = 200 if self.path.endswith(('/api/extra/tokencount')): if not self.secure_endpoint(): return try: genparams = json.loads(body) countprompt = genparams.get('prompt', "") tcaddspecial = genparams.get('special', True) rawcountdata = handle.token_count(countprompt.encode("UTF-8"),tcaddspecial) countlimit = rawcountdata.count if (rawcountdata.count>=0 and rawcountdata.count<50000) else 0 # the above protects the server in case the count limit got corrupted countdata = [rawcountdata.ids[i] for i in range(countlimit)] response_body = (json.dumps({"value": len(countdata),"ids": countdata}).encode()) except Exception as e: utfprint("Count Tokens - Body Error: " + str(e)) response_code = 400 response_body = (json.dumps({"value": -1}).encode()) elif self.path.endswith('/api/extra/abort'): if not self.secure_endpoint(): return multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception as e: multiuserkey = "" pass if (multiuserkey=="" and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): ag = handle.abort_generate() time.sleep(0.1) #short delay before replying response_body = (json.dumps({"success": ("true" if ag else "false"), "done":"true"}).encode()) print("\nGeneration Aborted") elif (multiuserkey!="" and requestsinqueue>0): pendingabortkey = multiuserkey response_body = (json.dumps({"success": "true", "done":"false"}).encode()) else: response_body = (json.dumps({"success": "false", "done":"false"}).encode()) elif self.path.endswith('/api/extra/generate/check'): if not self.secure_endpoint(): return pendtxtStr = "" multiuserkey = "" try: tempbody = json.loads(body) if isinstance(tempbody, dict): multiuserkey = tempbody.get('genkey', "") except Exception as e: multiuserkey = "" if totalgens>0: if (multiuserkey=="" and multiuserkey==currentusergenkey and requestsinqueue==0) or (multiuserkey!="" and multiuserkey==currentusergenkey): #avoid leaking prompts in multiuser pendtxt = handle.get_pending_output() pendtxtStr = ctypes.string_at(pendtxt).decode("UTF-8","ignore") response_body = (json.dumps({"results": [{"text": pendtxtStr}]}).encode()) if response_body is not None: self.send_response(response_code) self.send_header('content-length', str(len(response_body))) self.end_headers(content_type='application/json') self.wfile.write(response_body) return reqblocking = False muint = int(args.multiuser) multiuserlimit = ((muint-1) if muint > 1 else 6) #backwards compatibility for up to 7 concurrent requests, use default limit of 7 if multiuser set to 1 if muint > 0 and requestsinqueue < multiuserlimit: reqblocking = True requestsinqueue += 1 if not modelbusy.acquire(blocking=reqblocking): self.send_response(503) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Server is busy; please try again later.", "type": "service_unavailable", }}).encode()) return if reqblocking: requestsinqueue = (requestsinqueue - 1) if requestsinqueue > 0 else 0 try: sse_stream_flag = False api_format = 0 #1=basic,2=kai,3=oai,4=oai-chat,5=interrogate is_imggen = False is_transcribe = False if self.path.endswith('/request'): api_format = 1 if self.path.endswith(('/api/v1/generate', '/api/latest/generate')): api_format = 2 if self.path.endswith('/api/extra/generate/stream'): api_format = 2 sse_stream_flag = True if self.path.endswith('/v1/completions'): api_format = 3 if self.path.endswith('/v1/chat/completions'): api_format = 4 if self.path.endswith('/sdapi/v1/interrogate'): has_vision = (mmprojpath!="") if not has_vision: self.send_response(503) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "No LLaVA model loaded", "type": "service_unavailable", }}).encode()) return api_format = 5 if self.path.endswith('/sdapi/v1/txt2img') or self.path.endswith('/sdapi/v1/img2img'): is_imggen = True if self.path.endswith('/api/extra/transcribe') or self.path.endswith('/v1/audio/transcriptions'): is_transcribe = True if is_imggen or is_transcribe or api_format > 0: global last_req_time last_req_time = time.time() if not is_imggen and not is_transcribe and api_format<5: if not self.secure_endpoint(): return genparams = None try: genparams = json.loads(body) except Exception as e: genparams = None if is_transcribe: #fallback handling of file uploads b64wav = self.extract_b64string_from_file_upload(body) if b64wav: genparams = {"audio_data":b64wav} if not genparams: utfprint("Body Err: " + str(body)) self.send_response(500) self.end_headers(content_type='application/json') self.wfile.write(json.dumps({"detail": { "msg": "Error parsing input.", "type": "bad_input", }}).encode()) return is_quiet = args.quiet if (args.debugmode != -1 and not is_quiet) or args.debugmode >= 1: utfprint("\nInput: " + json.dumps(genparams)) if args.foreground: bring_terminal_to_foreground() if api_format > 0:#text gen # Check if streaming chat completions, if so, set stream mode to true if (api_format == 4 or api_format == 3) and "stream" in genparams and genparams["stream"]: sse_stream_flag = True gen = asyncio.run(self.handle_request(genparams, api_format, sse_stream_flag)) try: # Headers are already sent when streaming if not sse_stream_flag: self.send_response(200) genresp = (json.dumps(gen).encode()) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: if args.debugmode: print(ex) print("Generate: The response could not be sent, maybe connection was terminated?") handle.abort_generate() time.sleep(0.2) #short delay return elif is_imggen: #image gen try: gen = sd_generate(genparams) genresp = (json.dumps({"images":[gen],"parameters":{},"info":""}).encode()) self.send_response(200) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: if args.debugmode: print(ex) print("Generate Image: The response could not be sent, maybe connection was terminated?") time.sleep(0.2) #short delay return elif is_transcribe: try: gen = whisper_generate(genparams) genresp = (json.dumps({"text":gen}).encode()) self.send_response(200) self.send_header('content-length', str(len(genresp))) self.end_headers(content_type='application/json') self.wfile.write(genresp) except Exception as ex: if args.debugmode: print(ex) print("Transcribe: The response could not be sent, maybe connection was terminated?") time.sleep(0.2) #short delay return finally: modelbusy.release() self.send_response(404) self.end_headers(content_type='text/html') def do_OPTIONS(self): self.send_response(200) self.end_headers(content_type='text/html') def do_HEAD(self): self.send_response(200) self.end_headers(content_type='text/html') def end_headers(self, content_type=None): self.send_header('access-control-allow-origin', '*') self.send_header('access-control-allow-methods', '*') self.send_header('access-control-allow-headers', '*, Accept, Content-Type, Content-Length, Cache-Control, Accept-Encoding, X-CSRF-Token, Client-Agent, X-Fields, Content-Type, Authorization, X-Requested-With, X-HTTP-Method-Override, apikey, genkey') self.send_header("cache-control", "no-store") if content_type is not None: self.send_header('content-type', content_type) return super(ServerRequestHandler, self).end_headers() def is_port_in_use(portNum): try: import socket with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(('localhost', portNum)) == 0 except Exception as ex: return True def RunServerMultiThreaded(addr, port): global exitcounter, sslvalid global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui if is_port_in_use(port): print(f"Warning: Port {port} already appears to be in use by another program.") sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) if args.ssl and sslvalid: import ssl certpath = os.path.abspath(args.ssl[0]) keypath = os.path.abspath(args.ssl[1]) context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) context.load_cert_chain(certfile=certpath, keyfile=keypath) sock = context.wrap_socket(sock, server_side=True) sock.bind((addr, port)) numThreads = 20 sock.listen(numThreads) class Thread(threading.Thread): def __init__(self, i): threading.Thread.__init__(self) self.i = i self.daemon = True self.start() def run(self): global exitcounter handler = ServerRequestHandler(addr, port) with http.server.HTTPServer((addr, port), handler, False) as self.httpd: try: self.httpd.socket = sock self.httpd.server_bind = self.server_close = lambda self: None self.httpd.serve_forever() except (KeyboardInterrupt,SystemExit): exitcounter = 999 self.httpd.server_close() sys.exit(0) finally: exitcounter = 999 self.httpd.server_close() sys.exit(0) def stop(self): global exitcounter exitcounter = 999 self.httpd.server_close() threadArr = [] for i in range(numThreads): threadArr.append(Thread(i)) while 1: try: time.sleep(10) except KeyboardInterrupt: global exitcounter exitcounter = 999 for i in range(numThreads): threadArr[i].stop() sys.exit(0) # note: customtkinter-5.2.0 def show_new_gui(): from tkinter.filedialog import askopenfilename from tkinter.filedialog import asksaveasfile # if args received, launch if len(sys.argv) != 1: import tkinter as tk root = tk.Tk() #we dont want the useless window to be visible, but we want it in taskbar root.attributes("-alpha", 0) args.model_param = askopenfilename(title="Select ggml model .bin or .gguf file or .kcpps config") root.withdraw() root.quit() if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'): loadconfigfile(args.model_param) if not args.model_param and not args.sdmodel and not args.whispermodel: global exitcounter exitcounter = 999 print("\nNo ggml model or kcpps file was selected. Exiting.") time.sleep(3) sys.exit(2) return import customtkinter as ctk nextstate = 0 #0=exit, 1=launch original_windowwidth = 550 original_windowheight = 550 windowwidth = original_windowwidth windowheight = original_windowheight ctk.set_appearance_mode("dark") root = ctk.CTk() root.geometry(str(windowwidth) + "x" + str(windowheight)) root.title("KoboldCpp v"+KcppVersion) gtooltip_box = None gtooltip_label = None window_reference_width = None window_reference_height = None previous_event_width = None previous_event_height = None def on_resize(event): if not event.widget.master: nonlocal window_reference_width, window_reference_height, previous_event_width,previous_event_height if not window_reference_width and not window_reference_height: window_reference_width = event.width window_reference_height = event.height previous_event_width = window_reference_width previous_event_height = window_reference_height else: new_width = event.width new_height = event.height incr_w = new_width/window_reference_width incr_h = new_height/window_reference_height smallratio = min(incr_w,incr_h) smallratio = round(smallratio,2) if new_width != previous_event_width or new_height!