This enforces a check that -fno-finite-math-only was set and that the operating
compiling mode is not in finite maths mode. This is because during rewriting of
silu and softmax for cpu #7154 there emerged an issue where the result that was
observed when >1 slot was nondeterministic as found by @JohannesGaessler.
@LostRuins narrowed the problem down to -ffinite-math-only which was theorised
to be due to SiLU, instead of flushing small values to 0, returns NaN or some
other garbage. @jart proposed a fix that @ggerganov then implemented in this fix
ref https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2145661825
* ggml: Added OpenMP for multi-threads processing
* ggml : Limit the number of threads used to avoid deadlock
* update shared state n_threads in parallel region
* clear numa affinity for main thread even with openmp
* enable openmp by default
* fix msvc build
* disable openmp on macos
* ci : disable openmp with thread sanitizer
* Update ggml.c
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml : fix loongson compile warnings
ggml-ci
* Fix loongarch quantize test fail.
Fix unexpected error introduced during rebase code.
* tests : disable json test due to lack of python on the CI node
ggml-ci
---------
Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
* cuda : fix rope pos data
ggml-ci
* ggml : drop mode & 1 == 1 support for ggml_rope
ggml-ci
* ggml : support freq_factors for f16 rope (CPU)
ggml-ci
* tests : add rope tests using frequency factors
ggml-ci
* add phi3 128k support in convert-hf-to-gguf
* add phi3 128k support in cuda
* address build warnings on llama.cpp
* adjust index value in cuda long rope freq factors
* add long rope support in ggml cpu backend
* make freq factors only depend on ctx size
* remove unused rope scaling type 'su' frin gguf converter
* fix flint warnings on convert-hf-to-gguf.py
* set to the short freq factor when context size is small than trained context size
* add one line of comments
* metal : support rope freq_factors
* ggml : update ggml_rope_ext API to support freq. factors
* backends : add dev messages to support rope freq. factors
* minor : style
* tests : update to use new rope API
* backends : fix pragma semicolons
* minor : cleanup
* llama : move rope factors from KV header to tensors
* llama : remove tmp assert
* cuda : fix compile warning
* convert : read/write n_head_kv
* llama : fix uninitialized tensors
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* android : use "ci-android" branch for CI
* ggml : disable SIMD exp and silu for 32-bit ARM
ggml-ci
* android : do not fetch, use add_subdirectory instead
* cmake : provide binary dir
This change upstreams llamafile's vectorized expf() functions. This lets
us compute softmax and silu more accurately than the short[65536] lookup
table that GGML previously used to make this operation go faster. We can
support aarch64 and sse2+ with the worst case rounding error of 2ulp. It
makes make -j8 tests && ./tests/test-backend-ops -o SOFT_MAX -b CPU perf
go 1.5x faster for SSE2+FMA, 1.9x faster for AVX2+FMA and 2.1x on AVX512
* Just reordering some structs.
* Adding in the calls to mm_pause
* Passing around the state
* Renaming and moving a bunch of variables around.
* Extracting the logic to it's own function.
* Moving some variable definitions into the chunk function.
* Moving some variables around
* moving src1_cont inside
* Moving row_size
* adding the current_chunk
* Reorg the code.
* Formatting to match the orig patch
* starting to setup the chunking variables
* Starting the buildup of the loop
* The yield shouldn't be necessary.
* adding the looping structure based on the chunk configuration.
* Add in the re-chunking code.
* Making it much more likely to rechunk.
* disable resizing if numa is enabled.
* Updating comments with what we've learned.
* Fix formatting
* Couple more formatting fixes.
* More style fixes.
* Fix Warnings
* Going with unused because there's conditional logic that needs it.
* Update ggml.c
* Update ggml.c
---------
* initial commit with CPU implementation of upscale to shape and test, cuda implementation next
* experimental commit to see if dst shape is correct
* test version
* test
* removed unnecessary params
* refactor
* fixed tests
* ggml : metal impl + cleanup + sycl dev warnings
* patched ggml_upscale cuda op to handle non-contiguous tensors, added test for non-contiguous behavior
* metal : fix upsacle op to support nb00 + style
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Introduce bfloat16 support
Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───┐
0b0000000000000000 brain16
This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌──┴───┐┌─┴───────────────────┐
0b00000000000000000000000000000000 IEEE binary32
The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others
┌sign
│
│ ┌exponent
│ │
│ │ ┌mantissa
│ │ │
│┌─┴─┐┌─┴──────┐
0b0000000000000000 IEEE binary16
This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16
* Remove GGML code that's not needed
* Minimize the GGML API surface area for BF16
* Remove bf16 luts
* Make the GGML header look nicer
* Fix documentation
* Apply ggerganov's fixes for test-backend-ops
* Add BF16 code for new ggml_validate_row_data() function