* 9B - query_pre_attn_scalar = 256 not 224
See 03e657582d
Gemma 9b should use 256 and not 224 (self.config.hidden_size // self.config.num_attention_heads)
* llama : fix Gemma-2 Query scaling factor
ggml-ci
---------
Co-authored-by: Daniel Han <danielhanchen@gmail.com>
* llama : fix mpt and olmo pre-tokenizer
* llama : pre-tokenize non-special user-defined tokens first
* llama : fix detection of control-like user-defined tokens
* convert_hf : identify which user-defined tokens are control tokens
Only used in _set_vocab_gpt2() for now.
* convert_hf : identify more added control tokens for SPM tokenziers
This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.
There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)
* llama : fix wrong pre-tokenization of byte tokens
* llama : fix Viking pre-tokenizer regex
The order was previously wrong, which caused errors in some tests.
* llama : fix command-r detokenization
* convert_hf : reduce usages of the UNKNOWN token type
* llama : add UNKNOWN tokens in the special tokens cache
* convert_hf : reduce usages of UNKNOWN for InternLM2
This makes the changes from #8321 more consistent
with the other changes made here.
* test-tokenizer-random : reduce potential confilcts with #8379
* test-tokenizer-random : add a failing edge case for falcon
* Rudimentary support of openai chat completions tools calls
-Most small models are not smart enough to do this, especially a combined tool call + role play response, but at least this allows experimentation along these lines with koboldcpp
* try to also support specified function and tool choice set to none
Allow tools start and end messages to be configured in adapter
Try to force grammar to specific function call if specified (untested)
* ensure tools get listed right after user content and before end of user message content
* omit grammars approach try prompting instead
-use more extensive json parsing and direct instructions to models to try to obtain the desired result
-seems to work relatively well with Mistral-7B-Instruct-v.0.3.Q4_K_M.gguf and neuralhermes-2.5-mistral-7b.Q4_K_M.gguf
-question of whether this is too opinionated of an approach, should the instructions be things that can be passed with the prompt template?
* add back llamacpp recommended json grammar
Go back to adding grammar but use "official" llamacpp grammar only not a custom one just for openai
* Tidy up, remove unnecessary globals
* clarity
* fix missing local variable error
This worked to fix the error I mentioned on my last comment
---------
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
* Add the DRY dynamic N-gram anti-repetition sampler
The DRY (Do not Repeat Yourself) sampler is a dynamic N-gram
repetition penalty that negatively scores tokens that would extend
sequences that already appear in the context.
See this discussion for a motivation and explanation of the sampler:
https://github.com/oobabooga/text-generation-webui/pull/5677
This implementation of DRY mostly aligns with the obabooga version
with a few modifications. It uses a more efficient linear scanning
algorithm to identify repetitions. It also supports multi-token
sequence breakers. As a limitation, this implementation reuses
the rep pen range parameter, rather than introducing a new range
just for the DRY sampler.
There is a separate change to lite.koboldai.net that exposes the DRY
sampler parameters to KoboldAI Lite, so none of the embed files have
been changed as part of this commit.
* Update default DRY parameters to match lite
* Improve DRY token debug logging
* Replace `and` with `&&` to fix MSVC compile error
Little known fact: The C++98 standard defines `and` as an
alternative token for the `&&` operator (along with a bunch
of other digraphs). MSVC does not allow these without using
the /Za option or including the <iso646.h> header. Change to
the more standard operator to make this code more portable.
* Fix MSVC compile error because log is not constexpr
Replace the compile-time computation with a floating-point
approximation of log(std::numeric_limits<float>::max()).
* Remove unused llama sampler variables and clean up sequence breakers.
* Remove KCPP_SAMPLER_DRY as a separate enum entry
The DRY sampler is effectively a repetition penalty and there
are very few reasons to apply it at a different place in sampler
order than the standard single-token penalty. There are also
multiple projects that have dependencies on the existing sampler
IDs, including KoboldAI, KoboldAI Lite, and Silly Tavern. In order
to minimize the impact of the dependencies of adding the DRY sampler
to koboldcpp, it makes the most sense to not add a new ID for now,
and instead to piggyback on KCPP_SAMPLER_REP_PEN. In the future
if we find a use case for splitting the application of rep pen and DRY
we can introduce a new enum entry then.
* Add the dry_penalty_last_n to independently control DRY penalty range
This parameter follows the oobabooga semantics: it's optional, with a
default value of zero. Zero means that DRY should sample the entire
context. Otherwise, it's the number of tokens from the end of the
context that are scanned for repetitions.
* Limit sequence breaker lengths in tokens and characters
The core DRY sampler algorithm is linear in the context length, but
there are several parts of the sampler related to multi-token
sequence breakers that are potentially quadratic. Without any
restrictions, a suitably crafted context and sequence breaker could
result in a denial-of-service attack on a server running koboldcpp.
This change limits the maximum number of characters and the maximum
token length of a sequence breaker in order to limit the maximum
overhead associated with the sampler.
This change also improves some comments, adding more detail and
changing the wording to increase clarity.
* server : handle content array in chat API
* Update examples/server/utils.hpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit updates the _try_copy lambda and moves the unary minus
operator to after the cast to int32_t.
The motivation for this that currently the following warning is
generated on windows:
```console
llama.cpp\src\llama.cpp(21147,30): warning C4146: unary minus operator
applied to unsigned type, result still unsigned
```
Commit b0a4699 changed the name of this script from convert-hf-to-gguf.py to
convert_hf_to_gguf.py breaking how convert is called from within a Docker
container.
The <filename> token used by Refact doesn't serve
the same purpose as the <file_separator> from CodeGemma.
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
* fix part of mul_mat_id
* skip the bfloat 16 sycl ut
Signed-off-by: Chen Xi <xi2chen@intel.com>
---------
Signed-off-by: Chen Xi <xi2chen@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Chen Xi <xi2chen@intel.com>
* cuda : suppress 'noreturn' warn in no_device_code
This commit adds a while(true) loop to the no_device_code function in
common.cuh. This is done to suppress the warning:
```console
/ggml/src/ggml-cuda/template-instances/../common.cuh:346:1: warning:
function declared 'noreturn' should not return [-Winvalid-noreturn]
346 | }
| ^
```
The motivation for this is to reduce the number of warnings when
compilng with GGML_HIPBLAS=ON.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! cuda : suppress 'noreturn' warn in no_device_code
Update __trap macro instead of using a while loop to suppress the
warning.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Modify the deprecation-warning 'main' binary to build every time, instead of only when a legacy binary is present. This is to help users of tutorials and other instruction sets from knowing what to do when the 'main' binary is missing and they are trying to follow instructions.
* Adjusting 'server' name-deprecation binary to build all the time, similar to the 'main' legacy name binary.