=previous_event_height: lastpos = root.geometry() lparr = lastpos.split('+', 1) lastpos = ("+"+str(lparr[1])) if (len(lparr)==2) else "" previous_event_width = new_width previous_event_height = new_height windowwidth = math.floor(original_windowwidth*smallratio) windowwidth = max(256, min(1024, windowwidth)) windowheight = math.floor(original_windowheight*smallratio) windowheight = max(256, min(1024, windowheight)) root.geometry(str(windowwidth) + "x" + str(windowheight) + str(lastpos)) ctk.set_widget_scaling(smallratio) if sys.platform=="darwin": root.resizable(False,False) else: root.resizable(True,True) root.bind("", on_resize) global using_gui_launcher using_gui_launcher = True # trigger empty tooltip then remove it def show_tooltip(event, tooltip_text=None): nonlocal gtooltip_box, gtooltip_label if not gtooltip_box and not gtooltip_label: gtooltip_box = ctk.CTkToplevel(root) gtooltip_box.configure(fg_color="#ffffe0") gtooltip_box.withdraw() gtooltip_box.overrideredirect(True) gtooltip_label = ctk.CTkLabel(gtooltip_box, text=tooltip_text, text_color="#000000", fg_color="#ffffe0") gtooltip_label.pack(expand=True, padx=2, pady=1) else: gtooltip_label.configure(text=tooltip_text) x, y = root.winfo_pointerxy() gtooltip_box.wm_geometry(f"+{x + 10}+{y + 10}") gtooltip_box.deiconify() def hide_tooltip(event): nonlocal gtooltip_box if gtooltip_box: gtooltip_box.withdraw() show_tooltip(None,"") #initialize tooltip objects hide_tooltip(None) tabs = ctk.CTkFrame(root, corner_radius = 0, width=windowwidth, height=windowheight-50) tabs.grid(row=0, stick="nsew") tabnames= ["Quick Launch", "Hardware", "Tokens", "Model Files", "Network", "Horde Worker","Image Gen","Audio"] navbuttons = {} navbuttonframe = ctk.CTkFrame(tabs, width=100, height=int(tabs.cget("height"))) navbuttonframe.grid(row=0, column=0, padx=2,pady=2) navbuttonframe.grid_propagate(False) tabcontentframe = ctk.CTkFrame(tabs, width=windowwidth - int(navbuttonframe.cget("width")), height=int(tabs.cget("height"))) tabcontentframe.grid(row=0, column=1, sticky="nsew", padx=2, pady=2) tabcontentframe.grid_propagate(False) CLDevices = ["1","2","3","4"] CUDevices = ["1","2","3","4","All"] CLDevicesNames = ["","","",""] CUDevicesNames = ["","","","",""] VKDevicesNames = ["","","",""] MaxMemory = [0] tabcontent = {} lib_option_pairs = [ (lib_openblas, "Use OpenBLAS"), (lib_clblast, "Use CLBlast"), (lib_cublas, "Use CuBLAS"), (lib_hipblas, "Use hipBLAS (ROCm)"), (lib_vulkan, "Use Vulkan"), (lib_default, "Use No BLAS"), (lib_clblast_noavx2, "CLBlast NoAVX2 (Old CPU)"), (lib_vulkan_noavx2, "Vulkan NoAVX2 (Old CPU)"), (lib_noavx2, "NoAVX2 Mode (Old CPU)"), (lib_failsafe, "Failsafe Mode (Old CPU)")] openblas_option, clblast_option, cublas_option, hipblas_option, vulkan_option, default_option, clblast_noavx2_option, vulkan_noavx2_option, noavx2_option, failsafe_option = (opt if file_exists(lib) or (os.name == 'nt' and file_exists(opt + ".dll")) else None for lib, opt in lib_option_pairs) # slider data blasbatchsize_values = ["-1", "32", "64", "128", "256", "512", "1024", "2048"] blasbatchsize_text = ["Don't Batch BLAS","32","64","128","256","512","1024","2048"] contextsize_text = ["256", "512", "1024", "2048", "3072", "4096", "6144", "8192", "12288", "16384", "24576", "32768", "49152", "65536", "98304", "131072"] runopts = [opt for lib, opt in lib_option_pairs if file_exists(lib)] antirunopts = [opt.replace("Use ", "") for lib, opt in lib_option_pairs if not (opt in runopts)] quantkv_text = ["F16 (Off)","8-Bit","4-Bit"] if not any(runopts): exitcounter = 999 show_gui_msgbox("No Backends Available!","KoboldCPP couldn't locate any backends to use (i.e Default, OpenBLAS, CLBlast, CuBLAS).\n\nTo use the program, please run the 'make' command from the directory.") time.sleep(3) sys.exit(2) # Vars - should be in scope to be used by multiple widgets gpulayers_var = ctk.StringVar(value="0") threads_var = ctk.StringVar(value=str(default_threads)) runopts_var = ctk.StringVar() gpu_choice_var = ctk.StringVar(value="1") launchbrowser = ctk.IntVar(value=1) highpriority = ctk.IntVar() disablemmap = ctk.IntVar() usemlock = ctk.IntVar() debugmode = ctk.IntVar() keepforeground = ctk.IntVar() quietmode = ctk.IntVar(value=0) nocertifymode = ctk.IntVar(value=0) lowvram_var = ctk.IntVar() mmq_var = ctk.IntVar(value=1) quantkv_var = ctk.IntVar(value=0) blas_threads_var = ctk.StringVar() blas_size_var = ctk.IntVar() version_var = ctk.StringVar(value="0") tensor_split_str_vars = ctk.StringVar(value="") rowsplit_var = ctk.IntVar() contextshift = ctk.IntVar(value=1) remotetunnel = ctk.IntVar(value=0) smartcontext = ctk.IntVar() flashattention = ctk.IntVar(value=0) context_var = ctk.IntVar() customrope_var = ctk.IntVar() customrope_scale = ctk.StringVar(value="1.0") customrope_base = ctk.StringVar(value="10000") chatcompletionsadapter_var = ctk.StringVar() model_var = ctk.StringVar() lora_var = ctk.StringVar() lora_base_var = ctk.StringVar() preloadstory_var = ctk.StringVar() mmproj_var = ctk.StringVar() port_var = ctk.StringVar(value=defaultport) host_var = ctk.StringVar(value="") multiuser_var = ctk.IntVar(value=1) horde_name_var = ctk.StringVar(value="koboldcpp") horde_gen_var = ctk.StringVar(value=maxhordelen) horde_context_var = ctk.StringVar(value=maxhordectx) horde_apikey_var = ctk.StringVar(value="") horde_workername_var = ctk.StringVar(value="") usehorde_var = ctk.IntVar() ssl_cert_var = ctk.StringVar() ssl_key_var = ctk.StringVar() password_var = ctk.StringVar() sd_model_var = ctk.StringVar() sd_lora_var = ctk.StringVar() sd_loramult_var = ctk.StringVar(value="1.0") sd_vae_var = ctk.StringVar() sd_vaeauto_var = ctk.IntVar(value=0) sd_clamped_var = ctk.IntVar(value=0) sd_threads_var = ctk.StringVar(value=str(default_threads)) sd_quant_var = ctk.IntVar(value=0) whisper_model_var = ctk.StringVar() def tabbuttonaction(name): for t in tabcontent: if name == t: tabcontent[t].grid(row=0, column=0) navbuttons[t].configure(fg_color="#6f727b") else: tabcontent[t].grid_remove() navbuttons[t].configure(fg_color="transparent") # Dynamically create tabs + buttons based on values of [tabnames] for idx, name in enumerate(tabnames): tabcontent[name] = ctk.CTkFrame(tabcontentframe, width=int(tabcontentframe.cget("width")), height=int(tabcontentframe.cget("height")), fg_color="transparent") tabcontent[name].grid_propagate(False) if idx == 0: tabcontent[name].grid(row=idx, sticky="nsew") ctk.CTkLabel(tabcontent[name], text= name, font=ctk.CTkFont(None, 14, 'bold')).grid(row=0, padx=12, pady = 5, stick='nw') navbuttons[name] = ctk.CTkButton(navbuttonframe, text=name, width = 100, corner_radius=0 , command = lambda d=name:tabbuttonaction(d), hover_color="#868a94" ) navbuttons[name].grid(row=idx) tabbuttonaction(tabnames[0]) # Quick Launch Tab quick_tab = tabcontent["Quick Launch"] # helper functions def makecheckbox(parent, text, variable=None, row=0, column=0, command=None, onvalue=1, offvalue=0,tooltiptxt=""): temp = ctk.CTkCheckBox(parent, text=text,variable=variable, onvalue=onvalue, offvalue=offvalue) if command is not None and variable is not None: variable.trace("w", command) temp.grid(row=row,column=column, padx=8, pady=1, stick="nw") if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makelabel(parent, text, row, column=0, tooltiptxt=""): temp = ctk.CTkLabel(parent, text=text) temp.grid(row=row, column=column, padx=8, pady=1, stick="nw") if tooltiptxt!="": temp.bind("", lambda event: show_tooltip(event, tooltiptxt)) temp.bind("", hide_tooltip) return temp def makeslider(parent, label, options, var, from_ , to, row=0, width=160, height=10, set=0, tooltip=""): sliderLabel = makelabel(parent, options[set], row + 1, 1) titleLabel = makelabel(parent, label, row,0,tooltip) def sliderUpdate(a,b,c): sliderLabel.configure(text = options[int(var.get())]) var.trace("w", sliderUpdate) slider = ctk.CTkSlider(parent, from_=from_, to=to, variable = var, width = width, height=height, border_width=5,number_of_steps=len(options) - 1) slider.grid(row=row+1, column=0, padx = 8, stick="w") slider.set(set) return slider, sliderLabel, titleLabel def makelabelentry(parent, text, var, row=0, width= 50,tooltip=""): label = makelabel(parent, text, row,0,tooltip) entry = ctk.CTkEntry(parent, width=width, textvariable=var) #you cannot set placeholder text for SHARED variables entry.grid(row=row, column=1, padx= 8, stick="nw") return entry, label def makefileentry(parent, text, searchtext, var, row=0, width=200, filetypes=[], onchoosefile=None, singlerow=False, tooltiptxt=""): label = makelabel(parent, text, row,0,tooltiptxt) def getfilename(var, text): initialDir = os.path.dirname(var.get()) initialDir = initialDir if os.path.isdir(initialDir) else None fnam = askopenfilename(title=text,filetypes=filetypes, initialdir=initialDir) if fnam: var.set(fnam) if onchoosefile: onchoosefile(var.get()) entry = ctk.CTkEntry(parent, width, textvariable=var) button = ctk.CTkButton(parent, 50, text="Browse", command= lambda a=var,b=searchtext:getfilename(a,b)) if singlerow: entry.grid(row=row, column=1, padx=8, stick="w") button.grid(row=row, column=1, padx=144, stick="nw") else: entry.grid(row=row+1, column=0, padx=8, stick="nw") button.grid(row=row+1, column=1, stick="nw") return label, entry, button # decided to follow yellowrose's and kalomaze's suggestions, this function will automatically try to determine GPU identifiers # run in new thread so it doesnt block. does not return anything, instead overwrites specific values and redraws GUI def auto_gpu_heuristics(): import subprocess FetchedCUdevices = [] FetchedCUdeviceMem = [] AMDgpu = None try: # Get OpenCL GPU names on windows using a special binary. overwrite at known index if found. basepath = os.path.abspath(os.path.dirname(__file__)) output = "" data = None try: output = subprocess.run(["clinfo","--json"], capture_output=True, text=True, check=True, encoding='utf-8').stdout data = json.loads(output) except Exception as e1: output = subprocess.run([((os.path.join(basepath, "winclinfo.exe")) if os.name == 'nt' else "clinfo"),"--json"], capture_output=True, text=True, check=True, creationflags=subprocess.CREATE_NO_WINDOW | subprocess.DETACHED_PROCESS, encoding='utf-8').stdout data = json.loads(output) plat = 0 dev = 0 lowestclmem = 0 for platform in data["devices"]: dev = 0 for device in platform["online"]: dname = device["CL_DEVICE_NAME"] dmem = int(device["CL_DEVICE_GLOBAL_MEM_SIZE"]) idx = plat+dev*2 if idxidx): CUDevicesNames[idx] = FetchedCUdevices[idx] if AMDgpu: MaxMemory[0] = max(int(FetchedCUdeviceMem[idx]),MaxMemory[0]) else: MaxMemory[0] = max(int(FetchedCUdeviceMem[idx])*1024*1024,MaxMemory[0]) #autopick cublas if suitable, requires at least 3.5GB VRAM to auto pick global exitcounter, runmode_untouched #we do not want to autoselect hip/cublas if the user has already changed their desired backend! if exitcounter < 100 and MaxMemory[0]>3500000000 and (("Use CuBLAS" in runopts and CUDevicesNames[0]!="") or "Use hipBLAS (ROCm)" in runopts) and (any(CUDevicesNames) or any(CLDevicesNames)) and runmode_untouched: if "Use CuBLAS" in runopts: runopts_var.set("Use CuBLAS") elif "Use hipBLAS (ROCm)" in runopts: runopts_var.set("Use hipBLAS (ROCm)") changed_gpu_choice_var() return def on_picked_model_file(filepath): if filepath.lower().endswith('.kcpps'): #load it as a config file instead with open(filepath, 'r') as f: dict = json.load(f) import_vars(dict) else: autoset_gpu_layers(filepath) def autoset_gpu_layers(filepath): #shitty algo to determine how many layers to use try: global gui_layers_untouched fsize = os.path.getsize(filepath) if fsize>10000000: #dont bother with models < 10mb cs = int(contextsize_text[context_var.get()]) mem = MaxMemory[0] layerlimit = 0 if cs and cs > 4096: fsize *= 1.2 elif cs and cs > 2048: fsize *= 1.1 if mem < fsize*1.6: sizeperlayer = fsize*0.052 layerlimit = int(min(200,mem/sizeperlayer)) else: layerlimit = 200 #assume full offload old_gui_layers_untouched = gui_layers_untouched gui_layers_zeroed = gpulayers_var.get()=="" or gpulayers_var.get()=="0" if (gui_layers_untouched or gui_layers_zeroed) and layerlimit>0: gpulayers_var.set(str(layerlimit)) mmq_var.set(0 if layerlimit>=200 else 1) gui_layers_untouched = old_gui_layers_untouched if gui_layers_zeroed: gui_layers_untouched = True except Exception as ex: pass def setup_backend_tooltip(parent): # backend count label with the tooltip function nl = '\n' tooltxt = f"Number of backends you have built and available." + (f"\n\nMissing Backends: \n\n{nl.join(antirunopts)}" if len(runopts) != 6 else "") num_backends_built = makelabel(parent, str(len(runopts)) + f"/9", 5, 2,tooltxt) num_backends_built.grid(row=1, column=1, padx=195, pady=0) num_backends_built.configure(text_color="#00ff00") def changed_gpulayers(*args): global gui_layers_untouched gui_layers_untouched = False pass def changed_gpu_choice_var(*args): global exitcounter if exitcounter > 100: return if gpu_choice_var.get()!