* common : Changed tuple to struct (TODO fix)
Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>
* delete llama_init_default_params()
* delete the extra whitespace
* Add the DRY dynamic N-gram anti-repetition sampler
The DRY (Do not Repeat Yourself) sampler is a dynamic N-gram
repetition penalty that negatively scores tokens that would extend
sequences that already appear in the context.
See this discussion for a motivation and explanation of the sampler:
https://github.com/oobabooga/text-generation-webui/pull/5677
This implementation of DRY mostly aligns with the obabooga version
with a few modifications. It uses a more efficient linear scanning
algorithm to identify repetitions. It also supports multi-token
sequence breakers. As a limitation, this implementation reuses
the rep pen range parameter, rather than introducing a new range
just for the DRY sampler.
There is a separate change to lite.koboldai.net that exposes the DRY
sampler parameters to KoboldAI Lite, so none of the embed files have
been changed as part of this commit.
* Update default DRY parameters to match lite
* Improve DRY token debug logging
* Replace `and` with `&&` to fix MSVC compile error
Little known fact: The C++98 standard defines `and` as an
alternative token for the `&&` operator (along with a bunch
of other digraphs). MSVC does not allow these without using
the /Za option or including the <iso646.h> header. Change to
the more standard operator to make this code more portable.
* Fix MSVC compile error because log is not constexpr
Replace the compile-time computation with a floating-point
approximation of log(std::numeric_limits<float>::max()).
* Remove unused llama sampler variables and clean up sequence breakers.
* Remove KCPP_SAMPLER_DRY as a separate enum entry
The DRY sampler is effectively a repetition penalty and there
are very few reasons to apply it at a different place in sampler
order than the standard single-token penalty. There are also
multiple projects that have dependencies on the existing sampler
IDs, including KoboldAI, KoboldAI Lite, and Silly Tavern. In order
to minimize the impact of the dependencies of adding the DRY sampler
to koboldcpp, it makes the most sense to not add a new ID for now,
and instead to piggyback on KCPP_SAMPLER_REP_PEN. In the future
if we find a use case for splitting the application of rep pen and DRY
we can introduce a new enum entry then.
* Add the dry_penalty_last_n to independently control DRY penalty range
This parameter follows the oobabooga semantics: it's optional, with a
default value of zero. Zero means that DRY should sample the entire
context. Otherwise, it's the number of tokens from the end of the
context that are scanned for repetitions.
* Limit sequence breaker lengths in tokens and characters
The core DRY sampler algorithm is linear in the context length, but
there are several parts of the sampler related to multi-token
sequence breakers that are potentially quadratic. Without any
restrictions, a suitably crafted context and sequence breaker could
result in a denial-of-service attack on a server running koboldcpp.
This change limits the maximum number of characters and the maximum
token length of a sequence breaker in order to limit the maximum
overhead associated with the sampler.
This change also improves some comments, adding more detail and
changing the wording to increase clarity.
* added support for Authorization Bearer tokens
* removed auth_token, removed set_ function, other small fixes
* Update common/common.cpp
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Add llama_detokenize():
- Update header files location
- UNKNOWN and CONTROL are 'special pieces'
- Remove space after UNKNOWN and CONTROL
- Refactor llama_token_to_piece()
- Add flag: clean_up_tokenization_spaces
- Symmetric params for llama_tokenize() and llama_detokenize()
* Update and fix tokenizer tests:
- Using llama_detokenize()
- Unexpected vocab type as test fail instead of error
- Useful when automating tests:
- If you don't know in advance the vocab type
- Differenciate other loading errors
- Skip unicode surrogaes and undefined
- Gracefully exit threads
- Using exit() is throwing random exceptions
- Clean old known problematic codepoints
- Minor: confusing hexadecimal codepoint
* Update bruteforce random tests
- Add detokenizer checks
- New generator: ascii_lr_strip
- New generator: apostrophe
- Add more vocabs files
- Detokenize special tokens.
- Replace errors with '\uFFFD' when detokenizing to 'utf-8'
- More edge cases
- Better detokenization results check
* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces
* add parameters for embeddings
--embd-normalize
--embd-output-format
--embd-separator
description in the README.md
* Update README.md
fix tipo
* Trailing whitespace
* fix json generation, use " not '
* fix merge master
* fix code formating
group of parameters // embedding
print usage for embedding parameters
---------
Co-authored-by: Brian <mofosyne@gmail.com>
* add control-vector-generator
* calc diff
* add comments
* proof-of-concept stdlib implementation
Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.
