#!/usr/bin/env python3 import argparse import os import importlib import sys import torch import numpy as np from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForCausalLM from pathlib import Path unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME') parser = argparse.ArgumentParser(description='Process model with specified path') parser.add_argument('--model-path', '-m', help='Path to the model') args = parser.parse_args() model_path = os.environ.get('MODEL_PATH', args.model_path) if model_path is None: parser.error("Model path must be specified either via --model-path argument or MODEL_PATH environment variable") config = AutoConfig.from_pretrained(model_path) print("Model type: ", config.model_type) print("Vocab size: ", config.vocab_size) print("Hidden size: ", config.hidden_size) print("Number of layers: ", config.num_hidden_layers) print("BOS token id: ", config.bos_token_id) print("EOS token id: ", config.eos_token_id) print("Loading model and tokenizer using AutoTokenizer:", model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) if unreleased_model_name: model_name_lower = unreleased_model_name.lower() unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}" class_name = f"{unreleased_model_name}ForCausalLM" print(f"Importing unreleased model module: {unreleased_module_path}") try: model_class = getattr(importlib.import_module(unreleased_module_path), class_name) model = model_class.from_pretrained(model_path) except (ImportError, AttributeError) as e: print(f"Failed to import or load model: {e}") else: model = AutoModelForCausalLM.from_pretrained(model_path) print(f"Model class: {type(model)}") #print(f"Model file: {type(model).__module__}") model_name = os.path.basename(model_path) print(f"Model name: {model_name}") prompt = "Hello world today" input_ids = tokenizer(prompt, return_tensors="pt").input_ids print(f"Input tokens: {input_ids}") print(f"Input text: {repr(prompt)}") print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") with torch.no_grad(): outputs = model(input_ids, output_hidden_states=True) # Extract hidden states from the last layer # outputs.hidden_states is a tuple of (num_layers + 1) tensors # Index -1 gets the last layer, shape: [batch_size, seq_len, hidden_size] last_hidden_states = outputs.hidden_states[-1] # Get embeddings for all tokens token_embeddings = last_hidden_states[0].cpu().numpy() # Remove batch dimension print(f"Hidden states shape: {last_hidden_states.shape}") print(f"Token embeddings shape: {token_embeddings.shape}") print(f"Hidden dimension: {token_embeddings.shape[-1]}") print(f"Number of tokens: {token_embeddings.shape[0]}") # Save raw token embeddings data_dir = Path("data") data_dir.mkdir(exist_ok=True) bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin" txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt" # Save all token embeddings as binary print(token_embeddings) token_embeddings.astype(np.float32).tofile(bin_filename) # Save as text for inspection with open(txt_filename, "w") as f: for i, embedding in enumerate(token_embeddings): for j, val in enumerate(embedding): f.write(f"{i} {j} {val:.6f}\n") # Print embeddings per token in the requested format print("\nToken embeddings:") tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) for i, embedding in enumerate(token_embeddings): # Format: show first few values, ..., then last few values if len(embedding) > 10: # Show first 3 and last 3 values with ... in between first_vals = " ".join(f"{val:8.6f}" for val in embedding[:3]) last_vals = " ".join(f"{val:8.6f}" for val in embedding[-3:]) print(f"embedding {i}: {first_vals} ... {last_vals}") else: # If embedding is short, show all values vals = " ".join(f"{val:8.6f}" for val in embedding) print(f"embedding {i}: {vals}") # Also show token info for reference print(f"\nToken reference:") for i, token in enumerate(tokens): print(f" Token {i}: {repr(token)}") print(f"Saved bin logits to: {bin_filename}") print(f"Saved txt logist to: {txt_filename}")