="All": try: s = int(gpu_choice_var.get())-1 v = runopts_var.get() if v == "Use Vulkan" or v == "Vulkan NoAVX2 (Old CPU)": quick_gpuname_label.configure(text=VKDevicesNames[s]) gpuname_label.configure(text=VKDevicesNames[s]) elif v == "Use CLBlast" or v == "CLBlast NoAVX2 (Old CPU)": quick_gpuname_label.configure(text=CLDevicesNames[s]) gpuname_label.configure(text=CLDevicesNames[s]) else: quick_gpuname_label.configure(text=CUDevicesNames[s]) gpuname_label.configure(text=CUDevicesNames[s]) except Exception as ex: pass else: quick_gpuname_label.configure(text="") gpuname_label.configure(text="") gpu_choice_var.trace("w", changed_gpu_choice_var) gpulayers_var.trace("w", changed_gpulayers) def togglectxshift(a,b,c): if contextshift.get()==0: smartcontextbox.grid() else: smartcontextbox.grid_remove() if contextshift.get()==0 and flashattention.get()==1: qkvslider.grid() qkvlabel.grid() noqkvlabel.grid_remove() else: qkvslider.grid_remove() qkvlabel.grid_remove() noqkvlabel.grid() def toggleflashattn(a,b,c): if contextshift.get()==0 and flashattention.get()==1: qkvslider.grid() qkvlabel.grid() noqkvlabel.grid_remove() else: qkvslider.grid_remove() qkvlabel.grid_remove() noqkvlabel.grid() def guibench(): args.benchmark = "stdout" launchbrowser.set(0) guilaunch() def changerunmode(a,b,c): global runmode_untouched runmode_untouched = False index = runopts_var.get() if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") quick_gpu_selector_label.grid(row=3, column=0, padx = 8, pady=1, stick="nw") if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)": gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") if gpu_choice_var.get()=="All": gpu_choice_var.set("1") elif index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": CUDA_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") CUDA_quick_gpu_selector_box.grid(row=3, column=1, padx=8, pady=1, stick="nw") else: quick_gpuname_label.grid_remove() gpuname_label.grid_remove() gpu_selector_label.grid_remove() gpu_selector_box.grid_remove() CUDA_gpu_selector_box.grid_remove() quick_gpu_selector_label.grid_remove() quick_gpu_selector_box.grid_remove() CUDA_quick_gpu_selector_box.grid_remove() if index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": lowvram_box.grid(row=4, column=0, padx=8, pady=1, stick="nw") mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") quick_mmq_box.grid(row=4, column=1, padx=8, pady=1, stick="nw") splitmode_box.grid(row=5, column=1, padx=8, pady=1, stick="nw") tensor_split_label.grid(row=8, column=0, padx = 8, pady=1, stick="nw") tensor_split_entry.grid(row=8, column=1, padx=8, pady=1, stick="nw") else: lowvram_box.grid_remove() mmq_box.grid_remove() quick_mmq_box.grid_remove() tensor_split_label.grid_remove() tensor_split_entry.grid_remove() splitmode_box.grid_remove() if index == "Use Vulkan" or index == "Vulkan NoAVX2 (Old CPU)" or index == "Use CLBlast" or index == "CLBlast NoAVX2 (Old CPU)" or index == "Use CuBLAS" or index == "Use hipBLAS (ROCm)": gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") quick_gpu_layers_label.grid(row=6, column=0, padx = 8, pady=1, stick="nw") quick_gpu_layers_entry.grid(row=6, column=1, padx=8, pady=1, stick="nw") else: gpu_layers_label.grid_remove() gpu_layers_entry.grid_remove() quick_gpu_layers_label.grid_remove() quick_gpu_layers_entry.grid_remove() changed_gpu_choice_var() # presets selector makelabel(quick_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(quick_tab, values=runopts, width=180,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(quick_tab) # gpu options quick_gpu_selector_label = makelabel(quick_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_quick_gpu_selector_box = ctk.CTkComboBox(quick_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") quick_gpuname_label = ctk.CTkLabel(quick_tab, text="") quick_gpuname_label.grid(row=3, column=1, padx=75, sticky="W") quick_gpuname_label.configure(text_color="#ffff00") quick_gpu_layers_entry,quick_gpu_layers_label = makelabelentry(quick_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81") quick_mmq_box = makecheckbox(quick_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1,tooltiptxt="Enable MMQ mode instead of CuBLAS for prompt processing. Read the wiki. Speed may vary.") # quick boxes quick_boxes = {"Launch Browser": launchbrowser , "Disable MMAP":disablemmap,"Use ContextShift":contextshift,"Remote Tunnel":remotetunnel,"Use FlashAttention":flashattention,"Quiet Mode":quietmode} quick_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete", "Disable MMAP":"Avoids using mmap to load models if enabled", "Use ContextShift":"Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", "Remote Tunnel":"Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.", "Use FlashAttention":"Enable flash attention for GGUF models.", "Quiet Mode":"Prevents all generation related terminal output from being displayed."} for idx, name, in enumerate(quick_boxes): makecheckbox(quick_tab, name, quick_boxes[name], int(idx/2) +20, idx%2,tooltiptxt=quick_boxes_desc[name]) # context size makeslider(quick_tab, "Context Size:", contextsize_text, context_var, 0, len(contextsize_text)-1, 30, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") # load model makefileentry(quick_tab, "Model:", "Select GGML Model File", model_var, 40, 170, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") # Hardware Tab hardware_tab = tabcontent["Hardware"] # presets selector makelabel(hardware_tab, "Presets:", 1,0,"Select a backend to use.\nOpenBLAS and NoBLAS runs purely on CPU only.\nCuBLAS runs on Nvidia GPUs, and is much faster.\nCLBlast works on all GPUs but is somewhat slower.\nNoAVX2 and Failsafe modes support older PCs.") runoptbox = ctk.CTkComboBox(hardware_tab, values=runopts, width=180,variable=runopts_var, state="readonly") runoptbox.grid(row=1, column=1,padx=8, stick="nw") runoptbox.set(runopts[0]) # Set to first available option # Tell user how many backends are available setup_backend_tooltip(hardware_tab) # gpu options gpu_selector_label = makelabel(hardware_tab, "GPU ID:", 3,0,"Which GPU ID to load the model with.\nNormally your main GPU is #1, but it can vary for multi GPU setups.") gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CLDevices, width=60, variable=gpu_choice_var, state="readonly") CUDA_gpu_selector_box = ctk.CTkComboBox(hardware_tab, values=CUDevices, width=60, variable=gpu_choice_var, state="readonly") gpuname_label = ctk.CTkLabel(hardware_tab, text="") gpuname_label.grid(row=3, column=1, padx=75, sticky="W") gpuname_label.configure(text_color="#ffff00") gpu_layers_entry,gpu_layers_label = makelabelentry(hardware_tab,"GPU Layers:", gpulayers_var, 6, 50,"How many layers to offload onto the GPU.\nVRAM intensive, usage increases with model and context size.\nRequires some trial and error to find the best fit value.\n\nCommon values for total layers, accuracy not guaranteed.\n\nLlama/Mistral 7b/8b: 33\nSolar 10.7b/11b: 49\nLlama 13b: 41\nLlama 20b(stack): 63\nLlama/Yi 34b: 61\nMixtral 8x7b: 33\nLlama 70b: 81") tensor_split_entry,tensor_split_label = makelabelentry(hardware_tab, "Tensor Split:", tensor_split_str_vars, 8, 80, tooltip='When using multiple GPUs this option controls how large tensors should be split across all GPUs.\nUses a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order.\nFor example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1.') lowvram_box = makecheckbox(hardware_tab, "Low VRAM (No KV offload)", lowvram_var, 4,0, tooltiptxt='Avoid offloading KV Cache or scratch buffers to VRAM.\nAllows more layers to fit, but may result in a speed loss.') mmq_box = makecheckbox(hardware_tab, "Use QuantMatMul (mmq)", mmq_var, 4,1, tooltiptxt="Enable MMQ mode to use finetuned kernels instead of default CuBLAS/HipBLAS for prompt processing.\nRead the wiki. Speed may vary.") splitmode_box = makecheckbox(hardware_tab, "Row-Split", rowsplit_var, 5,0, tooltiptxt="Split rows across GPUs instead of splitting layers and KV across GPUs.\nUses the main GPU for small tensors and intermediate results. Speed may vary.") # threads makelabelentry(hardware_tab, "Threads:" , threads_var, 11, 50,"How many threads to use.\nRecommended value is your CPU core count, defaults are usually OK.") # hardware checkboxes hardware_boxes = {"Launch Browser": launchbrowser, "High Priority" : highpriority, "Disable MMAP":disablemmap, "Use mlock":usemlock, "Debug Mode":debugmode, "Keep Foreground":keepforeground} hardware_boxes_desc = {"Launch Browser": "Launches your default browser after model loading is complete", "High Priority": "Increases the koboldcpp process priority.\nMay cause lag or slowdown instead. Not recommended.", "Disable MMAP": "Avoids using mmap to load models if enabled", "Use mlock": "Enables mlock, preventing the RAM used to load the model from being paged out.", "Debug Mode": "Enables debug mode, with extra info printed to the terminal.", "Keep Foreground": "Bring KoboldCpp to the foreground every time there is a new generation."} for idx, name, in enumerate(hardware_boxes): makecheckbox(hardware_tab, name, hardware_boxes[name], int(idx/2) +30, idx%2, tooltiptxt=hardware_boxes_desc[name]) # blas thread specifier makelabelentry(hardware_tab, "BLAS threads:" , blas_threads_var, 14, 50,"How many threads to use during BLAS processing.\nIf left blank, uses same value as regular thread count.") # blas batch size makeslider(hardware_tab, "BLAS Batch Size:", blasbatchsize_text, blas_size_var, 0, 7, 16, set=5,tooltip="How many tokens to process at once per batch.\nLarger values use more memory.") # force version makelabelentry(hardware_tab, "Force Version:" , version_var, 100, 50,"If the autodetected version is wrong, you can change it here.\nLeave as 0 for default.") ctk.CTkButton(hardware_tab , text = "Run Benchmark", command = guibench ).grid(row=110,column=0, stick="se", padx= 0, pady=2) runopts_var.trace('w', changerunmode) changerunmode(1,1,1) global runmode_untouched runmode_untouched = True # Tokens Tab tokens_tab = tabcontent["Tokens"] # tokens checkboxes smartcontextbox = makecheckbox(tokens_tab, "Use SmartContext", smartcontext, 1,tooltiptxt="Uses SmartContext. Now considered outdated and not recommended.\nCheck the wiki for more info.") makecheckbox(tokens_tab, "Use ContextShift", contextshift, 2,tooltiptxt="Uses Context Shifting to reduce reprocessing.\nRecommended. Check the wiki for more info.", command=togglectxshift) # context size makeslider(tokens_tab, "Context Size:",contextsize_text, context_var, 0, len(contextsize_text)-1, 20, set=3,tooltip="What is the maximum context size to support. Model specific. You cannot exceed it.\nLarger contexts require more memory, and not all models support it.") customrope_scale_entry, customrope_scale_label = makelabelentry(tokens_tab, "RoPE Scale:", customrope_scale,tooltip="For Linear RoPE scaling. RoPE frequency scale.") customrope_base_entry, customrope_base_label = makelabelentry(tokens_tab, "RoPE Base:", customrope_base,tooltip="For NTK Aware Scaling. RoPE frequency base.") def togglerope(a,b,c): items = [customrope_scale_label, customrope_scale_entry,customrope_base_label, customrope_base_entry] for idx, item in enumerate(items): if customrope_var.get() == 1: item.grid(row=23 + int(idx/2), column=idx%2, padx=8, stick="nw") else: item.grid_remove() makecheckbox(tokens_tab, "Custom RoPE Config", variable=customrope_var, row=22, command=togglerope,tooltiptxt="Override the default RoPE configuration with custom RoPE scaling.") makecheckbox(tokens_tab, "Use FlashAttention", flashattention, 28, command=toggleflashattn, tooltiptxt="Enable flash attention for GGUF models.") noqkvlabel = makelabel(tokens_tab,"Requirments Not Met",31,0,"Requires FlashAttention ENABLED and ContextShift DISABLED.") noqkvlabel.configure(text_color="#ff5555") qkvslider,qkvlabel,qkvtitle = makeslider(tokens_tab, "Quantize KV Cache:", quantkv_text, quantkv_var, 0, 2, 30, set=0,tooltip="Enable quantization of KV cache.\nRequires FlashAttention and disables ContextShift.") makefileentry(tokens_tab, "ChatCompletions Adapter:", "Select ChatCompletions Adapter File", chatcompletionsadapter_var, 32,tooltiptxt="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.") togglerope(1,1,1) toggleflashattn(1,1,1) togglectxshift(1,1,1) # Model Tab model_tab = tabcontent["Model Files"] makefileentry(model_tab, "Model:", "Select GGML Model File", model_var, 1, onchoosefile=on_picked_model_file,tooltiptxt="Select a GGUF or GGML model file on disk to be loaded.") makefileentry(model_tab, "Lora:", "Select Lora File",lora_var, 3,tooltiptxt="Select an optional GGML LoRA adapter to use.\nLeave blank to skip.") makefileentry(model_tab, "Lora Base:", "Select Lora Base File", lora_base_var, 5,tooltiptxt="Select an optional F16 GGML LoRA base file to use.\nLeave blank to skip.") makefileentry(model_tab, "LLaVA mmproj:", "Select LLaVA mmproj File", mmproj_var, 7,tooltiptxt="Select a mmproj file to use for LLaVA.\nLeave blank to skip.") makefileentry(model_tab, "Preloaded Story:", "Select Preloaded Story File", preloadstory_var, 9,tooltiptxt="Select an optional KoboldAI JSON savefile \nto be served on launch to any client.") # Network Tab network_tab = tabcontent["Network"] # interfaces makelabelentry(network_tab, "Port: ", port_var, 1, 150,tooltip="Select the port to host the KoboldCPP webserver.\n(Defaults to 5001)") makelabelentry(network_tab, "Host: ", host_var, 2, 150,tooltip="Select a specific host interface to bind to.\n(Defaults to all)") makecheckbox(network_tab, "Multiuser Mode", multiuser_var, 3,tooltiptxt="Allows requests by multiple different clients to be queued and handled in sequence.") makecheckbox(network_tab, "Remote Tunnel", remotetunnel, 3, 1,tooltiptxt="Creates a trycloudflare tunnel.