* param parsing, refactor, comments
Added basic command-line parameters for outfile and one each positive/negative prompt.
Refactored some messy code in PCA computation and GGUF exporting.
Left a bunch of comments regarding further work needed.
* example template completions
Implements an example template set built from the positive/negative prompts like the control vector Python implementation.
* add multi prompts, multi-thread for PCA
* fix mem error
* add debugs
* fix matrix transpose multiplication
you have got to be kidding me
* preliminary template/multiprompt support
model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish
* fix zero output & param parsing, functional templating
fixed a bug where the output file had no tensor data/was all zero
fixed a bug where single hyphen flags were not being correctly parsed
implements creation of templated prompts from input (still need to adapt based on model)
* fix square_diff matmul index range and CRLF->LF line endings
fixed a logic error where square_diff would not multiply all rows
fixed a formatting error where the provided completions.txt had CRLF line endings
* add command-line args for num threads, num completions file lines, always reload model
refactored a few things and did what the commit message says on the tin
* code aestheticization
* fix compiler warnings
* in-series multithreading for prompt embedding?
added commented-out code to attempt to start implementing mutlithreading for embedding in main
* remove unnecessary multithreading
* interim fix memory leak
* translated everything but PCA (I think)
* tentatively translate the rest
* fix ggml errors and make new ones
at least it compiles and runs
* fix cb_eval
* temporary commit while I move dev environments
it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent
* update debug statements
* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped
* update comments
* (wip) refactor
* clean up PCA ggml implementation
* fix shape of v_diff_original
* add n_batch for pca
* working version
* remember to copy back the last_eigenvector
* fix n_completions
* bring back n_completions
* default n_pca_batch to 20
* fix macos build
* add to makefile all targets
* use ggml_format_name
* add readme
* fix .editorconfig
* use ggml_backend_tensor_copy
* attemp to fix compile problem on mac
* fix compile warn
* reuse allocr
* move param parser to common
* better error handling
* clean up a bit
* add print_usage
* shorten help msg
* beautify help msg
* escape prompt by default
* change compile target to llama-cvector-generator
* typo
* disable GPU for PCA
* code style
---------
Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
* server : Smart selection of available slot using Longest Common Substring
* add usage
* remove trailing whitespaces
* Use Longest Common Prefix (LCP) instead of LCS
* Rename argument
* common : gpt_params_parse do not print usage
* common : rework usage print (wip)
* common : valign
* common : rework print_usage
* infill : remove cfg support
* common : reorder args
* server : deduplicate parameters
ggml-ci
* common : add missing header
ggml-ci
* common : remote --random-prompt usages
ggml-ci
* examples : migrate to gpt_params
ggml-ci
* batched-bench : migrate to gpt_params
* retrieval : migrate to gpt_params
* common : change defaults for escape and n_ctx
* common : remove chatml and instruct params
ggml-ci
* common : passkey use gpt_params
* main : don't print special tokens with --grammar
The CLI interface was recently changed to print special control tokens
like the </s> stop message one. This token shouldn't be printed if the
grammar flag was passed, unless the grammar specifies it, because that
breaks shell-scriptability.
* main: use seperate stream for control characters
* main: use dprintf and add --ctrl-token-no-out and --ctrl-token-fd-out
* main: dprintf isn't part of the IEEE POSIX standard. Just use write().
* main: remove --ctrl-token-fd-out in favor for fcntl() based detection
* common.cpp: accidentally removed --interactive-first
* main: only merge stdout and control token if not in conversation or grammar mode
* main: rejig control token descriptor handling
* main: must check pipe status on very top of program
* main: renamed --no-special from --ctrl-token-no-out and other refactoring
* main: refactor ctrl_token_no_out --> no_special
* llama: rename llama_token_is_control_token() to llama_token_is_control()
* main: remove special token file descriptor feature (#5)
---------
Co-authored-by: Brian <mofosyne@gmail.com>
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided
* examples: cache hf model when --model not provided