\nAllows you to access koboldcpp from other devices over an internet URL.") makecheckbox(network_tab, "Quiet Mode", quietmode, 4,tooltiptxt="Prevents all generation related terminal output from being displayed.") makecheckbox(network_tab, "NoCertify Mode (Insecure)", nocertifymode, 4, 1,tooltiptxt="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.") makefileentry(network_tab, "SSL Cert:", "Select SSL cert.pem file",ssl_cert_var, 5, width=130 ,filetypes=[("Unencrypted Certificate PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL certificate file for https.\nCan be generated with OpenSSL.") makefileentry(network_tab, "SSL Key:", "Select SSL key.pem file", ssl_key_var, 7, width=130, filetypes=[("Unencrypted Key PEM", "*.pem")], singlerow=True,tooltiptxt="Select your unencrypted .pem SSL key file for https.\nCan be generated with OpenSSL.") makelabelentry(network_tab, "Password: ", password_var, 8, 150,tooltip="Enter a password required to use this instance.\nThis key will be required for all text endpoints.\nImage endpoints are not secured.") # Horde Tab horde_tab = tabcontent["Horde Worker"] makelabel(horde_tab, "Horde:", 18,0,"Settings for embedded AI Horde worker").grid(pady=10) horde_name_entry, horde_name_label = makelabelentry(horde_tab, "Horde Model Name:", horde_name_var, 20, 180,"The model name to be displayed on the AI Horde.") horde_gen_entry, horde_gen_label = makelabelentry(horde_tab, "Gen. Length:", horde_gen_var, 21, 50,"The maximum amount to generate per request \nthat this worker will accept jobs for.") horde_context_entry, horde_context_label = makelabelentry(horde_tab, "Max Context:",horde_context_var, 22, 50,"The maximum context length \nthat this worker will accept jobs for.") horde_apikey_entry, horde_apikey_label = makelabelentry(horde_tab, "API Key (If Embedded Worker):",horde_apikey_var, 23, 180,"Your AI Horde API Key that you have registered.") horde_workername_entry, horde_workername_label = makelabelentry(horde_tab, "Horde Worker Name:",horde_workername_var, 24, 180,"Your worker's name to be displayed.") def togglehorde(a,b,c): labels = [horde_name_label, horde_gen_label, horde_context_label, horde_apikey_label, horde_workername_label] for idx, item in enumerate([horde_name_entry, horde_gen_entry, horde_context_entry, horde_apikey_entry, horde_workername_entry]): if usehorde_var.get() == 1: item.grid() labels[idx].grid() else: item.grid_remove() labels[idx].grid_remove() if usehorde_var.get()==1 and (horde_name_var.get()=="koboldcpp" or horde_name_var.get()=="") and model_var.get()!="": basefile = os.path.basename(model_var.get()) horde_name_var.set(sanitize_string(os.path.splitext(basefile)[0])) makecheckbox(horde_tab, "Configure for Horde", usehorde_var, 19, command=togglehorde,tooltiptxt="Enable the embedded AI Horde worker.") togglehorde(1,1,1) # Image Gen Tab images_tab = tabcontent["Image Gen"] makefileentry(images_tab, "Stable Diffusion Model (safetensors/gguf):", "Select Stable Diffusion Model File", sd_model_var, 1, filetypes=[("*.safetensors *.gguf","*.safetensors *.gguf")], tooltiptxt="Select a .safetensors or .gguf Stable Diffusion model file on disk to be loaded.") makecheckbox(images_tab, "Clamped Mode (Limit Resolution)", sd_clamped_var, 4,tooltiptxt="Limit generation steps and resolution settings for shared use.") makelabelentry(images_tab, "Image Threads:" , sd_threads_var, 6, 50,"How many threads to use during image generation.\nIf left blank, uses same value as threads.") sdloritem1,sdloritem2,sdloritem3 = makefileentry(images_tab, "Image LoRA (Must be non-quant):", "Select SD lora file",sd_lora_var, 10 ,filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD LoRA model file to be loaded.") sdloritem4,sdloritem5 = makelabelentry(images_tab, "Image LoRA Multiplier:" , sd_loramult_var, 12, 50,"What mutiplier value to apply the SD LoRA with.") def togglesdquant(a,b,c): if sd_quant_var.get()==1: sdloritem1.grid_remove() sdloritem2.grid_remove() sdloritem3.grid_remove() sdloritem4.grid_remove() sdloritem5.grid_remove() else: sdloritem1.grid() sdloritem2.grid() sdloritem3.grid() sdloritem4.grid() sdloritem5.grid() makecheckbox(images_tab, "Compress Weights (Saves Memory)", sd_quant_var, 8,command=togglesdquant,tooltiptxt="Quantizes the SD model weights to save memory. May degrade quality.") sdvaeitem1,sdvaeitem2,sdvaeitem3 = makefileentry(images_tab, "Image VAE:", "Select SD VAE file",sd_vae_var, 14, filetypes=[("*.safetensors *.gguf", "*.safetensors *.gguf")],tooltiptxt="Select a .safetensors or .gguf SD VAE file to be loaded.") def toggletaesd(a,b,c): if sd_vaeauto_var.get()==1: sdvaeitem1.grid_remove() sdvaeitem2.grid_remove() sdvaeitem3.grid_remove() else: sdvaeitem1.grid() sdvaeitem2.grid() sdvaeitem3.grid() makecheckbox(images_tab, "Use TAE SD (AutoFix Broken VAE)", sd_vaeauto_var, 16,command=toggletaesd,tooltiptxt="Replace VAE with TAESD. May fix bad VAE.") # audio tab audio_tab = tabcontent["Audio"] makefileentry(audio_tab, "Whisper Model:", "Select Whisper .bin Model File", whisper_model_var, 1, filetypes=[("*.bin","*.bin")], tooltiptxt="Select a Whisper .bin model file on disk to be loaded.") # launch def guilaunch(): if model_var.get() == "" and sd_model_var.get() == "" and whisper_model_var.get() == "": tmp = askopenfilename(title="Select ggml model .bin or .gguf file") model_var.set(tmp) nonlocal nextstate nextstate = 1 root.withdraw() root.quit() pass def export_vars(): args.threads = int(threads_var.get()) args.usemlock = usemlock.get() == 1 args.debugmode = debugmode.get() args.launch = launchbrowser.get()==1 args.highpriority = highpriority.get()==1 args.nommap = disablemmap.get()==1 args.smartcontext = smartcontext.get()==1 args.flashattention = flashattention.get()==1 args.noshift = contextshift.get()==0 args.remotetunnel = remotetunnel.get()==1 args.foreground = keepforeground.get()==1 args.quiet = quietmode.get()==1 args.nocertify = nocertifymode.get()==1 if contextshift.get()==0 and flashattention.get()==1: args.quantkv = quantkv_var.get() else: args.quantkv = 0 gpuchoiceidx = 0 if gpu_choice_var.get()!="All": gpuchoiceidx = int(gpu_choice_var.get())-1 if runopts_var.get() == "Use CLBlast" or runopts_var.get() == "CLBlast NoAVX2 (Old CPU)": args.useclblast = [[0,0], [1,0], [0,1], [1,1]][gpuchoiceidx] if runopts_var.get() == "CLBlast NoAVX2 (Old CPU)": args.noavx2 = True if runopts_var.get() == "Use CuBLAS" or runopts_var.get() == "Use hipBLAS (ROCm)": if gpu_choice_var.get()=="All": args.usecublas = ["lowvram"] if lowvram_var.get() == 1 else ["normal"] else: args.usecublas = ["lowvram",str(gpuchoiceidx)] if lowvram_var.get() == 1 else ["normal",str(gpuchoiceidx)] if mmq_var.get()==1: args.usecublas.append("mmq") if rowsplit_var.get()==1: args.usecublas.append("rowsplit") if runopts_var.get() == "Use Vulkan" or runopts_var.get() == "Vulkan NoAVX2 (Old CPU)": args.usevulkan = [int(gpuchoiceidx)] if runopts_var.get() == "Vulkan NoAVX2 (Old CPU)": args.noavx2 = True if gpulayers_var.get(): args.gpulayers = int(gpulayers_var.get()) if runopts_var.get()=="Use No BLAS": args.noblas = True if runopts_var.get()=="NoAVX2 Mode (Old CPU)": args.noavx2 = True if runopts_var.get()=="Failsafe Mode (Old CPU)": args.noavx2 = True args.noblas = True args.nommap = True if tensor_split_str_vars.get()!="": tssv = tensor_split_str_vars.get() if "," in tssv: args.tensor_split = [float(x) for x in tssv.split(",")] else: args.tensor_split = [float(x) for x in tssv.split(" ")] args.blasthreads = None if blas_threads_var.get()=="" else int(blas_threads_var.get()) args.blasbatchsize = int(blasbatchsize_values[int(blas_size_var.get())]) args.forceversion = 0 if version_var.get()=="" else int(version_var.get()) args.contextsize = int(contextsize_text[context_var.get()]) if customrope_var.get()==1: args.ropeconfig = [float(customrope_scale.get()),float(customrope_base.get())] args.chatcompletionsadapter = None if chatcompletionsadapter_var.get() == "" else chatcompletionsadapter_var.get() args.model_param = None if model_var.get() == "" else model_var.get() args.lora = None if lora_var.get() == "" else ([lora_var.get()] if lora_base_var.get()=="" else [lora_var.get(), lora_base_var.get()]) args.preloadstory = None if preloadstory_var.get() == "" else preloadstory_var.get() args.mmproj = None if mmproj_var.get() == "" else mmproj_var.get() args.ssl = None if (ssl_cert_var.get() == "" or ssl_key_var.get() == "") else ([ssl_cert_var.get(), ssl_key_var.get()]) args.password = None if (password_var.get() == "") else (password_var.get()) args.port_param = defaultport if port_var.get()=="" else int(port_var.get()) args.host = host_var.get() args.multiuser = multiuser_var.get() if usehorde_var.get() != 0: args.hordemodelname = horde_name_var.get() args.hordegenlen = int(horde_gen_var.get()) args.hordemaxctx = int(horde_context_var.get()) if horde_apikey_var.get()!="" and horde_workername_var.get()!="": args.hordekey = horde_apikey_var.get() args.hordeworkername = horde_workername_var.get() if sd_model_var.get() != "": args.sdmodel = sd_model_var.get() args.sdthreads = (0 if sd_threads_var.get()=="" else int(sd_threads_var.get())) if sd_clamped_var.get()==1: args.sdclamped = True if sd_vaeauto_var.get()==1: args.sdvaeauto = True args.sdvae = "" else: args.sdvaeauto = False args.sdvae = "" if sd_vae_var.get() != "": args.sdvae = sd_vae_var.get() if sd_quant_var.get()==1: args.sdquant = True args.sdlora = "" else: if sd_lora_var.get() != "": args.sdlora = sd_lora_var.get() args.sdloramult = float(sd_loramult_var.get()) else: args.sdlora = "" if whisper_model_var.get() != "": args.whispermodel = whisper_model_var.get() def import_vars(dict): dict = convert_outdated_args(dict) if "threads" in dict: threads_var.set(dict["threads"]) usemlock.set(1 if "usemlock" in dict and dict["usemlock"] else 0) if "debugmode" in dict: debugmode.set(dict["debugmode"]) launchbrowser.set(1 if "launch" in dict and dict["launch"] else 0) highpriority.set(1 if "highpriority" in dict and dict["highpriority"] else 0) disablemmap.set(1 if "nommap" in dict and dict["nommap"] else 0) smartcontext.set(1 if "smartcontext" in dict and dict["smartcontext"] else 0) flashattention.set(1 if "flashattention" in dict and dict["flashattention"] else 0) contextshift.set(0 if "noshift" in dict and dict["noshift"] else 1) remotetunnel.set(1 if "remotetunnel" in dict and dict["remotetunnel"] else 0) keepforeground.set(1 if "foreground" in dict and dict["foreground"] else 0) quietmode.set(1 if "quiet" in dict and dict["quiet"] else 0) nocertifymode.set(1 if "nocertify" in dict and dict["nocertify"] else 0) if "quantkv" in dict: quantkv_var.set(dict["quantkv"]) if "useclblast" in dict and dict["useclblast"]: if "noavx2" in dict and dict["noavx2"]: if clblast_noavx2_option is not None: runopts_var.set(clblast_noavx2_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) else: if clblast_option is not None: runopts_var.set(clblast_option) gpu_choice_var.set(str(["0 0", "1 0", "0 1", "1 1"].index(str(dict["useclblast"][0]) + " " + str(dict["useclblast"][1])) + 1)) elif "usecublas" in dict and dict["usecublas"]: if cublas_option is not None or hipblas_option is not None: if cublas_option: runopts_var.set(cublas_option) elif hipblas_option: runopts_var.set(hipblas_option) lowvram_var.set(1 if "lowvram" in dict["usecublas"] else 0) mmq_var.set(1 if "mmq" in dict["usecublas"] else 0) rowsplit_var.set(1 if "rowsplit" in dict["usecublas"] else 0) gpu_choice_var.set("All") for g in range(4): if str(g) in dict["usecublas"]: gpu_choice_var.set(str(g+1)) break elif "usevulkan" in dict and dict['usevulkan'] is not None: if "noavx2" in dict and dict["noavx2"]: if vulkan_noavx2_option is not None: runopts_var.set(vulkan_noavx2_option) gpu_choice_var.set("1") for opt in range(0,4): if opt in dict["usevulkan"]: gpu_choice_var.set(str(opt+1)) break else: if vulkan_option is not None: runopts_var.set(vulkan_option) gpu_choice_var.set("1") for opt in range(0,4): if opt in dict["usevulkan"]: gpu_choice_var.set(str(opt+1)) break elif "noavx2" in dict and "noblas" in dict and dict["noblas"] and dict["noavx2"]: if failsafe_option is not None: runopts_var.set(failsafe_option) elif "noavx2" in dict and dict["noavx2"]: if noavx2_option is not None: runopts_var.set(noavx2_option) elif "noblas" in dict and dict["noblas"]: if default_option is not None: runopts_var.set(default_option) elif openblas_option is not None: runopts_var.set(openblas_option) if "gpulayers" in dict and dict["gpulayers"]: gpulayers_var.set(dict["gpulayers"]) else: gpulayers_var.set("0") if "tensor_split" in dict and dict["tensor_split"]: tssep = ','.join(map(str, dict["tensor_split"])) tensor_split_str_vars.set(tssep) if "blasthreads" in dict and dict["blasthreads"]: blas_threads_var.set(str(dict["blasthreads"])) else: blas_threads_var.set("") if "contextsize" in dict and dict["contextsize"]: context_var.set(contextsize_text.index(str(dict["contextsize"]))) if "ropeconfig" in dict and dict["ropeconfig"] and len(dict["ropeconfig"])>1: if dict["ropeconfig"][0]>0: customrope_var.set(1) customrope_scale.set(str(dict["ropeconfig"][0])) customrope_base.set(str(dict["ropeconfig"][1])) else: customrope_var.set(0) if "blasbatchsize" in dict and dict["blasbatchsize"]: blas_size_var.set(blasbatchsize_values.index(str(dict["blasbatchsize"]))) version_var.set(str(dict["forceversion"]) if ("forceversion" in dict and dict["forceversion"]) else "0") model_var.set(dict["model_param"] if ("model_param" in dict and dict["model_param"]) else "") lora_var.set("") lora_base_var.set("") if "lora" in dict and dict["lora"]: if len(dict["lora"]) > 1: lora_var.set(dict["lora"][0]) lora_base_var.set(dict["lora"][1]) else: lora_var.set(dict["lora"][0]) mmproj_var.set(dict["mmproj"] if ("mmproj" in dict and dict["mmproj"]) else "") ssl_cert_var.set("") ssl_key_var.set("") if "ssl" in dict and dict["ssl"]: if len(dict["ssl"]) == 2: ssl_cert_var.set(dict["ssl"][0]) ssl_key_var.set(dict["ssl"][1]) password_var.set(dict["password"] if ("password" in dict and dict["password"]) else "") preloadstory_var.set(dict["preloadstory"] if ("preloadstory" in dict and dict["preloadstory"]) else "") chatcompletionsadapter_var.set(dict["chatcompletionsadapter"] if ("chatcompletionsadapter" in dict and dict["chatcompletionsadapter"]) else "") port_var.set(dict["port_param"] if ("port_param" in dict and dict["port_param"]) else defaultport) host_var.set(dict["host"] if ("host" in dict and dict["host"]) else "") multiuser_var.set(dict["multiuser"] if ("multiuser" in dict) else 1) horde_name_var.set(dict["hordemodelname"] if ("hordemodelname" in dict and dict["hordemodelname"]) else "koboldcpp") horde_context_var.set(dict["hordemaxctx"] if ("hordemaxctx" in dict and dict["hordemaxctx"]) else maxhordectx) horde_gen_var.set(dict["hordegenlen"] if ("hordegenlen" in dict and dict["hordegenlen"]) else maxhordelen) horde_apikey_var.set(dict["hordekey"] if ("hordekey" in dict and dict["hordekey"]) else "") horde_workername_var.set(dict["hordeworkername"] if ("hordeworkername" in dict and dict["hordeworkername"]) else "") usehorde_var.set(1 if ("hordekey" in dict and dict["hordekey"]) else 0) sd_model_var.set(dict["sdmodel"] if ("sdmodel" in dict and dict["sdmodel"]) else "") sd_clamped_var.set(1 if ("sdclamped" in dict and dict["sdclamped"]) else 0) sd_threads_var.set(str(dict["sdthreads"]) if ("sdthreads" in dict and dict["sdthreads"]) else str(default_threads)) sd_quant_var.set(1 if ("sdquant" in dict and dict["sdquant"]) else 0) sd_vae_var.set(dict["sdvae"] if ("sdvae" in dict and dict["sdvae"]) else "") sd_vaeauto_var.set(1 if ("sdvaeauto" in dict and dict["sdvaeauto"]) else 0) sd_lora_var.set(dict["sdlora"] if ("sdlora" in dict and dict["sdlora"]) else "") sd_loramult_var.set(str(dict["sdloramult"]) if ("sdloramult" in dict and dict["sdloramult"]) else "1.0") whisper_model_var.set(dict["whispermodel"] if ("whispermodel" in dict and dict["whispermodel"]) else "") def save_config(): file_type = [("KoboldCpp Settings", "*.kcpps")] filename = asksaveasfile(filetypes=file_type, defaultextension=file_type) if filename == None: return export_vars() file = open(str(filename.name), 'a') file.write(json.dumps(args.__dict__)) file.close() pass def load_config(): file_type = [("KoboldCpp Settings", "*.kcpps")] global runmode_untouched runmode_untouched = False filename = askopenfilename(filetypes=file_type, defaultextension=file_type, initialdir=None) if not filename or filename=="": return with open(filename, 'r') as f: dict = json.load(f) import_vars(dict) pass def display_help(): try: import webbrowser as wb wb.open("https://github.com/LostRuins/koboldcpp/wiki") except: print("Cannot launch help in browser.") def display_updates(): try: import webbrowser as wb wb.open("https://github.com/LostRuins/koboldcpp/releases/latest") except: print("Cannot launch updates in browser.") ctk.CTkButton(tabs , text = "Launch", fg_color="#2f8d3c", hover_color="#2faa3c", command = guilaunch, width=80, height = 35 ).grid(row=1,column=1, stick="se", padx= 25, pady=5) ctk.CTkButton(tabs , text = "Update", fg_color="#9900cc", hover_color="#aa11dd", command = display_updates, width=90, height = 35 ).grid(row=1,column=0, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Save", fg_color="#084a66", hover_color="#085a88", command = save_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 5, pady=5) ctk.CTkButton(tabs , text = "Load", fg_color="#084a66", hover_color="#085a88", command = load_config, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 70, pady=5) ctk.CTkButton(tabs , text = "Help", fg_color="#992222", hover_color="#bb3333", command = display_help, width=60, height = 35 ).grid(row=1,column=1, stick="sw", padx= 135, pady=5) # start a thread that tries to get actual gpu names and layer counts gpuinfo_thread = threading.Thread(target=auto_gpu_heuristics) gpuinfo_thread.start() #submit job in new thread so nothing is waiting # runs main loop until closed or launch clicked root.mainloop() if nextstate==0: exitcounter = 999 print("Exiting by user request.") sys.exit(0) else: # processing vars export_vars() if not args.model_param and not args.sdmodel and not args.whispermodel: exitcounter = 999 print("\nNo text or image model file was selected. Exiting.") time.sleep(3) sys.exit(2) def show_gui_msgbox(title,message): print(title + ": " + message) try: from tkinter import messagebox import tkinter as tk root = tk.Tk() root.attributes("-alpha", 0) messagebox.showerror(title=title, message=message) root.withdraw() root.quit() except Exception as ex2: pass def print_with_time(txt): from datetime import datetime print(f"{datetime.now().strftime('[%H:%M:%S]')} " + txt, flush=True) def make_url_request(url, data, method='POST', headers={}): import urllib.request, ssl global nocertify try: request = None ssl_cert_dir = os.environ.get('SSL_CERT_DIR') if not ssl_cert_dir and not nocertify and os.name != 'nt': os.environ['SSL_CERT_DIR'] = '/etc/ssl/certs' ssl_context = ssl.create_default_context() if nocertify: ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE if method=='POST': json_payload = json.dumps(data).encode('utf-8') request = urllib.request.Request(url, data=json_payload, headers=headers, method=method) request.add_header('content-type', 'application/json') else: request = urllib.request.Request(url, headers=headers, method=method) response_data = "" with urllib.request.urlopen(request,context=ssl_context) as response: response_data = response.read().decode('utf-8') json_response = json.loads(response_data) return json_response except urllib.error.HTTPError as e: try: errmsg = e.read().decode('utf-8') print_with_time(f"Error: {e} - {errmsg}") except Exception as e: print_with_time(f"Error: {e}") return None except Exception as e: print_with_time(f"Error: {e} - {response_data}") return None #A very simple and stripped down embedded horde worker with no dependencies def run_horde_worker(args, api_key, worker_name): from datetime import datetime import random global friendlymodelname, maxhordectx, maxhordelen, exitcounter, punishcounter, modelbusy, session_starttime epurl = f"http://localhost:{args.port}" if args.host!="": epurl = f"http://{args.host}:{args.port}" def submit_completed_generation(url, jobid, sessionstart, submit_dict): global exitcounter, punishcounter, session_kudos_earned, session_jobs, rewardcounter reply = make_url_request_horde(url, submit_dict) if not reply: punishcounter += 1 print_with_time(f"Error, Job submit failed.") else: reward = reply["reward"] session_kudos_earned += reward session_jobs += 1 curtime = datetime.now() elapsedtime=curtime-sessionstart hrs = int(elapsedtime.total_seconds()) // 3600 mins = elapsedtime.seconds // 60 % 60 secs = elapsedtime.seconds % 60 elapsedtimestr = f"{hrs:03d}h:{mins:02d}m:{secs:02d}s" earnrate = session_kudos_earned/(elapsedtime.total_seconds()/3600) print_with_time(f'Submitted {jobid} and earned {reward:.0f} kudos\n[Total:{session_kudos_earned:.0f} kudos, Time:{elapsedtimestr}, Jobs:{session_jobs}, EarnRate:{earnrate:.0f} kudos/hr]') rewardcounter += 1 if rewardcounter > 50: rewardcounter = 0 if exitcounter > 1: exitcounter -= 1 def make_url_request_horde(url, data, method='POST'): headers = headers = {"apikey": api_key,'User-Agent':'KoboldCppEmbeddedWorkerV2','Client-Agent':'KoboldCppEmbedWorker:2'} ret = make_url_request(url, data, method, headers) if not ret: print("Make sure your Horde API key and worker name is valid!") return ret current_id = None current_payload = None current_generation = None session_starttime = datetime.now() sleepy_counter = 0 #if this exceeds a value, worker becomes sleepy (slower) exitcounter = 0 print(f"===\nEmbedded Horde Worker '{worker_name}' Starting...\n(To use your own Horde Bridge/Scribe worker instead, don't set your API key)") BRIDGE_AGENT = f"KoboldCppEmbedWorker:2:https://github.com/LostRuins/koboldcpp" cluster = "https://aihorde.net" while exitcounter < 10: time.sleep(3) readygo = make_url_request_horde(f'{epurl}/api/v1/info/version', None,'GET') if readygo: print_with_time(f"Embedded Horde Worker '{worker_name}' is started.") break while exitcounter < 10: currentjob_attempts = 0 current_generation = None if punishcounter >= 5: punishcounter = 0 exitcounter += 1 if exitcounter < 10: penaltytime = (2 ** exitcounter) print_with_time(f"Horde Worker Paused for {penaltytime} min - Too many errors. It will resume automatically, but you should restart it.") print_with_time(f"Caution: Too many failed jobs may lead to entering maintenance mode.") time.sleep(60 * penaltytime) else: print_with_time(f"Horde Worker Exit limit reached, too many errors.") global last_non_horde_req_time sec_since_non_horde = time.time() - last_non_horde_req_time no_recent_local_usage = sec_since_non_horde>20 if not no_recent_local_usage: #print_with_time(f"Recent Local Usage - Horde Worker Waiting...") time.sleep(1) continue #first, make sure we are not generating if modelbusy.locked(): time.sleep(0.2) continue #pop new request gen_dict = { "name": worker_name, "models": [friendlymodelname], "max_length": maxhordelen, "max_context_length": maxhordectx, "priority_usernames": [], "softprompts": [], "bridge_agent": BRIDGE_AGENT, } pop = make_url_request_horde(f'{cluster}/api/v2/generate/text/pop',gen_dict) if not pop: punishcounter += 1 print_with_time(f"Failed to fetch job from {cluster}. Waiting 10 seconds...") time.sleep(10) continue if not pop["id"]: slp = (1 if sleepy_counter<10 else (2 if sleepy_counter<25 else 3)) time.sleep(slp) sleepy_counter += 1 if sleepy_counter==20: print_with_time(f"No recent jobs, entering low power mode...") continue sleepy_counter = 0 current_id = pop['id'] current_payload = pop['payload'] print(f"") #empty newline print_with_time(f"Job received from {cluster} for {current_payload.get('max_length',80)} tokens and {current_payload.get('max_context_length',1024)} max context. Starting generation...") #do gen while exitcounter < 10: if not modelbusy.locked(): #horde gets a genkey to avoid KCPP overlap current_payload['genkey'] = f"HORDEREQ_{random.randint(100, 999)}" current_generation = make_url_request_horde(f'{epurl}/api/v1/generate', current_payload) if current_generation: break else: currentjob_attempts += 1 if currentjob_attempts>5: break print_with_time(f"Server Busy - Not ready to generate...") time.sleep(5) #submit reply print(f"") #empty newline if current_generation: submit_dict = { "id": current_id, "generation": current_generation["results"][0]["text"], "state": "ok" } submiturl = cluster + '/api/v2/generate/text/submit' submit_thread = threading.Thread(target=submit_completed_generation, args=(submiturl, current_id, session_starttime, submit_dict)) submit_thread.start() #submit job in new thread so nothing is waiting else: print_with_time(f"Error, Abandoned current job due to errors. Getting new job.") current_id = None current_payload = None time.sleep(0.1) if exitcounter<100: print_with_time(f"Horde Worker Shutdown - Too many errors.") else: print_with_time(f"Horde Worker Shutdown - Server Closing.") exitcounter = 999 time.sleep(3) sys.exit(2) def convert_outdated_args(args): dict = args if isinstance(args, argparse.Namespace): dict = vars(args) global using_outdated_flags using_outdated_flags = False if "sdconfig" in dict and dict["sdconfig"] and len(dict["sdconfig"])>0: using_outdated_flags = True dict["sdmodel"] = dict["sdconfig"][0] if dict["sdconfig"] and len(dict["sdconfig"]) > 1: dict["sdclamped"] = True if dict["sdconfig"] and len(dict["sdconfig"]) > 2: dict["sdthreads"] = int(dict["sdconfig"][2]) if dict["sdconfig"] and len(dict["sdconfig"]) > 3: dict["sdquant"] = (True if dict["sdconfig"][3]=="quant" else False) if "hordeconfig" in dict and dict["hordeconfig"] and dict["hordeconfig"][0]!="": using_outdated_flags = True dict["hordemodelname"] = dict["hordeconfig"][0] if len(dict["hordeconfig"]) > 1: dict["hordegenlen"] = int(dict["hordeconfig"][1]) if len(dict["hordeconfig"]) > 2: dict["hordemaxctx"] = int(dict["hordeconfig"][2]) if len(dict["hordeconfig"]) > 4: dict["hordekey"] = dict["hordeconfig"][3] dict["hordeworkername"] = dict["hordeconfig"][4] check_deprecation_warning() return args def check_deprecation_warning(): # slightly naggy warning to encourage people to switch to new flags # if you want you can remove this at your own risk, # but i am not going to troubleshoot or provide support for deprecated flags. global using_outdated_flags if using_outdated_flags: print(f"\n=== !!! IMPORTANT WARNING !!! ===") print("You are using one or more OUTDATED config files or launch flags!") print("The flags --hordeconfig and --sdconfig have been DEPRECATED, and MAY be REMOVED in future!") print("They will still work for now, but you SHOULD switch to the updated flags instead, to avoid future issues!") print("New flags are: --hordemodelname --hordeworkername --hordekey --hordemaxctx --hordegenlen --sdmodel --sdthreads --sdquant --sdclamped") print("For more information on these flags, please check --help") print(">>> If you are using the GUI launcher, simply re-saving your config again will get rid of this warning.") print("=== !!! IMPORTANT WARNING !!! ===\n") def setuptunnel(has_sd): # This script will help setup a cloudflared tunnel for accessing KoboldCpp over the internet # It should work out of the box on both linux and windows try: import subprocess, re def run_tunnel(): tunnelproc = None tunneloutput = "" tunnelrawlog = "" time.sleep(0.2) if os.name == 'nt': print("Starting Cloudflare Tunnel for Windows, please wait...", flush=True) tunnelproc = subprocess.Popen(f"cloudflared.exe tunnel --url localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) elif sys.platform=="darwin": print("Starting Cloudflare Tunnel for MacOS, please wait...", flush=True) tunnelproc = subprocess.Popen(f"./cloudflared tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) else: print("Starting Cloudflare Tunnel for Linux, please wait...", flush=True) tunnelproc = subprocess.Popen(f"./cloudflared-linux-amd64 tunnel --url http://localhost:{args.port}", text=True, encoding='utf-8', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) time.sleep(10) def tunnel_reader(): nonlocal tunnelproc,tunneloutput,tunnelrawlog pattern = r'https://[\w\.-]+\.trycloudflare\.com' while True: line = tunnelproc.stderr.readline() #cloudflare writes to stderr for some reason tunnelrawlog += line+"\n" if not line: return found = re.findall(pattern, line) for x in found: tunneloutput = x print(f"Your remote Kobold API can be found at {tunneloutput}/api") print(f"Your remote OpenAI Compatible API can be found at {tunneloutput}/v1") if has_sd: print(f"StableUI is available at {tunneloutput}/sdui/") print("======\n") print(f"Your remote tunnel is ready, please connect to {tunneloutput}", flush=True) return tunnel_reader_thread = threading.Thread(target=tunnel_reader) tunnel_reader_thread.start() time.sleep(5) if tunneloutput=="": print(f"Error: Could not create cloudflare tunnel!\nMore Info:\n{tunnelrawlog}", flush=True) time.sleep(0.5) tunnelproc.wait() if os.name == 'nt': if os.path.exists("cloudflared.exe") and os.path.getsize("cloudflared.exe") > 1000000: print("Cloudflared file exists, reusing it...") else: print("Downloading Cloudflare Tunnel for Windows...") subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-windows-amd64.exe -o cloudflared.exe", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') elif sys.platform=="darwin": if os.path.exists("cloudflared") and os.path.getsize("cloudflared") > 1000000: print("Cloudflared file exists, reusing it...") else: print("Downloading Cloudflare Tunnel for MacOS...") subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-darwin-amd64.tgz -o cloudflared-darwin-amd64.tgz", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') subprocess.run("tar -xzf cloudflared-darwin-amd64.tgz", shell=True) subprocess.run("chmod +x 'cloudflared'", shell=True) else: if os.path.exists("cloudflared-linux-amd64") and os.path.getsize("cloudflared-linux-amd64") > 1000000: print("Cloudflared file exists, reusing it...") else: print("Downloading Cloudflare Tunnel for Linux...") subprocess.run("curl -fL https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64 -o cloudflared-linux-amd64", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') subprocess.run("chmod +x 'cloudflared-linux-amd64'", shell=True) print("Attempting to start tunnel thread...", flush=True) tunnel_thread = threading.Thread(target=run_tunnel) tunnel_thread.start() except Exception as ex: print("Remote Tunnel Failed!") print(str(ex)) return None def unload_libs(): global handle OS = platform.system() dll_close = None if OS == "Windows": # pragma: Windows from ctypes import wintypes dll_close = ctypes.windll.kernel32.FreeLibrary dll_close.argtypes = [wintypes.HMODULE] dll_close.restype = ctypes.c_int elif OS == "Darwin": try: try: # macOS 11 (Big Sur). Possibly also later macOS 10s. stdlib = ctypes.CDLL("libc.dylib") except OSError: stdlib = ctypes.CDLL("libSystem") except OSError: # Older macOSs. Not only is the name inconsistent but it's # not even in PATH. stdlib = ctypes.CDLL("/usr/lib/system/libsystem_c.dylib") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "Linux": try: stdlib = ctypes.CDLL("") except OSError: stdlib = ctypes.CDLL("libc.so") # Alpine Linux. dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "msys": # msys can also use `ctypes.CDLL("kernel32.dll").FreeLibrary()`. stdlib = ctypes.CDLL("msys-2.0.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif sys.platform == "cygwin": stdlib = ctypes.CDLL("cygwin1.dll") dll_close = stdlib.dlclose dll_close.argtypes = [ctypes.c_void_p] dll_close.restype = ctypes.c_int elif OS == "FreeBSD": # FreeBSD uses `/usr/lib/libc.so.7` where `7` is another version number. # It is not in PATH but using its name instead of its path is somehow the # only way to open it. The name must include the .so.7 suffix. stdlib = ctypes.CDLL("libc.so.7") dll_close = stdlib.close if handle and dll_close: print("Unloading Libraries...") dll_close(handle._handle) del handle.load_model del handle.generate del handle.new_token del handle.get_stream_count del handle.has_finished del handle.get_last_eval_time del handle.get_last_process_time del handle.get_last_token_count del handle.get_last_seed del handle.get_total_gens del handle.get_last_stop_reason del handle.abort_generate del handle.token_count del handle.get_pending_output del handle handle = None def loadconfigfile(filename): print("Loading kcpps configuration file...") with open(filename, 'r') as f: config = json.load(f) for key, value in config.items(): setattr(args, key, value) def delete_old_pyinstaller(): try: base_path = sys._MEIPASS except Exception: return # not running from pyinstaller if not base_path: return import time, os, shutil selfdirpath = os.path.abspath(base_path) temp_parentdir_path = os.path.abspath(os.path.join(base_path, '..')) for dirname in os.listdir(temp_parentdir_path): absdirpath = os.path.abspath(os.path.join(temp_parentdir_path, dirname)) if os.path.isdir(absdirpath) and os.path.basename(absdirpath).startswith('_MEI'): #only delete kobold pyinstallers if absdirpath!=selfdirpath and (time.time() - os.path.getctime(absdirpath)) > 14400: # remove if older than 4 hours kobold_itemcheck1 = os.path.join(absdirpath, 'koboldcpp_default.dll') kobold_itemcheck2 = os.path.join(absdirpath, 'koboldcpp_default.so') kobold_itemcheck3 = os.path.join(absdirpath, 'klite.embd') kobold_itemcheck4 = os.path.join(absdirpath, 'cublasLt64_11.dll') kobold_itemcheck5 = os.path.join(absdirpath, 'cublas64_11.dll') kobold_itemcheck6 = os.path.join(absdirpath, 'clblast.dll') if os.path.exists(kobold_itemcheck1) or os.path.exists(kobold_itemcheck2) or os.path.exists(kobold_itemcheck3) or (os.path.exists(kobold_itemcheck4) and os.path.exists(kobold_itemcheck5) and os.path.exists(kobold_itemcheck6)): try: shutil.rmtree(absdirpath) print(f"Deleted orphaned pyinstaller dir: {absdirpath}") except Exception as e: print(f"Error deleting orphaned pyinstaller dir: {absdirpath}: {e}") def sanitize_string(input_string): # alphanumeric characters, dots, dashes, and underscores import re sanitized_string = re.sub( r'[^\w\d\.\-_]', '', input_string) return sanitized_string def main(launch_args,start_server=True): global embedded_kailite, embedded_kcpp_docs, embedded_kcpp_sdui global libname, args, friendlymodelname, friendlysdmodelname, fullsdmodelpath, mmprojpath, password, fullwhispermodelpath #perform some basic cleanup of old temporary directories try: delete_old_pyinstaller() except Exception as e: print(f"Error cleaning up orphaned pyinstaller dirs: {e}") args = launch_args if args.config and len(args.config)==1: if isinstance(args.config[0], str) and os.path.exists(args.config[0]): loadconfigfile(args.config[0]) elif args.ignoremissing: print("Ignoring missing kcpp config file...") else: global exitcounter exitcounter = 999 print("Specified kcpp config file invalid or not found.") time.sleep(3) sys.exit(2) args = convert_outdated_args(args) #positional handling for kcpps files (drag and drop) if args.model_param and args.model_param!="" and args.model_param.lower().endswith('.kcpps'): loadconfigfile(args.model_param) #prevent quantkv from being used without flash attn if args.quantkv and args.quantkv>0 and not args.flashattention: print("Error: Using --quantkv requires --flashattention") sys.exit(1) if not args.model_param: args.model_param = args.model if not args.model_param and not args.sdmodel and not args.whispermodel: #give them a chance to pick a file print("For command line arguments, please refer to --help") print("***") try: show_new_gui() except Exception as ex: exitcounter = 999 ermsg = "Reason: " + str(ex) + "\nFile selection GUI unsupported.\ncustomtkinter python module required!\nPlease check command line: script.py --help" show_gui_msgbox("Warning, GUI failed to start",ermsg) if args.skiplauncher: print(f"Note: In order to use --skiplauncher, you need to specify a model with --model") time.sleep(3) sys.exit(2) #try to read story if provided if args.preloadstory: if isinstance(args.preloadstory, str) and os.path.exists(args.preloadstory): print(f"Preloading saved story {args.preloadstory} into server...") with open(args.preloadstory, mode='rb') as f: global preloaded_story preloaded_story = f.read() print("Saved story preloaded.") else: print(f"Warning: Saved story file {args.preloadstory} invalid or not found. No story will be preloaded into server.") # try to read chat completions adapter if args.chatcompletionsadapter: if isinstance(args.chatcompletionsadapter, str) and os.path.exists(args.chatcompletionsadapter): print(f"Loading Chat Completions Adapter...") with open(args.chatcompletionsadapter, 'r') as f: global chatcompl_adapter chatcompl_adapter = json.load(f) print(f"Chat Completions Adapter Loaded") else: print(f"Warning: Chat Completions Adapter {args.chatcompletionsadapter} invalid or not found.") if args.model_param and args.model_param!="": if args.model_param.endswith("?download=true"): args.model_param = args.model_param.replace("?download=true","") if (args.model_param.startswith("http://") or args.model_param.startswith("https://")) and (args.model_param.endswith(".gguf") or args.model_param.endswith(".bin")): import subprocess mdlfilename = os.path.basename(args.model_param) #check if file already exists if mdlfilename: if not os.path.exists(mdlfilename): print(f"Downloading model from external URL at {args.model_param}") subprocess.run(f"curl -fL {args.model_param} -o {mdlfilename}", shell=True, capture_output=True, text=True, check=True, encoding='utf-8') print(f"Download {mdlfilename} completed...", flush=True) args.model_param = mdlfilename else: print(f"Model file {mdlfilename} already exists, not redownloading.") args.model_param = mdlfilename # sanitize and replace the default vanity name. remember me.... if args.model_param and args.model_param!="": newmdldisplayname = os.path.basename(args.model_param) newmdldisplayname = os.path.splitext(newmdldisplayname)[0] friendlymodelname = "koboldcpp/" + sanitize_string(newmdldisplayname) global maxhordelen, maxhordectx, showdebug if args.hordemodelname and args.hordemodelname!="": friendlymodelname = args.hordemodelname if args.debugmode == 1: friendlymodelname = "debug-" + friendlymodelname if not friendlymodelname.startswith("koboldcpp/"): friendlymodelname = "koboldcpp/" + friendlymodelname if (args.hordemodelname and args.hordemodelname!="") or (args.hordeworkername and args.hordeworkername!="") or (args.hordekey and args.hordekey!=""): if args.debugmode == 0: args.debugmode = -1 if args.hordegenlen and args.hordegenlen > 0: maxhordelen = int(args.hordegenlen) if args.hordemaxctx and args.hordemaxctx > 0: maxhordectx = int(args.hordemaxctx) if args.debugmode != 1: showdebug = False if args.highpriority: print("Setting process to Higher Priority - Use Caution") try: import psutil os_used = sys.platform process = psutil.Process(os.getpid()) # Set high priority for the python script for the CPU oldprio = process.nice() if os_used == "win32": # Windows (either 32-bit or 64-bit) process.nice(psutil.REALTIME_PRIORITY_CLASS) print("High Priority for Windows Set: " + str(oldprio) + " to " + str(process.nice())) elif os_used == "linux": # linux process.nice(psutil.IOPRIO_CLASS_RT) print("High Priority for Linux Set: " + str(oldprio) + " to " + str(process.nice())) else: # MAC OS X or other process.nice(-18) print("High Priority for Other OS Set :" + str(oldprio) + " to " + str(process.nice())) except Exception as ex: print("Error, Could not change process priority: " + str(ex)) if args.contextsize: global maxctx maxctx = args.contextsize if args.nocertify: global nocertify nocertify = True if args.gpulayers and args.gpulayers>0: global libname, lib_default, lib_openblas, lib_failsafe, lib_noavx2 nogood = [lib_default,lib_openblas,lib_failsafe,lib_noavx2] if libname in nogood and sys.platform!="darwin": print("WARNING: GPU layers is set, but a GPU backend was not selected!") pass init_library() # Note: if blas does not exist and is enabled, program will crash. print("==========") time.sleep(1) #handle loading text model if args.model_param: if not os.path.exists(args.model_param): print(f"Cannot find text model file: {args.model_param}") if args.ignoremissing: print(f"Ignoring missing model file...") args.model_param = None else: exitcounter = 999 time.sleep(3) sys.exit(2) if args.lora and args.lora[0]!="": if not os.path.exists(args.lora[0]): print(f"Cannot find lora file: {args.lora[0]}") if args.ignoremissing: print(f"Ignoring missing lora file...") args.lora = None else: exitcounter = 999 time.sleep(3) sys.exit(2) else: args.lora[0] = os.path.abspath(args.lora[0]) if len(args.lora) > 1: if not os.path.exists(args.lora[1]): print(f"Cannot find lora base: {args.lora[1]}") if args.ignoremissing: print(f"Ignoring missing lora file...") args.lora = None else: exitcounter = 999 time.sleep(3) sys.exit(2) else: args.lora[1] = os.path.abspath(args.lora[1]) if args.mmproj and args.mmproj!="": if not os.path.exists(args.mmproj): print(f"Cannot find mmproj file: {args.mmproj}") if args.ignoremissing: print(f"Ignoring missing mmproj file...") args.mmproj = None else: exitcounter = 999 time.sleep(3) sys.exit(2) else: global mmprojpath args.mmproj = os.path.abspath(args.mmproj) mmprojpath = args.mmproj if args.password and args.password!="": password = args.password.strip() if not args.blasthreads or args.blasthreads <= 0: args.blasthreads = args.threads modelname = os.path.abspath(args.model_param) print(args) # Flush stdout for win32 issue with regards to piping in terminals, # especially before handing over to C++ context. print(f"==========\nLoading model: {modelname}", flush=True) loadok = load_model(modelname) print("Load Text Model OK: " + str(loadok)) if not loadok: exitcounter = 999 print("Could not load text model: " + modelname) time.sleep(3) sys.exit(3) #handle loading image model if args.sdmodel and args.sdmodel!="": imgmodel = args.sdmodel if not imgmodel or not os.path.exists(imgmodel): print(f"Cannot find image model file: {imgmodel}") if args.ignoremissing: print(f"Ignoring missing img model file...") args.sdmodel = None else: exitcounter = 999 time.sleep(3) sys.exit(2) else: imglora = "" imgvae = "" if args.sdlora: if os.path.exists(args.sdlora): imglora = os.path.abspath(args.sdlora) else: print(f"Missing SD LORA model file...") if args.sdvae: if os.path.exists(args.sdvae): imgvae = os.path.abspath(args.sdvae) else: print(f"Missing SD VAE model file...") imgmodel = os.path.abspath(imgmodel) fullsdmodelpath = imgmodel friendlysdmodelname = os.path.basename(imgmodel) friendlysdmodelname = os.path.splitext(friendlysdmodelname)[0] friendlysdmodelname = sanitize_string(friendlysdmodelname) loadok = sd_load_model(imgmodel,imgvae,imglora) print("Load Image Model OK: " + str(loadok)) if not loadok: exitcounter = 999 print("Could not load image model: " + imgmodel) time.sleep(3) sys.exit(3) #handle whisper model if args.whispermodel and args.whispermodel!="": whispermodel = args.whispermodel if not whispermodel or not os.path.exists(whispermodel): print(f"Cannot find whisper model file: {whispermodel}") if args.ignoremissing: print(f"Ignoring missing whisper model file...") args.whispermodel = None else: exitcounter = 999 time.sleep(3) sys.exit(2) else: whispermodel = os.path.abspath(whispermodel) fullwhispermodelpath = whispermodel loadok = whisper_load_model(whispermodel) print("Load Whisper Model OK: " + str(loadok)) if not loadok: exitcounter = 999 print("Could not load whisper model: " + imgmodel) time.sleep(3) sys.exit(3) #load embedded lite try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "klite.embd"), mode='rb') as f: embedded_kailite = f.read() # patch it with extra stuff origStr = "Sorry, Kobold Lite requires Javascript to function." patchedStr = "Sorry, Kobold Lite requires Javascript to function.
You can use KoboldCpp NoScript mode instead." embedded_kailite = embedded_kailite.decode("UTF-8","ignore") embedded_kailite = embedded_kailite.replace(origStr, patchedStr) embedded_kailite = embedded_kailite.encode() print("Embedded Kobold Lite loaded.") except Exception as e: print("Could not find Kobold Lite. Embedded Kobold Lite will not be available.") try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "kcpp_docs.embd"), mode='rb') as f: embedded_kcpp_docs = f.read() print("Embedded API docs loaded.") except Exception as e: print("Could not find Embedded KoboldCpp API docs.") try: basepath = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(basepath, "kcpp_sdui.embd"), mode='rb') as f: embedded_kcpp_sdui = f.read() if args.sdmodel: print("Embedded SDUI loaded.") except Exception as e: print("Could not find Embedded SDUI.") if args.port_param!=defaultport: args.port = args.port_param global sslvalid if args.ssl: if len(args.ssl)==2 and isinstance(args.ssl[0], str) and os.path.exists(args.ssl[0]) and isinstance(args.ssl[1], str) and os.path.exists(args.ssl[1]): sslvalid = True print("SSL configuration is valid and will be used.") else: print("Your SSL configuration is INVALID. SSL will not be used.") epurl = "" httpsaffix = ("https" if sslvalid else "http") if args.host=="": epurl = f"{httpsaffix}://localhost:{args.port}" else: epurl = f"{httpsaffix}://{args.host}:{args.port}" if not args.remotetunnel: print(f"Starting Kobold API on port {args.port} at {epurl}/api/") print(f"Starting OpenAI Compatible API on port {args.port} at {epurl}/v1/") if args.sdmodel: print(f"StableUI is available at {epurl}/sdui/") if args.launch: try: import webbrowser as wb wb.open(epurl) except: print("--launch was set, but could not launch web browser automatically.") if args.hordekey and args.hordekey!="": if args.hordeworkername and args.hordeworkername!="": horde_thread = threading.Thread(target=run_horde_worker,args=(args,args.hordekey,args.hordeworkername)) horde_thread.daemon = True horde_thread.start() else: print("Horde worker could not start. You need to specify a horde worker name with --hordeworkername") #if post-ready script specified, execute it if args.onready: def onready_subprocess(): import subprocess print("Starting Post-Load subprocess...") subprocess.run(args.onready[0], shell=True) timer_thread = threading.Timer(1, onready_subprocess) #1 second delay timer_thread.start() if args.model_param and args.benchmark: from datetime import datetime, timezone start_server = False save_to_file = (args.benchmark!="stdout" and args.benchmark!="") benchmaxctx = maxctx benchlen = 100 benchmodel = sanitize_string(os.path.splitext(os.path.basename(modelname))[0]) if os.path.exists(args.benchmark) and os.path.getsize(args.benchmark) > 1000000: print(f"\nWarning: The benchmark CSV output file you selected exceeds 1MB. This is probably not what you want, did you select the wrong CSV file?\nFor safety, benchmark output will not be saved.") save_to_file = False if save_to_file: print(f"\nRunning benchmark (Save to File: {args.benchmark})...") else: print(f"\nRunning benchmark (Not Saved)...") benchprompt = "1111111111111111" for i in range(0,14): #generate massive prompt benchprompt += benchprompt genout = generate(benchprompt,memory="",images=[],max_length=benchlen,max_context_length=benchmaxctx,temperature=0.1,top_k=1,rep_pen=1,use_default_badwordsids=True) result = genout['text'] result = (result[:5] if len(result)>5 else "") t_pp = float(handle.get_last_process_time())*float(benchmaxctx-benchlen)*0.001 t_gen = float(handle.get_last_eval_time())*float(benchlen)*0.001 s_pp = float(benchmaxctx-benchlen)/t_pp s_gen = float(benchlen)/t_gen datetimestamp = datetime.now(timezone.utc) print(f"\nBenchmark Completed - v{KcppVersion} Results:\n======") print(f"Timestamp: {datetimestamp}") print(f"Backend: {libname}") print(f"Layers: {args.gpulayers}") print(f"Model: {benchmodel}") print(f"MaxCtx: {benchmaxctx}") print(f"GenAmount: {benchlen}\n-----") print(f"ProcessingTime: {t_pp:.2f}s") print(f"ProcessingSpeed: {s_pp:.2f}T/s") print(f"GenerationTime: {t_gen:.2f}s") print(f"GenerationSpeed: {s_gen:.2f}T/s") print(f"TotalTime: {(t_pp+t_gen):.2f}s") print(f"Output: {result}\n-----") if save_to_file: try: with open(args.benchmark, "a") as file: file.seek(0, 2) if file.tell() == 0: #empty file file.write(f"Timestamp,Backend,Layers,Model,MaxCtx,GenAmount,ProcessingTime,ProcessingSpeed,GenerationTime,GenerationSpeed,TotalTime,Output") file.write(f"\n{datetimestamp},{libname},{args.gpulayers},{benchmodel},{benchmaxctx},{benchlen},{t_pp:.2f},{s_pp:.2f},{t_gen:.2f},{s_gen:.2f},{(t_pp+t_gen):.2f},{result}") except Exception as e: print(f"Error writing benchmark to file: {e}") global using_gui_launcher if using_gui_launcher and not save_to_file: print("===") print("Press ENTER key to exit.", flush=True) input() check_deprecation_warning() if start_server: if args.remotetunnel: setuptunnel(True if args.sdmodel else False) else: # Flush stdout for previous win32 issue so the client can see output. print(f"======\nPlease connect to custom endpoint at {epurl}", flush=True) asyncio.run(RunServerMultiThreaded(args.host, args.port)) else: # Flush stdout for previous win32 issue so the client can see output. print(f"Server was not started, main function complete. Idling.", flush=True) def run_in_queue(launch_args, input_queue, output_queue): main(launch_args, start_server=False) output_queue.put({'command': 'complete'}) while True: if not input_queue.empty(): while not input_queue.empty(): data = input_queue.get() if data['command'] == 'generate': (args, kwargs) = data['data'] genout = generate(*args, **kwargs) result = genout['text'] output_queue.put({'command': 'generated text', 'data': result}) time.sleep(0.2) def start_in_seperate_process(launch_args): import multiprocessing input_queue = multiprocessing.Queue() output_queue = multiprocessing.Queue() p = multiprocessing.Process(target=run_in_queue, args=(launch_args, input_queue, output_queue)) p.start() return (output_queue, input_queue, p) if __name__ == '__main__': def check_range(value_type, min_value, max_value): def range_checker(arg: str): try: f = value_type(arg) except ValueError: raise argparse.ArgumentTypeError(f'must be a valid {value_type}') if f < min_value or f > max_value: raise argparse.ArgumentTypeError(f'must be within [{min_value}, {max_value}]') return f return range_checker print("***\nWelcome to KoboldCpp - Version " + KcppVersion) # just update version manually # print("Python version: " + sys.version) parser = argparse.ArgumentParser(description='KoboldCpp Server') modelgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args modelgroup.add_argument("--model", metavar=('filename'), help="Model file to load", nargs="?") modelgroup.add_argument("model_param", help="Model file to load (positional)", nargs="?") portgroup = parser.add_mutually_exclusive_group() #we want to be backwards compatible with the unnamed positional args portgroup.add_argument("--port", metavar=('[portnumber]'), help="Port to listen on", default=defaultport, type=int, action='store') portgroup.add_argument("port_param", help="Port to listen on (positional)", default=defaultport, nargs="?", type=int, action='store') parser.add_argument("--host", metavar=('[ipaddr]'), help="Host IP to listen on. If empty, all routable interfaces are accepted.", default="") parser.add_argument("--launch", help="Launches a web browser when load is completed.", action='store_true') parser.add_argument("--config", metavar=('[filename]'), help="Load settings from a .kcpps file. Other arguments will be ignored", type=str, nargs=1) physical_core_limit = 1 if os.cpu_count()!=None and os.cpu_count()>1: physical_core_limit = int(os.cpu_count()/2) default_threads = (physical_core_limit if physical_core_limit<=3 else max(3,physical_core_limit-1)) processor = platform.processor() if 'Intel' in processor: default_threads = (8 if default_threads > 8 else default_threads) #this helps avoid e-cores. parser.add_argument("--threads", metavar=('[threads]'), help="Use a custom number of threads if specified. Otherwise, uses an amount based on CPU cores", type=int, default=default_threads) compatgroup = parser.add_mutually_exclusive_group() compatgroup.add_argument("--usecublas", help="Use CuBLAS for GPU Acceleration. Requires CUDA. Select lowvram to not allocate VRAM scratch buffer. Enter a number afterwards to select and use 1 GPU. Leaving no number will use all GPUs. For hipBLAS binaries, please check YellowRoseCx rocm fork.", nargs='*',metavar=('[lowvram|normal] [main GPU ID] [mmq] [rowsplit]'), choices=['normal', 'lowvram', '0', '1', '2', '3', 'mmq', 'rowsplit']) compatgroup.add_argument("--usevulkan", help="Use Vulkan for GPU Acceleration. Can optionally specify GPU Device ID (e.g. --usevulkan 0).", metavar=('[Device ID]'), nargs='*', type=int, default=None) compatgroup.add_argument("--useclblast", help="Use CLBlast for GPU Acceleration. Must specify exactly 2 arguments, platform ID and device ID (e.g. --useclblast 1 0).", type=int, choices=range(0,9), nargs=2) compatgroup.add_argument("--noblas", help="Do not use any accelerated prompt ingestion", action='store_true') parser.add_argument("--contextsize", help="Controls the memory allocated for maximum context size, only change if you need more RAM for big contexts. (default 2048). Supported values are [256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]. IF YOU USE ANYTHING ELSE YOU ARE ON YOUR OWN.",metavar=('[256,512,1024,2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304,131072]'), type=check_range(int,256,262144), default=2048) parser.add_argument("--gpulayers", help="Set number of layers to offload to GPU when using GPU. Requires GPU.",metavar=('[GPU layers]'), nargs='?', const=1, type=int, default=0) parser.add_argument("--tensor_split", help="For CUDA and Vulkan only, ratio to split tensors across multiple GPUs, space-separated list of proportions, e.g. 7 3", metavar=('[Ratios]'), type=float, nargs='+') #more advanced params advparser = parser.add_argument_group('Advanced Commands') advparser.add_argument("--ropeconfig", help="If set, uses customized RoPE scaling from configured frequency scale and frequency base (e.g. --ropeconfig 0.25 10000). Otherwise, uses NTK-Aware scaling set automatically based on context size. For linear rope, simply set the freq-scale and ignore the freq-base",metavar=('[rope-freq-scale]', '[rope-freq-base]'), default=[0.0, 10000.0], type=float, nargs='+') advparser.add_argument("--blasbatchsize", help="Sets the batch size used in BLAS processing (default 512). Setting it to -1 disables BLAS mode, but keeps other benefits like GPU offload.", type=int,choices=[-1,32,64,128,256,512,1024,2048], default=512) advparser.add_argument("--blasthreads", help="Use a different number of threads during BLAS if specified. Otherwise, has the same value as --threads",metavar=('[threads]'), type=int, default=0) advparser.add_argument("--lora", help="LLAMA models only, applies a lora file on top of model. Experimental.", metavar=('[lora_filename]', '[lora_base]'), nargs='+') advparser.add_argument("--noshift", help="If set, do not attempt to Trim and Shift the GGUF context.", action='store_true') advparser.add_argument("--nommap", help="If set, do not use mmap to load newer models", action='store_true') advparser.add_argument("--usemlock", help="For Apple Systems. Force system to keep model in RAM rather than swapping or compressing", action='store_true') advparser.add_argument("--noavx2", help="Do not use AVX2 instructions, a slower compatibility mode for older devices.", action='store_true') advparser.add_argument("--debugmode", help="Shows additional debug info in the terminal.", nargs='?', const=1, type=int, default=0) advparser.add_argument("--skiplauncher", help="Doesn't display or use the GUI launcher.", action='store_true') advparser.add_argument("--onready", help="An optional shell command to execute after the model has been loaded.", metavar=('[shell command]'), type=str, default="",nargs=1) advparser.add_argument("--benchmark", help="Do not start server, instead run benchmarks. If filename is provided, appends results to provided file.", metavar=('[filename]'), nargs='?', const="stdout", type=str, default=None) advparser.add_argument("--multiuser", help="Runs in multiuser mode, which queues incoming requests instead of blocking them.", metavar=('limit'), nargs='?', const=1, type=int, default=0) advparser.add_argument("--remotetunnel", help="Uses Cloudflare to create a remote tunnel, allowing you to access koboldcpp remotely over the internet even behind a firewall.", action='store_true') advparser.add_argument("--highpriority", help="Experimental flag. If set, increases the process CPU priority, potentially speeding up generation. Use caution.", action='store_true') advparser.add_argument("--foreground", help="Windows only. Sends the terminal to the foreground every time a new prompt is generated. This helps avoid some idle slowdown issues.", action='store_true') advparser.add_argument("--preloadstory", help="Configures a prepared story json save file to be hosted on the server, which frontends (such as Kobold Lite) can access over the API.", default="") advparser.add_argument("--quiet", help="Enable quiet mode, which hides generation inputs and outputs in the terminal. Quiet mode is automatically enabled when running a horde worker.", action='store_true') advparser.add_argument("--ssl", help="Allows all content to be served over SSL instead. A valid UNENCRYPTED SSL cert and key .pem files must be provided", metavar=('[cert_pem]', '[key_pem]'), nargs='+') advparser.add_argument("--nocertify", help="Allows insecure SSL connections. Use this if you have cert errors and need to bypass certificate restrictions.", action='store_true') advparser.add_argument("--mmproj", help="Select a multimodal projector file for LLaVA.", default="") advparser.add_argument("--password", help="Enter a password required to use this instance. This key will be required for all text endpoints. Image endpoints are not secured.", default=None) advparser.add_argument("--ignoremissing", help="Ignores all missing non-essential files, just skipping them instead.", action='store_true') advparser.add_argument("--chatcompletionsadapter", help="Select an optional ChatCompletions Adapter JSON file to force custom instruct tags.", default="") advparser.add_argument("--flashattention", help="Enables flash attention.", action='store_true') advparser.add_argument("--quantkv", help="Sets the KV cache data type quantization, 0=f16, 1=q8, 2=q4. Requires Flash Attention, and disables context shifting.",metavar=('[quantization level 0/1/2]'), type=int, choices=[0,1,2], default=0) advparser.add_argument("--forceversion", help="If the model file format detection fails (e.g. rogue modified model) you can set this to override the detected format (enter desired version, e.g. 401 for GPTNeoX-Type2).",metavar=('[version]'), type=int, default=0) advparser.add_argument("--smartcontext", help="Reserving a portion of context to try processing less frequently. Outdated. Not recommended.", action='store_true') hordeparsergroup = parser.add_argument_group('Horde Worker Commands') hordeparsergroup.add_argument("--hordemodelname", metavar=('[name]'), help="Sets your AI Horde display model name.", default="") hordeparsergroup.add_argument("--hordeworkername", metavar=('[name]'), help="Sets your AI Horde worker name.", default="") hordeparsergroup.add_argument("--hordekey", metavar=('[apikey]'), help="Sets your AI Horde API key.", default="") hordeparsergroup.add_argument("--hordemaxctx", metavar=('[amount]'), help="Sets the maximum context length your worker will accept from an AI Horde job.", type=int, default=0) hordeparsergroup.add_argument("--hordegenlen", metavar=('[amount]'), help="Sets the maximum number of tokens your worker will generate from an AI horde job.", type=int, default=0) sdparsergroup = parser.add_argument_group('Image Generation Commands') sdparsergroup.add_argument("--sdmodel", metavar=('[filename]'), help="Specify a stable diffusion safetensors or gguf model to enable image generation.", default="") sdparsergroup.add_argument("--sdthreads", metavar=('[threads]'), help="Use a different number of threads for image generation if specified. Otherwise, has the same value as --threads.", type=int, default=0) sdparsergroup.add_argument("--sdclamped", help="If specified, limit generation steps and resolution settings for shared use.", action='store_true') sdparsergroupvae = sdparsergroup.add_mutually_exclusive_group() sdparsergroupvae.add_argument("--sdvae", metavar=('[filename]'), help="Specify a stable diffusion safetensors VAE which replaces the one in the model.", default="") sdparsergroupvae.add_argument("--sdvaeauto", help="Uses a built-in VAE via TAE SD, which is very fast, and fixed bad VAEs.", action='store_true') sdparsergrouplora = sdparsergroup.add_mutually_exclusive_group() sdparsergrouplora.add_argument("--sdquant", help="If specified, loads the model quantized to save memory.", action='store_true') sdparsergrouplora.add_argument("--sdlora", metavar=('[filename]'), help="Specify a stable diffusion LORA safetensors model to be applied. Cannot be used with quant models.", default="") sdparsergroup.add_argument("--sdloramult", metavar=('[amount]'), help="Multiplier for the LORA model to be applied.", type=float, default=1.0) whisperparsergroup = parser.add_argument_group('Whisper Transcription Commands') whisperparsergroup.add_argument("--whispermodel", metavar=('[filename]'), help="Specify a Whisper bin model to enable Speech-To-Text transcription.", default="") deprecatedgroup = parser.add_argument_group('Deprecated Commands, DO NOT USE!') deprecatedgroup.add_argument("--hordeconfig", help=argparse.SUPPRESS, nargs='+') deprecatedgroup.add_argument("--sdconfig", help=argparse.SUPPRESS, nargs='+') main(parser.parse_args(),start_server=True)